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Hearing Systems Group, Technical University of Denmark, Kongens Lyngby, Denmark

Sound textures, such as crackling fire or chirping crickets, represent a broad class of

sounds defined by their homogeneous temporal structure. It has been suggested that

the perception of texture is mediated by time-averaged summary statistics measured

from early auditory representations. In this study, we investigated the perception of sound

textures that contain rhythmic structure, specifically second-order amplitudemodulations

that arise from the interaction of different modulation rates, previously described as

“beating” in the envelope-frequency domain. We developed an auditory texture model

that utilizes a cascade of modulation filterbanks that capture the structure of simple

rhythmic patterns. The model was examined in a series of psychophysical listening

experiments using synthetic sound textures—stimuli generated using time-averaged

statistics measured from real-world textures. In a texture identification task, our results

indicated that second-order amplitude modulation sensitivity enhanced recognition.

Next, we examined the contribution of the second-order modulation analysis in a

preference task, where the proposed auditory texture model was preferred over a

range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the

discriminability of textures that included second-order amplitude modulations appeared

to be perceived using a time-averaging process. Overall, our results demonstrate that the

inclusion of second-order modulation analysis generates improvements in the perceived

quality of synthetic textures compared to the first-order modulation analysis considered

in previous approaches.

Keywords: sound texture, amplitude modulation, auditory model, natural sound, auditory perception

INTRODUCTION

Sound textures are characterized by their temporal homogeneity and may be represented with
a relatively compact set of time-averaged summary statistics measured from early auditory
representations (Saint-Arnaud and Popat, 1995; McDermott et al., 2013). Although, textures can
be expressed in a relatively compact form, they are ubiquitous in the natural world and span a
broad perceptual range (e.g., rain, fire, ocean waves, insect swarms etc.). The perceptual range has
been defined by a set of texture statistics outlined by McDermott and Simoncelli (2011). However,
it remains unclear what sound features might also be represented in the auditory system via a
time-averaging mechanism. In the present study, we investigated and expanded the perceptual
space of texture, particularly in the domain of amplitude modulations.

The texture synthesis system of McDermott and Simoncelli (2011) described spectral and
temporal tuning properties of the early auditory system that are crucial for texture perception.
Synthetic textures were generated by measuring time-averaged texture statistics at the output of
several processing stages of a biologically plausible auditory model, which were subsequently used
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to shape a Gaussian noise seed to have matching statistics. The
auditory texture model included frequency-selective auditory
filters and amplitude-modulation selective filters derived from
both psychophysical and physiological data (Dau et al., 1997).
The authors demonstrated that when the auditory model
deviated in its biological plausibility, such as applying linearly
spaced auditory filters, the perceptual quality of the texture
exemplars was reduced. In addition, McDermott and Simoncelli
(2011) identified which texture statistics were necessary for
correct identification, revealing subsets of statistics that were
requisite for different sound textures. Collectively, the results
suggested that textures synthesized with the complete set of
texture statistics and a biologically plausible auditory model
were preferred over all other identified synthesis system
configurations.

The sound synthesis system proposed by McDermott and
Simoncelli (2011) generated compelling exemplars for a broad
range of sounds, but there were also sounds for which the
auditory texture model failed to capture some of the perceptually
significant features. The failures were identified by means of a
realism rating performed by human listeners, who compared
synthetic textures to corresponding original real-world texture
recordings. The shortcomings were attributed to either the
processing structure or the statistics measured from the auditory
texture model. One such texture group were sounds that
contained rhythmic structure (McDermott and Simoncelli,
2011).

In the present study, the auditory texturemodel ofMcDermott
and Simoncelli (2011) was extended to include sensitivity to
second-order amplitude modulations. Second-order amplitude
modulations arise from beating in the envelope-frequency
domain. Intuitively, this can be described as the interaction
between two modulators acting on a carrier. At slow modulation
rates, second-order amplitude modulations have the perceptual
quality of simple rhythms (Lorenzi et al., 2001a). This type of
amplitude modulation has been shown to be salient in numerous
behavioral experiments (Lorenzi et al., 2001a,b; Ewert et al.,
2002; Verhey et al., 2003; Füllgrabe et al., 2005). The perception
of second-order amplitude modulation has also been modeled
by applying non-linear processing and modulation-selective
filtering to a signal’s envelope (Ewert et al., 2002). While the
role of second-order amplitude modulation in sound perception
has been investigated using artificial stimuli, their significance in
natural sound perception has yet to be examined.

We undertook an analysis-via-synthesis approach to examine
the role of second-order amplitude modulations in sound
texture perception (Portilla and Simoncelli, 2000; McDermott
and Simoncelli, 2011). This entailed generating synthetic sounds
from time-averaged statistics measured at different stages of our
auditory texture model (Figure 1A). The synthetic sounds were
controlled by two main factors: the structure of the auditory
texture model and the statistics passed to the texture synthesis
system. We first ensured that the sound texture synthesis
system was able to capture the temporal structure of a second-
order amplitude modulated signal (Figure 1B). Subsequently, we
examined the significance of the auditory texture model in a
series of behavioral texture identification and preference tasks.

Lastly, we attempted to quantify the role of time-averaging in the
perception of second-order amplitude modulation stimuli.

METHODS

Auditory Texture Model
The auditory texture model is based on a cascaded filterbank
structure that separates the signal into frequency subbands
(Figure 1A). The first stage of the model uses 34 gammatone
filters, equally spaced on the equivalent rectangular bandwidth
(ERB)N scale from 50 Hz to∼8 kHz (Glasberg andMoore, 1990):

g (t) = ct3e2π i·f c·te−2π ·β·t ,

where fc is the gammatone center frequency, β is a bandwidth
tuning parameter and c is a scale coefficient. Although
gammatone filters only capture the basic frequency selectivity
of the auditory system, more advanced and dynamic filterbank
architectures, such as dynamic compressive gammachirp filters
(Irino and Patterson, 2006), did not yield any improvement in
texture synthesis as observed in pilot experiments. To allow for
the reconstruction of the subbands, a paraconjugate filter, G̃(z),
was created for each gammatone filter,G(z) (Bolcskei et al., 1998):

G̃ (z) =

(

1

G (z)

)

·

(

G (z)G (z)T + G∗ (z)G∗ (z)T
)

,

where G (z) is the Fourier transform of g(t), and G∗(z) is the
complex conjugate of G(z). Perfect reconstruction is achieved as
long as:

G̃ (z)G (z) = 1.

To model fundamental properties of the peripheral auditory
system, we applied compression and envelope extraction to the
subband signals. The compression was used to model the non-
linear behavior of the cochlea (e.g., Ruggero, 1992) and was
implemented as a power-law compression with an exponent
value of 0.3. As all textures were presented at a sound pressure
level (SPL) of 70 dB, it was deemed not necessary to include level-
dependent compression. To functionally model the transduction
from the cochlear to the auditory nerve, the envelopes of the
compressed subbands were extracted using the Hilbert transform
and down-sampled to 400Hz (McDermott and Simoncelli, 2011).
The compressed, down-sampled envelopes roughly estimate the
transduction from basilar-membrane vibrations to inner hair-cell
receptor potentials.

The model then processed each cochlear channel signal
by a modulation filterbank, accounting for the first-order
modulation sensitivity and selectivity of the auditory system.
The filterbank applied to each cochlear channel comprised of
19 filters, half-octave spaced from 0.5 to 200 Hz. This type
of functional modeling is consistent with previous perceptual
models of modulation sensitivity (Dau et al., 1997) and shares
similarities with neurophysiological findings (Miller et al., 2002;
Joris et al., 2004; Malone et al., 2015). The broadly tuned
modulation filters have a constant Q = 2 and a shape defined
by a Kaiser–Bessel window. Reconstruction of the modulation
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FIGURE 1 | Texture analysis model. (A) The functional auditory model captures the tuning properties of the peripheral and subcortical auditory system: (1) An auditory

filterbank simulates the resonance frequencies of the cochlea, (2) a non-linearity captures the compression of the cochlea followed by a computation of the Hilbert

envelope, functionally modeling the transduction from the mechanical vibrations on the basilar membrane to the receptor potentials in the hair cells, (3) a first-order

modulation filterbank captures the selectivity of the auditory system to different envelope fluctuation rates, and (4) a second-order modulation filterbank captures the

sensitivity of the auditory system to beating in the envelope frequency domain. Texture statistics include marginal moments of cochlear envelopes (M), 1st-order

modulation power (M1P), pair-wise correlations between cochlear envelopes (C), pairwise correlations between modulation subbands (MC1), phase correlations

between octave-spaced modulation bands (MC2), and 2nd-order modulation power (M2P). (B) Example second-order modulation stimulus. The far-left panel shows

the input stimulus that consists of two short 62.5 ms pulses repeated every 500ms. The example outputs are shown at each stage of the model. The output of the

1st-order modulation band is shown for the 8 Hz subband which captures the period of the short pulses. The 2nd-order modulation band is shown for the 2 Hz

subband which captures the period of the repetition.

filterbank was achieved with the same method as the frequency
selective gammatone filterbank.

The output of each modulation filter was subsequently
processed by a second modulation filterbank, accounting
for the sensitivity of the auditory system to second-order
amplitude modulations. Each second-order modulation
filterbank contained 17, half-octave spaced bands in the range
from 0.25 to 64 Hz. The model was inspired by behavioral
experiments and simulations revealing an auditory sensitivity
to second-order modulations that is similar in nature to the
sensitivity to first-order amplitude modulations (Lorenzi et al.,
2001a,b; Ewert et al., 2002; Füllgrabe et al., 2005). The model
processing layer proposed here has some shared attributes to the
model presented in Ewert et al. (2002), but has the added benefit
of being easily invertible. The second-order modulation filters
have a constant Q = 2 and a Kaiser–Bessel window.

Texture Statistics
The goal of statistics selection is to find a description of
sound textures that is consistent with human sensory perception
(Portilla and Simoncelli, 2000). The selected statistics should
be based on relatively simple operations that could plausibly
occur in the neural domain. The values of the measured statistics
should also vary across textures, facilitating the recognition of
sound textures by the difference in the statistical representation.
Lastly, there should be a perceptual salience to the textures, such
that the use of their statistics contributes to the realism of the
corresponding synthetic texture.

The statistics measured from the auditory model include
marginal moments and pair-wise correlations (Portilla and

Simoncelli, 2000; McDermott and Simoncelli, 2011). The
included texture statistics are similar to those described in
McDermott and Simoncelli (2011). They were computed from
the envelope of the cochlea channels, including the first- and
second-order modulation filters, and were measured over texture
excerpts of several seconds. Examples of the statistics for three
textures (insect swarm, campfire, and small stream) measured
from the auditory texture model (Figure 1A) are shown in
Figure 2.

The envelope statistics include the mean (µ), coefficient of

variance ( σ 2

µ2 ), skewness (η), and kurtosis (κ), and represent the

first four marginal moments, defined as:

µn =
−→x n,

σ 2
n

µ2
n

=

(−→x n − µn

)2

µ2
n

,

ηn =

(−→x n − µn

)3

σ 3
n

,

κn =

(−→x n − µn

)4

σ 4
n

,

where n is the cochlear channel of x. Pair-wise correlations were
computed as a cross-covariance with the form:

cmn =

(−→x m − µm

) (−→x n − µn

)

σmσn
,
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where m and n are the cochlear channel pairs. The final statistic
captures envelope phase:

cjk =

−→
d

∗

k
−→a j

σkσj
, dk =

a2k
‖ak‖

, −→a k =
−→
b k + iH

(−→
b k

)

,

where j and k are the modulation channel pairs of b, H is the
Hilbert transform, and ∗ is the complex conjugate.

First Level Statistics
The first level of statistics were measured on the cochlear
envelopes of the auditory texture model (Figure 1). The marginal
moments (M) describe the distribution of the individual
subbands (Figure 2A) and capture the overall level as well as
the sparsity of the signal (Field, 1987). The correlation statistics
(C) capture how neighboring signals co-vary. The correlation
statistics are measured between the eight neighboring cochlear
channels (Figure 2B). There are 372 statistics measured at the
cochlear stage of the auditory model (M = 128, and C = 236).

Second Level Statistics
The second level statistics were measured on the first-order
modulation bands (Figure 1) and include the coefficient of
variance (M1P, Figure 2C), the correlation measured across
cochlear channels and first-order modulation channels (MC1,
Figure 2D), and the correlation measured across modulation
channels for the first-order modulations (MC2, Figure 2E).
Because the outputs of the modulation filters have zero mean,

the variance effectively reflects a measure of the modulation
channel power. The variance was measured for cochlear
channels that have a center frequency at least four times
that of the modulation frequency (Dau et al., 1997). The
modulation correlations measured across cochlear channels
(MC1) reflect a cross-covariance measure. The correlation
was measured for two neighboring cochlear channels. The
modulation correlationmeasured acrossmodulation rates (MC2)
included phase information and was computed for octave-spaced
modulation frequencies. The number of statistics considered in
the modulation domain was 1,258 (M1P= 646, MC1= 408, and
MC2= 204).

Third Level Statistics
The last analysis stage was conducted on the second-order
modulation envelope bands (Figure 1), where the modulation
power was measured for each band (M2P, Figure 2F). This
analysis stage extends beyond the model of McDermott
and Simoncelli (2011) to capture second-order modulations
(Lorenzi et al., 2001b). The power was measured for first-order
modulation rates that are at least twice that of the second-order
modulation rate. The 2nd-order modulation power required the
largest overall number of statistics (M2P= 3,400).

Synthesis System
The synthesis of sound textures was accomplished bymodifying a
Gaussian noise seed to have statistics that match those measured
from a real-world texture recording (Portilla and Simoncelli,

FIGURE 2 | Texture Statistics. (A) Cochlear envelope marginal moments (mean, coefficient of variance, skewness, kurtosis) measured from three real-world texture

recordings (Swamp insects, campfire, small stream). (B) Cochlear envelope pair-wise correlations measured between different cochlear channels. The label of the

texture analyzed is located above the subfigure (and for all subsequent subfigures). Lightened regions here and elsewhere denote texture statistics that are not

imposed during the synthesis process. (C) Modulation band power (variance). The figure is normalized by the modulation power of Gaussian noise and shown on a log

(dB) scale. (D) Modulation correlation measured for a particular rate across cochlear channels. The modulation rate is indicated above the subfigure. (E) Modulation

phase correlation measured between octave-spaced modulation bands. (F) Second-order modulation band power (variance). The second-order modulation

frequency is indicated above the individual subfigures for a selection of rates (0.5, 1, and 2Hz). The statistics are plotted relative to Gaussian noise on a log (dB) scale.
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2000; McDermott and Simoncelli, 2011). The original texture
recording was decomposed using our biologically motivated
auditory model where the texture statistics were measured. The
statistics were then passed to the synthesis algorithm which
imposed the measured statistics on the decomposed Gaussian
noise signal. The modified signals were reconstructed back to a
single-channel waveform. A schematic of the synthesis system
can be seen in Figure 3A.

The imposition of texture statistics on the noise input
was achieved using the LM-BFGS variant of gradient descent
(limited-memory Broyden–Fletcher–Goldfarb–Shanno). The
noise signal was decomposed to the second-order modulation
bands, where the power statistics were imposed. The bands
were then reconstructed to the first-order modulation bands,
and the modulation power and correlation statistics were
imposed. The modulation bands were then reconstructed to
the cochlear envelopes, where the marginal moments and pair-
wise correlations statistics were imposed. Lastly, the cochlear
envelopes were combined with the fine-structure of the noise
seed and the cochlear channels were resynthesized to the single
channel waveform.

The synthesis process requires many iterations in order to
attain convergence for each of the texture statistics due to the
reconstruction of the subbands and tiered imposition of statistics.
The reconstruction of the filterbanks modified the statistics of
each subband due to the overlap in frequency of neighboring
filters. The reconstruction from the cochlear envelopes to
the cochlear channels was also affected by the combination
of the envelope and fine structure. In addition, the texture

statistics were modified at 3 layers (cochlear envelopes, 1st-order
modulations, and 2nd-order modulations) of the auditory model,
and themodification at each level had an impact on the other two.
Due to these two factors, an iterative process for imposing texture
statistics was required.

The synthesis was deemed successful if the synthetic texture
statistics approached those measured from the original real-
world texture recoding. The convergence was evaluated based
on the signal-to-noise ratio (SNR) between the synthetic and
original texture statistics (Portilla and Simoncelli, 2000). When
the synthesis process reached an SNR of 30 dB or higher across
the texture statistics, the process ended, generating a synthetic
texture. The system also had a maximum synthesis iteration limit
of 60. However, the convergence criterion was often met within
60 iterations. The cochleograms of the original and synthetic
textures are shown in Figure 3B.

Texture Synthesis System Validation
The proposed auditory texture model and adjoining synthesis
system were validated with a second-order amplitude modulated
signal identified by McDermott and Simoncelli (2011). The
signal was generated by applying a binary mask to a
Gaussian noise carrier. The mask contained a long noise
burst (t = 0.1875 s or 3

16 s), followed by two short noise bursts
(

t = 0.0625 s or 1
16 s

)

that were repeated every 500 ms (see
Figure 4A, upper panel). The stimulus has a second-order
modulation of 2 Hz, generated by the interaction between two
first-order modulations at 6 and 8Hz.

FIGURE 3 | Texture synthesis system and synthetic examples. (A) Texture synthesis is accomplished by measuring statistics from a real-world texture recording at

different stages of the auditory texture model. The statistics are then passed to the synthesis system that adjusts the statistics of a Gaussian noise seed to match the

input statistics. The iterative process outputs a synthetic texture with the same time-averaged statistics as the real-world texture recording. (B) Original real-world

texture recordings and their synthetic counterparts. The synthetic textures were generated with a complete set of texture statistics. Example audio files corresponding

to the original and synthetic spectrograms can be found in the Supplementary Material (Swamp Insects: Audio files 1, 2; Campfire: Audio files 3, 4; Small Stream:

Audio files 5, 6).
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FIGURE 4 | Verification of second-order texture synthesis. (A) Spectrogram of example rhythmic (second-order modulated) noise bursts with 500 ms repetition

pattern. The upper panel shows the original sound, the middle panel shows the synthetic version with second-order modulation texture statistics (w/ 2nd-order mods.)

and the bottom panel shows the synthetic version without second-order modulation texture statistics (w/o 2nd-order mods.). (B) Second-order modulation power

statistics. The 500 ms period is reflected in the majority of power held within the 2Hz 2nd-order modulation band (lower-left panel). Example audio files corresponding

to the spectrograms can be found in the Supplementary Material (Original: Audio file 7; w/ 2nd-order mods.: Audio file 8; w/o 2nd-order mods.: Audio file 9).

Psychophysical Experiments
The listeners were recruited from a university specific job posting
site. The listeners completed the required consent form and were
compensated with an hourly wage for their time. All experiments
were approved by the Science Ethics Committee for the Capital
Region of Denmark.

The listeners performed the experiment in a single-walled
IAC sound isolating booth. The sounds were presented at
70 dB SPL via Sennheiser HD 650 headphones. The playback
system included an RME Fireface UCX soundcard and the
experiments were all created using Mathworks MATLAB and the
PsychToolBox (psychtoolbox.org) software.

The synthetic textures used in experiments 1 and 2 were
generated in 5-s long samples.Multiple exemplars were generated
for each texture. Each exemplar was created using a different
Gaussian noise seed such that no sample was identical in terms of
the waveform, but had the same time-averaged texture statistics.
Four-second long excerpts were taken from themiddle portion of
the texture samples with a tapered cosine (Tukey) window with
20-ms ramps at the onset and offset.

Experiment 1—Texture Identification
Each trial consisted of a 4-s texture synthesized from subsets
of texture statistics that were cumulatively included from the
cochlear envelopemean to the 2nd-order modulation power. The
listeners were required to identify the sound from a list of 5
label descriptors. The experiment consisted of 59 sound textures.
The textures were divided into 5 texture groups, defined by the
authors: animals, environment, mechanical, human, and water
sounds. The list of 4 incorrect labels for each texture was selected
from different texture groups. There were 7 conditions per

texture (6 synthetic and 1 original) and 413 trials per experiment.
Eleven self-reported normal-hearing listeners participated in the
experiment (6 female, 23.3 mean age).

Experiment 2—Modulation Processing Model

Comparison
Each trial consisted of three intervals; the original real-world
texture recording, a synthetic texture generated from the above-
mentioned texture synthesis system (reference), and a synthetic
texture generated from a modified version of the auditory model.
The real-world texture was presented first. Textures generated
from the reference system and a modified auditory model were
then presented in intervals 2 and 3, where by the order of
presentation was randomized. Each interval was 4 s long with
an inter-stimulus-interval of 400ms. The listeners were asked to
select the interval that was most similar to the real-world texture
recording. The same 59 textures were used in the experiment,
presented in 236 trails. Eleven self-reported-normal hearing
listeners participated in the experiment (7 female, 24.2mean age).

Synthetic textures generated from a reference auditory model
and four alternate auditory models were included in the
experiment. The reference model is described in Figure 1,
including texture statistics measured from the cochlear envelope,
1st- and 2nd-order modulation bands. The first alternate
model removed the 2nd-order modulation bands, and was
in principle similar to that of McDermott and Simoncelli
(2011). The second alternate model removed the 2nd-order
modulation bands and replaced the half-octave spaced 1st-
order modulation filterbank by an octave-spaced variant. Octave-
spaced modulation selectivity has been suggested in several
models of auditory perception (Dau et al., 1997; Jorgensen
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and Dau, 2011). The third alternate model removed the 2nd-
order modulation bands and substituted the half-octave spaced
modulation filterbank with a low-pass filter of 150 Hz. The low-
pass characteristic of amplitude modulation perception has been
proposed, and here we used a model that preserves the sensitivity
to modulation rates but lacks the selectivity of the filterbank
model (Kohlrausch et al., 2000; Joris et al., 2004). The fourth
alternate model also removed the 2nd-order modulation bands
and substituted the half-octave spaced modulation filterbank
with a low-pass filter with a cutoff frequency of 5 Hz. The
sluggishness of the auditory system to amplitude modulation
perception is reflected in the heightened sensitivity to slow
modulation rates (Viemeister, 1979; Dau et al., 1996).

Experiment 3—Second-Order Modulation

Discrimination
Each trial consisted of three 2-s intervals. The listeners performed
an odd-one-out experiment, where they were instructed to
identify the interval (first or last) that was different from the
other two. The stimulus sets described below were evaluated in
separate experiment blocks. Twelve self-reported-normal hearing
listeners participated in the experiment (3 female, 23.0mean age).

The first stimulus set was generated from second-order
amplitude modulated white noise using the following equation:

s (t) =
(

1+
(

0.5+ sin
(

2π fm1t + φ
))

∗ sin
(

2π fm2t
))

∗ n (t) ,

where fm1 is the first modulator, t is time, φ is the phase of
the first modulator, fm2 is the second modulator, and n (t) is
the Gaussian noise carrier. fm1 had a modulation frequency
of 2, 4, 8, 16, 32, or 64. fm2 had a modulation rate of
fm1[0.1, 0.13, 0.17, 0.22, 0.28, 0.36, 0.46, 0.60, 0.77, or 1.00].
φ was randomized for each trial. The exemplars were 5 s in
duration. Two intervals were sampled from the first 2 s, and the
“odd” interval was sampled from the last 2 s. Each condition was
repeated 4 times, for a total of 240 trials.

The next stimulus set used second-order amplitude
modulated white noise generated from a combination of
fm1 and fm2 pairs, creating a complex amplitude modulated
signal. Each stimulus was created using the six fm1 frequencies,
each paired with a corresponding fm2 frequency that was
randomly selected from the list of 10, modulating the same
white noise seed. The six second-order modulated signals were
then summed to create one stimulus. The exemplars were 5 s
in duration. Two intervals were sampled from the first 2 s, and
the “odd” interval was sampled from the last 2 s. There were 48
stimuli presented, one per trial.

The final stimulus set was composed of sound textures
generated with the complete set of texture statistics, including
second-order amplitude modulation power. The 59 textures used
in experiments 1 and 2 were used in this experiment. The
exemplars were 5 s in duration. Two intervals were sampled from
the first 2 s, and the “odd” interval was sampled from the last 2 s.
There were 59 trials in total.

RESULTS

The auditory texture model proposed in the present study
includes frequency-selective filtering (in the audio-frequency
domain) as well as a cascade of amplitude modulation filterbanks
to capture time-averaged amplitude modulations and simple
rhythmic structure. The model was combined with a sound
synthesis system to generate synthetic textures that were then
examined in several behavioral listening experiments. The
results show three main findings: (1) the model captures
simple rhythmic structure by way of second-order amplitude
modulation analysis, (2) the inclusion of second-order amplitude
modulation analysis contributes to the recognition of the
synthetic textures, and (3) second-order amplitude modulations
in textures may be perceived using time-averaged summary
statistics.

Synthesis Verification for Second-Order
Modulations
Although, the second-order texture statistics varied across
textures, it was unclear how the synthesis process would perform
in creating new sound examples. To test this, we used a second-
order amplitude modulation signal identified by McDermott
and Simoncelli (2011) that has a salient rhythmic structure.
Figure 4A shows the original sound (top), a synthetic version
with second-order modulation analysis (middle) and a synthetic
version without second-order analysis (bottom). The synthetic
sound generated from texture statistics that included second-
order amplitude modulation analysis captured the rhythmic
pattern of the original sound, whereas the version without
second-order analysis failed to capture the rhythmic structure
even though the duration of the noise bursts is comparable to that
in the original sound. The successful synthesis of the rhythmic
sound suggests that the cascaded modulation filterbank analysis
can capture rhythmic structure.

The second-order amplitude modulation statistics for the
example rhythmic sound are shown in Figure 4B. The majority
of the modulation power can be found in the 2 Hz second-
order modulation channel (bottom left panel) across several first-
order modulation rates. For a relatively simple rhythmic sound,
there is considerable modulation power across frequencies. This
is primarily due to amplitude modulation interactions between
the modulation frequencies and the broadband (Gaussian)
noise carrier. If a second-order amplitude modulated tone was
used instead of the noise with its intrinsic modulations, the
modulation power would be relegated entirely to the 2-Hz band.

Texture Perception: Identification and
Preference
Our first behavioral experiment investigated the ability of
listeners to identify sound textures generated from subsets
of statistics. Listeners were presented with a 4 s texture
and asked to identify the sound from a list of 5 text label
descriptors. The textures synthesized with the cochlear envelope
power resulted in low performance, but the performance
increased with the inclusion of higher-order texture statistics
and approached that of the original real-world texture recording
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when second-order amplitude modulation statistics were used
[Figure 5A; F(6, 49) = 123.51, p < 0.0001]. The results suggest
that listeners benefited from the addition of second-order
amplitude modulation analysis to the auditory texture model.

Next, we were interested in how synthetic textures generated
with alternate amplitude modulation processing models
compared to our auditory texture models. To investigate this,
we generated textures from four models that included only the
first-order amplitude modulation analysis (Figure 5B). The
results show that our auditory texture model, with second-order
amplitude modulation analysis, was preferred over all other
model variants (Figure 5C; p < 0.01 relative to chance). Notably,
the inclusion of second-order modulation analysis yielded a
modest yet significant improvement over the half-octave spaced
first-order modulation, which is comparable to that developed
by McDermott and Simoncelli (2011). The results from the
preference experiment revealed which textures benefited most
from second-order amplitude modulation analysis. Figure 5D
shows a list of the top 8 most preferred and least preferred
textures measured between the half-octave spaced filterbank
and our auditory texture model. The list includes a broad range
of sounds, from mechanical/machine noises to animal/insect
sounds. The least preferred textures reveal sounds which may
not depend greatly on amplitude modulation texture statistics
(i.e., cochlear envelope marginal moments and pair-wise
correlations).

Two example textures, helicopter and frogs-crickets, are shown
in Figure 6. For each texture, the left panel shows the 2nd-order
modulation texture statistics for selected bands and the right
panel shows the original and synthetic texture cochleograms.
Notably, the second-order amplitude modulation power differs
between the two textures, suggesting that the additional analysis
contributes to sound texture recognition.

Second-Order Modulation Discrimination
To examine if second-order amplitude modulations are
processed by the auditory system similarly to textures, i.e.,
integrated over modest time windows of a few seconds, or if
the auditory system has the temporal acuity to identify and
discriminate second-order modulations with higher precision,
a set of discrimination experiments was performed where
synthetic sound textures were compared to artificial control
stimuli generated from amplitude modulated Gaussian noise.
Listeners performed a three-interval odd-one-out experiment,
where they were asked to identify whether the first or last interval
was different from the other two. The experiments covered
three stimulus groups: rate-specific second-order amplitude
modulations, complex second-order amplitude modulation
noise from a set of modulation rates, and synthetic sound
textures generated using second-order amplitude modulation
statistics.

The first experiment included second-order amplitude
modulations of increasing rate from 2 to 64 Hz. The results
showed that, at low rates, the listeners have the ability to
discriminate modulated noise exemplars (Figure 7—left panel).
The performance decreased with increasing modulation rate and
approached chance level for modulation rates above 16Hz. For

FIGURE 5 | Synthetic texture identification and preference tasks. (A)

Identification of sound textures improves with the inclusion of more statistics.

Asterisks denote significant differences between conditions, p < 0.01 (paired

t-tests, corrected for multiple comparisons). Error bars here and elsewhere

show the standard error. Dashed lines here and elsewhere show chance

performance. (B) Modulation filter(bank) structure used in the listening

experiments. For low-pass (LP) conditions, only the statistics of the signal in

the passband were modified. (C) Sounds synthesized with the 2nd-order

modulation statistics were preferred over all other auditory texture models.

Asterisk denotes significance from chance (p < 0.01). (D) Eight most preferred

(left) and least preferred (right) textures from experiment 2, relative to first-order

modulation filterbank model (half-octave spacing).

these control stimuli, the results suggest that the auditory system
may have access the modulation phase for rates 16 Hz and below.

The discriminability of the complex modulated Gaussian
noise and the synthetic texture was poor (Figure 7—right panel)
compared to the lowmodulation rates considered in the previous
experiment. This suggests that, for texture sounds, access to the
modulation phase is limited in the auditory system. Isolating the
top eight most preferred textures from Experiment 2 revealed
comparable performance to the complete set of textures. The
performance observed for sound textures in a similar odd-one-
out discrimination task was comparable to that reported in
McDermott et al. (2013) for an interval duration of about 2 s.
Collectively, the results suggest that textures, including those
that benefit from second-order modulation analysis, may be
perceived using time-average statistics, whereas the auditory
system appears to retain more temporal detail for our second-
order modulation control stimuli for rates below 16Hz.
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FIGURE 6 | Textures that benefit from second-order modulation statistics. Two example textures from the preferred list: Helicopter (left) and frogs-crickets (right). The

left panel shows the second-order modulation statistics for six selected bands. The right panel shows the spectrogram of the original texture (top) and the synthetic

texture with second-order modulation statistics (middle) and without second-order modulation statistics (bottom). Example audio files corresponding to the

spectrograms of the original, synthetic with 2nd-order modulations, and without 2nd-order modulations can be found in the Supplementary Material (helicopter:

Audio files 10–12; frogs-crickets: Audio files 13–15).

FIGURE 7 | Second-order amplitude modulation and texture exemplar

discrimination. The black symbols show the response to second-order

amplitude modulated Gaussian noise exemplar discrimination as a function of

modulation rate. Error bars indicate the standard error. The blue symbol

indicates exemplar discrimination performance for complex second-order

amplitude modulated Gaussian noise. The green symbol indicates exemplar

discrimination performance for synthetic sound textures that include all

indicated texture statistics (including second-order amplitude modulation

statistics). The red symbol indicates exemplar discrimination performance for

top-8 synthetic (Experiment 2) sound textures that include all indicated texture

statistics.

DISCUSSION

The perception of sound texture can be characterized by a
set of time-averaged statistics measured from early auditory
representations. We extended the auditory texture model of
McDermott and Simoncelli (2011) to account for simple
rhythmic structures in sound textures via a cascade of amplitude

modulation filterbanks. The auditory texture model was coupled
with a sound synthesis system to generate texture exemplars
from the statistics measured at different stages of the model.
The synthetic stimuli were first used in a texture identification
experiment, where the listeners’ ability to recognize a texture
improved with the inclusion of the subgroups of statistics.
We found that the performance obtained using the second-
order amplitude modulation analysis approached that of the
original real-world texture recordings and was higher than
the performance obtained using only a first-order amplitude
modulation analysis (Experiment 1). We also generated synthetic
textures from alternate auditorymodels of amplitudemodulation
sensitivity. The synthetic textures were used in a preference
task, where listeners’ preferred sounds synthesized using
second-order amplitude modulation over all other model
variants (Experiment 2). Lastly, we performed an experiment
focusing on second-order amplitude modulation perception in a
discrimination task. The listeners’ ability to discriminate second-
order modulation sound exemplars decreased with increasing
modulation rate, and complex second-order modulated Gaussian
noise and synthetic textures appear to be perceived using a
time-averaging mechanism (Experiment 3).

Amplitude Modulations in Texture
Perception
The auditory texture model described by McDermott and
Simoncelli (2011) included a biologically plausible first-order
modulation filterbank operating on individual cochlear channel
envelopes. The textures synthesized with this model produced
many compelling textures, including sounds generated from
machinery (e.g., helicopter, printing press) with relatively
uniform short-time repetitions as well as environmental sounds
(e.g., wind, ocean waves) with variable slow modulations. Our
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texture model built upon this work and provided further
evidence for the importance of modulation selectivity in sound
texture perception. For first-order modulation analysis, the
results from the preference task (Experiment 2) demonstrated
that using half-octave spaced modulation filterbank yields the
best performance out of the model variants. The model has
a slightly higher selectivity than has that reported in earlier
models (Dau et al., 1997). One reason may be that the selectivity
of the auditory system for natural sounds, such as textures,
may be slightly different than that for artificial stimuli used to
identify the auditory systems’ modulation tuning curves and
selectivity. Another possible explanation is that natural sounds
do not conform to octave spaced modulation frequencies, and
if the modulation power in a natural sound has a maximum
between two modulation bands with fixed center frequencies,
the synthetic sounds vary to a greater degree from the original
real-world recording.

The results from the preference experiment also identified
which textures were most improved (preferred) by the inclusion
of the second-order modulation analysis. These textures tended
to have higher first-order modulation power, but did not appear
to possess obvious common feature. Some sounds, such as the
helicopter, had low second-ordermodulation power while others,
such as the frogs-crickets, had high second-order modulation
power. Also, the second-order modulation power error between
the first-order model and the second-order model did not tend
to be higher for these textures. Intuitively, there may be aspects
of first-order modulations that are captured by our model,
such as mediating the modulation depth in our time-averaged
measurements. However, this was difficult to reveal with our
natural texture stimuli.

Model Architecture and Statistics
There might be several auditory model architectures that can
successfully capture rhythmic structure in sound textures. Our
proposed model, using a cascade of modulation filterbanks,
seems to provide a compelling approach, as it is relatively
intuitive and straight forward to implement in the already
established texture analysis-synthesis framework. Another
option, however, would be the “venelope” model proposed by
Ewert et al. (2002) which used a side-chain analysis to measure
the second-order amplitude modulations. In this model, the
second-order modulations are extracted from the cochlear
envelope and analyzed using a single modulation filterbank. The
“venelope” model is more efficient than our cascaded model and
there is some evidence to suggest that second-order modulations
are processed in the auditory system using the same mechanism
as the first-order modulation (Verhey et al., 2003). However,
the cascaded modulation filterbank model considered in this
study can capture simple rhythmic structure and provided
an easier means to reconstruct the filters and thus synthesize
textures.

Our approach to modeling of the auditory system, based
on audio-frequency and amplitude- modulation-frequency
selective filtering, is consistent with biological evidence from
the mammalian auditory system (Ruggero, 1992; Joris et al.,

2004; Rodríguez et al., 2010). This is found in the auditory-
inspired filter structure for both cochlear channels and
modulation-selective channels, which culminated in a cascade
of filterbanks with intermediate envelope extraction using the
Hilbert transform. A similar hierarchical processing architecture
has also been well-defined by Mallat and colleagues as scattering
moments (Mallat, 2012; Bruna and Mallat, 2013). The scattering
moments have been shown to capture a wide range of structure in
natural stimuli (Andén andMallat, 2011, 2012, 2014), in addition
to being used for sound texture synthesis (Bruna and Mallat,
2013).

A consequence of the cascaded filterbank model proposed
here is that the number of statistics required to capture the
auditory feature increases with each layer. This is predominantly
the case for the second-order modulation analysis, where we
measure 3,400 parameters, which increases the number of texture
statistics by a factor of ∼3 as compared to the model of
McDermott and Simoncelli (2011). It may be possible to optimize
the number of parameters by identifying which modulation rates
are most significant for texture perception. Alternate models,
such as the “venelope” model of Ewert et al. (2002), could
reduce the number of parameters needed to capture the second-
order amplitude modulation. Although the additional model
layer increased the number of statistics, the representation is
moderately compact as the statistics are computed as time-
averages of the signal.

An alternate approach to representing textures via statistics,
is to learn efficient representations from the stimuli themselves.
This approach has been shown to be useful for identifying sparse
representations of natural stimuli from hierarchical models
(Karklin and Lewicki, 2005; Cadieu and Olshausen, 2009). The
higher-order structure of natural sounds, such as environmental
textures, has also been explored to uncover their possible
neural representation (Młynarski and McDermott, 2017). These
methods come with their own complications and limitations,
however may be a useful avenue for identifying more efficient
representations than the texture model of McDermott and
Simoncelli (2011) or the one outlined in the present study.

Temporal Regularity in Texture Perception
Sounds textures have been defined as the superposition of
many similar acoustic events, therefore it was not obvious
a priori that sounds with temporal regularities would be
perceived in the same way—as time-averages of sensory
measurements. Temporal patterns are important for sound
perception, and their contribution has been investigated in
terms of auditory streaming (Bendixen et al., 2010; Andreou
et al., 2011). In addition, sensitivity to temporal regularities in
the auditory system has also been shown in complex listening
environments (Barascud et al., 2016). Our results show that
second-order modulation statistics vary across textures, and
the inclusion of this second modulation analysis generated
modest improvements in the perceived quality of the synthetic
textures. Textures generated with second-order amplitude
modulation analysis seemed to result in similar discriminability,
suggesting that the features captured by the cascaded modulation
filterbank model may be perceived via a similar time-averaging
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mechanism that has been proposed for more noise-like
textures.

Relationship to Visual Texture Perception
One of the interesting ideas about texture perception is that
of a unified representation across sensory modalities. Textures
have been investigated in the visual system (Julesz, 1962;
Portilla and Simoncelli, 2000; Freeman and Simoncelli, 2011),
the somatosensory system (Connor and Johnson, 1992) and the
auditory system (Saint-Arnaud and Popat, 1995; McDermott
and Simoncelli, 2011). Of particular relevance to our work is
how the sound texture synthesis system proposed by McDermott
and Simoncelli (2011) is comparable in processing structure and
analysis to that presented by Portilla and Simoncelli (2000) for
visual textures. In both models, the input signal is processed
by layers of linear filtering and envelope extraction, while the
texture analysis statistics, which are primarily composed of
marginal moments and pair-wise correlations, are also similar
between the two models. Our model of cascaded filterbanks
also overlaps with other models of the image texture perception
(Wang et al., 2012). It therefore seems valuable to look across
sensory modalities for shared perceptual spaces (Zaidi et al.,
2013).

Our investigation of second-order modulation analysis in
sound texture perception may also be relatable to spatial texture
patterns, or maximally regular textures, in the visual system.
Kohler et al. (2016) showed a neural sensitivity to image texture
patterns that repeat in space. Our work is also indicative of sound
texture pattern sensitivity in time. Previous work in both sound
and image texture perception has also made the comparison of
perceptual pooling over time and space, respectively (Balas et al.,
2009; Freeman and Simoncelli, 2011; McDermott et al., 2013).
Conceptually, the apparent texture time-averaging in audition
draws compelling parallels to the spatial averaging observed in
visual texture perception.

Implications and Perspectives
In this study, we investigated the significance of second-order
amplitude modulations in natural sound texture perception.
The generation of synthetic sound textures using a cascade
of modulation filterbanks appears to contribute positively to
the perception of texture. We also observed that the auditory
system is sensitive to specific rates of second-order modulations,
showing heightened acuity to isolated modulations for rates
below 16 Hz. Future experiments would be useful to understand
the role of temporal regularity in texture at different modulations
rates and spectral frequencies. In addition, such stimuli could
be useful to understand the perception of texture in complex
auditory scenes, such as the perceptual segregation of speech in
the presence of different types of background textures.
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Audio file 1 | Figure 3B (Swamp Insects–Original).

Audio file 2 | Figure 3B (Swamp Insects–Synthetic).

Audio file 3 | Figure 3B (Campfire–Original).

Audio file 4 | Figure 3B (Campfire–Synthetic).

Audio file 5 | Figure 3B (Small Stream–Original).

Audio file 6 | Figure 3B (Small Stream–Synthetic).

Audio file 7 | Figure 4A (Original).

Audio file 8 | Figure 4A (w/ 2nd-order mods.).

Audio file 9 | Figure 4A (w/o 2nd-order mods.).

Audio file 10 | Figure 6 (helicopter–Original).

Audio file 11 | Figure 6 (helicopter–Synthetic with 2nd-order modulations).

Audio file 12 | Figure 6 (helicopter–Synthetic without 2nd-order modulations).

Audio file 13 | Figure 6 (frogs-crickets–Original).

Audio file 14 | Figure 6 (frogs-crickets–Synthetic with 2nd-order modulations).

Audio file 15 | Figure 6 (frogs-crickets–Synthetic without 2nd-order

modulations).
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