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There is increasing interest in understanding how the phase and amplitude of distinct

neural oscillations might interact to support dynamic communication within the brain.

In particular, previous work has demonstrated a coupling between the phase of low

frequency oscillations and the amplitude (or power) of high frequency oscillations during

certain tasks, termed phase amplitude coupling (PAC). For instance, during visual

processing in humans, PAC has been reliably observed between ongoing alpha (8–13

Hz) and gamma-band (>40 Hz) activity. However, the application of PAC metrics to

electrophysiological data can be challenging due to numerous methodological issues

and lack of coherent approaches within the field. Therefore, in this article we outline

the various analysis steps involved in detecting PAC, using an openly available MEG

dataset from 16 participants performing an interactive visual task. Firstly, we localized

gamma and alpha-band power using the Fieldtrip toolbox, and extracted time courses

from area V1, defined using a multimodal parcelation scheme. These V1 responses were

analyzed for changes in alpha-gamma PAC, using four common algorithms. Results

showed an increase in alpha (7–13 Hz)–gamma (40–100 Hz) PAC in response to the

visual grating stimulus, though specific patterns of coupling were somewhat dependent

upon the algorithm employed. Additionally, post-hoc analyses showed that these results

were not driven by the presence of non-sinusoidal oscillations, and that trial length was

sufficient to obtain reliable PAC estimates. Finally, throughout the article, methodological

issues and practical guidelines for ongoing PAC research will be discussed.
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INTRODUCTION

Electrophysiological brain oscillations are often separated into distinct frequency bands, ranging
from low-frequency delta (1–4Hz) to high-frequency gamma (<40Hz). The power and/or
connectivity profiles of these frequency bands have been linked with specific neuronal and cognitive
functions (Buzsáki and Draguhn, 2004; Palva et al., 2005). Whilst this has proven a powerful tool
in neuroscientific research, there is emerging evidence that oscillations from different frequency
bands also display specific coupling patterns—a phenomenon termed cross frequency coupling
(CFC; Jensen and Colgin, 2007; Hyafil et al., 2015). One of the best studied forms of CFC is
phase-amplitude coupling (PAC), in which the amplitude/power of a high frequency oscillation,
often gamma (>40Hz), is coupled to the phase of a lower frequency oscillation (Canolty et al.,
2006; Canolty and Knight, 2010). PAC has been observed in multiple regions of the human brain,
including the visual cortex (Voytek et al., 2010), auditory cortex (Cho et al., 2015), hippocampus
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(Lega et al., 2014; Heusser et al., 2016), and prefrontal
cortex (Voloh et al., 2015; Voytek et al., 2015), in both
electrocorticography (ECOG) and magnetoencephalography
(MEG) recordings.

Within the visual system, there is strong evidence for
a dynamic coupling between alpha phase (8–13 Hz) and
gamma amplitude (>40Hz; Voytek et al., 2010; Spaak et al.,
2012; Bonnefond and Jensen, 2015). Alpha oscillations are
associated with pulses of cortical inhibition every ∼100ms
(Jensen and Mazaheri, 2010; Klimesch, 2012), whilst supporting
communication through phase dynamics (Fries, 2015). In
contrast, gamma oscillations emerge through local excitatory and
inhibitory interactions, and synchronize local patterns of cortical
activity (Singer and Gray, 1995; Buzsáki and Wang, 2012). In
visual cortex, ongoing gamma-band activity becomes temporally
segmented by distinct phases of alpha-band activity (Spaak et al.,
2012; Bonnefond et al., 2017), possibly via inter-laminar coupling
between supragranular and infragranular cortical layers (Mejias
et al., 2016). Intriguingly, this coupling has been proposed to act
as a mechanism for the dynamic co-ordination of brain activity
over multiple spatial scales, with high-frequency activity within
local ensembles coupled to large-scale patterns of low-frequency
phase synchrony (Bonnefond et al., 2017), both within the visual
system (Bonnefond and Jensen, 2015), and more widespread
neurocognitive networks (Florin and Baillet, 2015). This would
allow information to be routed efficiently between areas and
for neuronal representations to be segmented and maintained,
for example during visual working memory (Lisman and Idiart,
1995; Bonnefond and Jensen, 2015). Atypical patterns of PAC
have also been proposed to underlie atypical cortical connectivity
in several neurological conditions, including autism spectrum
disorder (Khan et al., 2013; Kessler et al., 2016), schizophrenia
(Kirihara et al., 2012), and Parkinson’s Disease (Özkurt and
Schnitzler, 2011; De Hemptinne et al., 2013).

Given the developing interest in cross-frequency coupling,
it is vital for the wider neuroscience and electrophysiological
community to understand the steps involved in its measurement
and interpretation. This is especially important for PAC, which
is beset with methodological pitfalls, since there are many
competing algorithms, approaches, and currently no gold-
standard set of analysis steps (Canolty and Knight, 2010;
Jensen et al., 2016). It has also been suggested that numerous
incidences of reported PAC may in fact be false positives,
caused by suboptimal analysis practices and/or the presence
of artifacts within the data (Aru et al., 2015; Hyafil, 2015).
For example non-sinusoidal sawtooth-like oscillations can
generate artificially inflated PAC values, via low-frequency phase
harmonics (Lozano-Soldevilla et al., 2016; Cole et al., 2017; Vaz
et al., 2017).

In this article, we outline a general approach for detecting
changes in phase-amplitude coupling during visual processing,
using a novel MEG dataset, analyzed using the Fieldtrip toolbox
(Oostenveld et al., 2010), and openly available MATLAB scripts.
Four common PAC algorithms were used to quantify the
coupling between ongoing alpha phase (7–13 Hz) and gamma
amplitude/power (>40Hz) whilst participants viewed a static
visual grating. Given the controversy surrounding PAC analysis,

methodological steps were outlined in detail and justified by
existing empirical research. Furthermore, follow-up analyses
were conducted to establish the reliability of our results and to
assess whether patterns of alpha-gamma PAC were driven by
non-sinusoidal oscillations or insufficient data.

METHODS

Participants
Data were collected from 16 participants (6male, 10 female, mean
age= 28.25, SD= 6.23). All participants had normal or corrected
to normal vision and no history of neurological or psychiatric
illness.

Experimental Procedures
All experimental procedures complied with the Declaration
of Helsinki and were approved by the Aston University,
Department of Life and Health Sciences ethics committee.
Participants gave written informed consent before participating
in the study.

Paradigm
Participants performed an engaging sensory paradigm
(Figure 1), designed to elicit patterns of high-frequency
oscillatory activity. Each trial started with a variable fixation
period of 1,500, 2,500, or 3,500 ms randomized across trials,

FIGURE 1 | The structure of the engaging sensory paradigm. Each trial
started with a 1,500, 2,500, or 3,500 ms baseline period in which a square
black box (the “porthole”) was centrally presented. This was followed by
presentation of the visual grating stimulus (two cycles/degree) around the
central porthole for 1,500 ms. A picture of an alien (target) or astronaut
(non-target) was then shown within the porthole for 500 ms. Participants were
instructed to respond after the appearance of an alien picture (maximum
response time: 1,500 ms). Correct or incorrect responses were conveyed to
the participant through audio-visual feedback in which the porthole turned
green (correct) or red (incorrect) and a correct/incorrect tone was played. The
times corresponding to the analyzed baseline and visual grating periods are
labeled in orange/blue, respectively.

Frontiers in Neuroscience | www.frontiersin.org 2 September 2017 | Volume 11 | Article 487

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Seymour et al. Detecting PAC during Sensory Processing

followed by the presentation of a visual grating or auditory
binaural click train stimulus; however only the visual data will be
analyzed in this article. The visual grating stimulus had a spatial
frequency of two cycles/degree and was presented for 1,500 ms.
To keep participants engaged with the task, cartoon pictures of
aliens or astronauts were presented after the visual grating, for
a maximum of 500 ms. Please note that visual responses to the
alien or astronaut picture did not form part of the MEG analysis.
Participants were instructed to respond to the appearance of an
alien picture using a response pad (maximum response period of
1,500 ms). The accuracy of the response was conveyed through
audio-visual feedback, followed by a 500 ms fixation period.
In total, the MEG recording lasted 12–13 min and included 64
trials with visual grating stimuli. Prior to MEG acquisition, the
nature of the task was fully explained to participants and several
practice trials were performed. Accuracy rates were above 95%
for all participants indicating that the task was engaging and
successfully understood.

MEG Acquisition
MEG data were acquired using a 306-channel Neuromag MEG
scanner (Vectorview, Elekta, Finland) made up of 102 triplets
of two orthogonal planar gradiometers and one magnetometer.
All recordings were performed inside a magnetically shielded
room at a sampling rate of 1,000Hz. Five head position indicator
(HPI) coils were applied for continuous head position tracking,
and visualized post-acquisition using an in-house Matlab script.
For MEG-MRI coregistration purposes three fiducial points, the
locations of the HPI coils and 300–500 points from the head
surface were acquired using the integrated Polhemus Fastrak
digitizer.

Visual stimuli were presented on a screen located 86 cm from
participants (resulting in two cycles/degree for the visual grating),
and auditory feedback through MEG-compatible earphones.

Structural MRI
A structural T1 brain scan was acquired for source reconstruction
using a Siemens MAGNETOM Trio 3T scanner with a 32-
channel head coil (TE = 2.18 ms, TR = 2,300 ms, TI = 1,100
ms, flip angle = 9◦, 192 or 208 slices depending on head size,
voxel-size= 0.8× 0.8× 0.8 cm).

MEG-MRI Coregistration and 3D Cortical
Mesh Construction
MEG data were co-registered with participants MRI structural
scan by matching the digitized head shape data with surface
data from the structural scan (Jenkinson and Smith, 2001). The
aligned MRI-MEG image was used to create a forward model
based on a single-shell description of the inner surface of the skull
(Nolte, 2003), using the segmentation function in SPM8 (Litvak
et al., 2011). The cortical mantle was then extracted to create a 3D
cortical mesh, using Freesurfer v5.3 (Fischl, 2012), and registered
to a standard fs_LR mesh, based on the Conte69 brain (Van
Essen, 2012), using an interpolation algorithm from the Human
Connectome Project (Van Essen et al., 2012; instructions here:
https://goo.gl/3HYA3L). Finally, the mesh was downsampled to
4002 vertices per hemisphere. Due to the extensive computation
time involved in these procedures, all participant-specific cortical

meshes are available to download in the /anat directory of the
Figshare repository (see later).

Pre-processing
MEG data were pre-processed using Maxfilter (temporal signal
space separation, .9 correlation), which suppresses external
sources of noise from outside the head (Taulu and Simola, 2006).

Further pre-processing steps were performed in Matlab 2014b
using the open-source Fieldtrip toolbox v20161024 (Oostenveld
et al., 2010; script: 1_preprocessing_elektra_frontiers_PAC.m).
Firstly, for each participant the entire recording was band-
pass filtered between 0.5 and 250Hz (Butterworth filter, low-
pass order 4, high-pass order 3) and band-stop filtered (49.5–
50.5 Hz; 99.5–100.5Hz) to remove residual 50Hz power-line
contamination and its harmonics. Data were then epoched into
segments of 4,000 ms (1,500 ms pre, 1,500 ms post-stimulus
onset, with 500 ms of padding either side) and each trial was
demeaned and detrended. Trials containing artifacts (SQUID
jumps, eye-blinks, head movement, muscle) were removed
if the trial-by-channel (magnetomer) variance exceeded 8 ×
10−23, resulting in an average of 63.5 trials per condition,
per participant. Indices of removed trials are included in the
Supplementary Materials. Site-specific MEG channels containing
large amounts of non-physiological noise were removed from all
analyses (MEG channels: 0111, 0322, 2542, 0532).

Source Analysis
Source analysis was conducted using a linearly constrained
minimum variance beamformer (LCMV; Van Veen et al., 1997),
which applies a spatial filter to the MEG data at each vertex of the
3D cortical mesh, in order to maximize signal from that location
whilst attenuating signals elsewhere. Beamforming weights were
calculated by combining the covariance matrix of the sensor data
with leadfield information. Due to rank reduction following data
cleaning with Maxfilter, the covariance matrix was kept at a rank
below 64 components, which explained 99% of the variance.
For all analyses, a common filter was used across baseline and
grating periods, and a regularization parameter of lambda 5%was
applied.

Due to prior interest in the gamma and alpha-bands
(Hoogenboom et al., 2006; Muthukumaraswamy et al., 2010;
Michalareas et al., 2016), the visual data were band-pass filtered
(Butterworth filter) between 40–60 Hz (gamma) and 8–13 Hz
(alpha), and source analysis was performed separately for each
frequency band. To capture induced rather than evoked visual
activity, a period of 300–1,500 ms following stimulus onset
was compared with a 1,200 ms baseline period (1,500–300 ms
before grating onset). The change in oscillatory power for each
vertex was averaged across participants, interpolated onto a 3D
mesh provided by the Human Connectome Project (Van Essen,
2012), and thresholded at a value which allowed the prominent
patterns of power changes to be determined (see Figure 3, script:
2_get_source_power.m).

Extracting Area V1 Time-Series
Trial time-courses were extracted from bilateral visual area
V1, defined using a multi-modal parcelation from the Human
Connectome Project, which combined retinotopic mapping,
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T1/T2 structural MRI and diffusion-weighted MRI to accurately
define the boundaries between cortical areas (Glasser et al.,
2016; Figure 3C). The downsampled version of this atlas can
be found in the parent directory of the Figshare repository
(see later). To obtain a single spatial filter from this region,
we performed a principle components analysis (PCA) on the
concatenated filters from 182 vertices of bilateral V1, multiplied
by the sensor-level covariance matrix, and extracted the first
component. The sensor-level data was then multiplied by this
spatial filter to obtain a V1-specific “virtual electrode” (script:
3_get_VE_frontiers_PAC.m), and the change in oscillatory
power between grating and baseline periods was calculated from
1 to 100Hz, using a 500ms time window, sliding in steps of 20ms
and±8 Hz frequency smoothing (script: 4_calc_pow_change.m).
It is important to note that while we decided to use a multimodal
atlas, visual area V1 virtual electrode time-series could also
be defined using a more standard volumetric approach, for
example the AAL atlas, which is included in the Fieldtrip toolbox
(Oostenveld et al., 2010).

Phase Amplitude Coupling (PAC) Analysis
V1 time-courses were examined for changes in alpha-gamma
phase amplitude coupling (PAC). The general procedure is
outlined in Figure 2. The first step was to obtain estimates of
low frequency phase (fp) and high frequency amplitude (fa) for
each trial using a fourth order, two-pass Butterworth filter, and
then applying the Hilbert transform (Le Van Quyen et al., 2001).
To avoid sharp edge artifacts, which can result in spurious PAC
(Kramer et al., 2008), the first 500 ms and last 500 ms of each trial
was discarded.

The bandwidth of the filter used to obtain fp and fa is a
crucial parameter in calculating PAC (Aru et al., 2015). The filters
for extracting fa need to be wide enough to capture the center
frequency ± the modulating fp. So, for example, to detect PAC
between fp = 13 Hz and fa = 60 Hz, requires a fa bandwidth
of at least 13 Hz [47 73]. If this condition is not met, then PAC
cannot be detected even if present (Dvorak and Fenton, 2014).
We therefore decided to use a variable bandwidth, defined as
±0.4 times the center frequency (e.g., for an amplitude of 60 Hz,
the bandwidth was 24 Hz either side [36 84]), which has been
shown to improve the ability to detect PAC (Berman et al., 2012;
Voloh et al., 2015). For alpha-band phase (maximum 13 Hz), this
allowed us to calculate PAC for amplitudes above 34 Hz. The
bandwidth for fp was kept narrow (1 Hz± the center frequency),
in order to extract sinusoidal waveforms. Furthermore, each trial
was visually inspected to confirm that the fp filtered oscillations
were sinusoidal in nature.

Next, the coupling between fp and fa was quantified using four
common PAC approaches1: theMean-Vector Lengthmodulation
index, originally described in Canolty et al. (2006); the Mean-
Vector Length modulation index described in Özkurt and
Schnitzler (2011); the phase-locking value modulation index
described in Cohen (2008); and the Kullback-Lieber modulation
index described in Tort et al. (2010b). These approaches were

1Due to inconsistent naming practices, we refer to the quantitative value of PAC as
the modulation index (MI) across all four approaches.

FIGURE 2 | Illustration of the phase amplitude coupling (PAC) analysis
procedure. The V1 time-series were filtered to obtain estimates of phase and
amplitude, using a narrow (±1 Hz) bandwidth for the phase and a variable
bandwidth (±0.4 times the center frequency) for the amplitude. Phase and
amplitude information were obtained via the Hilbert transform. The coupling
between phase and amplitude was then quantified using Mean Vector Length,
Kullback-Leiber, or Phase Locking Value algorithms to produce a Modulation
Index value.

selected due to their popularity in the MEG/EEG PAC literature
(e.g., Mathewson et al., 2011; Khan et al., 2013; Bonnefond and
Jensen, 2015; Cho et al., 2015), and to demonstrate the diversity
of PAC results based on the algorithm selected.

The mean vector length modulation index (MVL-MI-
Canolty) approach estimates PAC from a signal with length N,
by combining phase (φ) and amplitude information to create a

complex-valued signal: fae
i(φfp)

(Canolty et al., 2006), in which
each vector corresponds to a certain time-point (n). If the
resulting probability distribution function is non-uniform, this
suggests a coupling between fp and fa, which can be quantified by
taking the length of the average vector.

MI =
∣

∣

∣

∣

1

N

∑N

n=1
fa (n) ei(φfp(n))

∣

∣

∣

∣

However, MI-values from the MVL-MI-Canolty algorithm have
been shown to partly reflect the power of fa oscillations,
rather than their coupling (Canolty and Knight, 2010).
Therefore, as an alternative to surrogate data, we applied
a MVL-MI algorithm from Özkurt and Schnitzler (2011),
which includes a normalization factor corresponding to the
power of fa. Özkurt and Schnitzler (2011) suggest that
their algorithm is more resilient to measurement noise, and
is therefore highly relevant for MEG data, which has an
inherently lower signal-to-noise ratio compared with invasive
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electrophysiological recordings (Goldenholz et al., 2009).

MI =
1

√
N

∣

∣

∣

1
N

∑N
n=1 fa (n) ei(φfp(n))

∣

∣

∣

√

1
N

∑N
n=1 fa(n)

2

The PLV-MI-Cohen approach assumes that if PAC is present, the
envelope of fa should oscillate at the frequency corresponding
to fp. The phase of fa envelope can be obtained by applying
the Hilbert transform (angle): φfa. The coupling between the
low-frequency φfp phase values and the phase of the amplitude
envelope, φfa, can be quantified by calculating a phase locking
value (PLV), in much the same way as determining phase
synchronization between electrophysiological signals.

MI =

∣

∣

∣

∣

∣

1

N

N
∑

n=1

ei(φfp(n)−φfa(n)

∣

∣

∣

∣

∣

Finally, the KL-MI-Tort approach estimates PAC by quantifying
the amount of deviation in amplitude-phase distributions. This
involves breaking fp into 18 bins, and calculating the mean
amplitude within each phase bin, normalized by the average
value across all bins. Although the number of phase bins chosen
is arbitrary, the specific number (9, 18, or 36) does not seem
to influence PAC estimation (Figure S1; van Driel et al., 2015).
The modulation index is calculated by comparing the amplitude-
phase distribution (P) against the null hypothesis of a uniformly
amplitude-phase distribution (Q).

MI =
D (P,Q)

log (Nbins)

Mathematically, this is computed using the Kullbeck-Leiber
distance (D), related to Shannon’s entropy.

D (P,Q) =
N

∑

ibin=1

P(ibin) · log
(

P (ibin)

Q (ibin)

)

Using these four approaches (MVL-MI-Canolty; MVL-MI-
Özkurt; KL-MI-Tort; PLV-MI-Cohen) we calculated PAC
between phases 7–13 Hz (in 1 Hz steps) and amplitudes 34–100
Hz (in 2 Hz steps), for the time-period 300–1,500 ms following
grating presentation and a 1,200 ms baseline period. PAC-values
were calculated separately for each trial and then averaged to
obtain a single MI-value per amplitude and phase. This was
repeated using surrogate data, created by shuffling trial and
phase-carrying information (200 surrogates), to normalize MI-
values. On a PCwith 32 GB of RAM, and Intel(R) CoreTM i7-4790
processor, the computation time for these procedures was 4.5 h
(script: 5_visual_PAC_four_methods.m).

To assess changes in the strength of PAC between the grating
and baseline periods, the comodulograms were compared using
non-parametric cluster-based statistics, which have been shown
to adequately control the type-I error rate for electrophysiological
data (Maris and Oostenveld, 2007). First, an uncorrected
dependent-samples t-test was performed (grating vs. baseline),

and all MI-values exceeding a 5% significance threshold were
grouped into clusters. The maximum t-value within each
cluster was carried forward. Next, a null distribution was
obtained by randomizing the condition label (grating/baseline)
1,000 times and calculating the largest cluster-level t-value
for each permutation. The maximum t-value within each
original cluster was then compared against this null distribution,
with values exceeding a threshold of p < 0.05 deemed
significant.

Sinusoidal Oscillations
One major issue in cross-frequency coupling analysis is the
presence of non-sinusoidal sawtooth-like oscillations (Jensen
et al., 2016; Cole et al., 2017), which can result in spurious
estimates of PAC (Lozano-Soldevilla et al., 2016). This property
of oscillations can be quantified by calculating the time
taken from trough to peak (rise-time), peak to trough
(decay-time), and the ratio between these values (Dvorak
and Fenton, 2014; Cole and Voytek, 2017). We therefore
calculated this ratio for the visual V1 data from 7 to 13
Hz, and performed a t-test to check for differences in non-
sinusoidal oscillations between grating and baseline periods
(script: 6_check_non_sinusoidal.m).

Simulated PAC Analysis
To investigate the validity of the four PAC approaches, we
constructed 1.2 s of simulated data with known alpha-gamma
PAC [fp = 10 Hz; fa = 50–70 Hz; code adapted from Kramer et al.
(2008) and Özkurt and Schnitzler (2011)] and added a random
level of noise (signal-to-noise ratio>−11.5 dB). Comodulograms
were produced using the four PAC algorithms on 64 trials of
simulated data. Using the same code, we also investigated how
the four algorithms were affected by trial length (0.1–10 s in 0.1 s
steps, script: 7_simulated_PAC_analysis.m).

Analysis Code and Data Sharing
MEG data are available to download online at Figshare
(https://doi.org/10.6084/m9.figshare.c.3819106.v1), along with
participant-specific 3D cortical meshes. Access to the raw
structural MRI data will be granted upon reasonable request
and ethical approval from Aston University Life and Health
Sciences ethics committee. Data analysis code has been made
available to download from Figshare (permanent version: https://
doi.org/10.6084/m9.figshare.5297032), Github (https://github.
com/neurofractal/sensory_PAC) and within the Supplementary
Materials. This includes MATLAB code for the four PAC
algorithms, which can be applied to electrophysiological data
arranged in the standard Fieldtrip format (Oostenveld et al.,
2010). Please note that these scripts have been optimized for the
Windows operating system and MATLAB versions above 2014b
(see supplementary materials for other software dependencies).
Successful use of the scripts requires the user to have at
least a basic understanding of MATLAB, signal processing,
and the methodological complexities surrounding PAC. We
therefore direct the reader to a number of excellent reviews
and empirical papers (Canolty et al., 2006; Jensen and Colgin,
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2007; Canolty and Knight, 2010; Aru et al., 2015; Hyafil et al.,
2015).

RESULTS

Source Localization
In order to establish patterns of oscillatory power changes
following presentation of the visual grating, gamma-band (40–
60 Hz), and alpha-band power (8–13 Hz) were localized for a
300–1,500 ms period post-stimulus presentation. Results for the
gamma-band (Figure 3A), show an increase in oscillatory power
which localizes to the ventral occipital cortex (Hoogenboom
et al., 2006). Results for the alpha band (Figure 3B) showed
a general decrease in power, located primarily in occipital
areas, but extending into temporal and parietal regions. The
more widespread spatial pattern could reflect on-going upstream
processes triggered by the appearance of the grating, for example
anticipation of the upcoming target (Stenner et al., 2014).

Visual Area V1 Power Changes
Time courses from area V1 were extracted (Figure 3C), and the
change in oscillatory power between grating and baseline periods
from 1 to 100 Hz was calculated (Figure 3D). Whilst results
show individual variability in peak frequencies and the strength
of oscillatory power, on average, activity within visual area V1
displays a reduction in alpha/beta power (8–20 Hz), and an

increase in gamma power (40–70 Hz). The MEG data, therefore
display well-established patterns of alpha and gamma-band
event-related synchronization and desynchronization within
visual area V1 (Hoogenboom et al., 2006; Bonnefond and
Jensen, 2015; Michalareas et al., 2016), which is a crucial
first step in calculating reliable estimates of PAC (Aru et al.,
2015).

Alpha-Gamma PAC
Visual area V1 responses were next examined for changes in
alpha-gamma PAC. Specifically, we set out to test whether the
coupling between alpha-band phase and gamma-band amplitude
was altered during presentation of the visual grating. Phase-
amplitude comodulograms were produced between a range
of phase frequencies (7–13 Hz) and amplitude frequencies
(34–100 Hz), using the four algorithms described in Section
Methods: MVL-MI-Canolty; MVL-MI-Özkurt; PLV-MI-Cohen,
and KL-MI-Tort. Grating and baseline comodulograms were
compared using cluster-based non-parametric statistics (Maris
and Oostenveld, 2007).

Results are shown in Figure 4A. Using the MVL-MI-
Canolty algorithm, there was a significant increase in alpha-
gamma PAC over a large proportion of the comodulogram,
between 40–100 Hz and 7–13 Hz, with a peak at 50–
70 Hz amplitude and 9–10 Hz phase. This large area of
significantly increased PAC is likely to reflect, in part, power

FIGURE 3 | Whole-brain oscillatory power changes following the presentation of the visual grating are marked by (A) increases in the gamma-band (40–60 Hz) and
(B) decreases in the alpha-band (8–13 Hz), localized primarily in the ventral occipital cortex. Power maps were thresholded at a value which allowed prominent
patterns of power changes to be determined, indicated by the white dotted line. Time-courses were extracted from bilateral visual area V1, defined using the atlas
region shown in (C) from the HCP-MMP 1.0 parcelation (Glasser et al., 2016). (D) These V1 responses showed reductions in alpha/beta power and increases in
gamma-band (40–70 Hz) power.
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FIGURE 4 | Phase-amplitude comodulograms produced by statistically comparing modulation index (MI)-values from 300 to 1,500 ms post-grating onset to a 1,200
ms baseline period, using four separate approaches. Comodulograms for (A) raw MI values and (B) MI values normalized by surrogate data are shown separately. The
black dotted line represents significantly different phase-amplitude coupling frequencies (p < 0.05; for details of non-parametric cluster-based statistics see Section
Methods).

increases in the gamma-band (Canolty et al., 2006). The
alternative MVL-MI- Özkurt algorithm, which normalizes MI-
values by the high-frequency oscillatory power, displayed a
smaller area of significant coupling, with increased PAC between
an amplitude of 50–70 Hz and phase of 10 Hz. There was
also a similar cluster of significantly increased PAC between
9–11 Hz and 50–70 Hz using the PLV-MI-Cohen approach.
The KL-MI-Tort results showed clusters of increased PAC
between amplitudes of 50–100 Hz and phases of 9–10 Hz,
but decreased PAC between amplitudes of 60–90 Hz and
phases of 12–13 Hz. However, none of these clusters passed a
significance threshold of p < 0.05 (two-tailed). Similar results
were obtained after normalizing MI values with surrogate data
(Figure 4B).

Non-sinusoidal Oscillations
To determine whether our alpha-gamma PAC results were driven
by differences in the sinusoidal properties of oscillations between
baseline and grating periods, the ratio between oscillatory
rise-time and decay-time was calculated. For the alpha phase
frequencies (7–13 Hz), there was no difference in this ratio
(all frequencies p > 0.05), suggesting that our results are
unlikely to be caused by increased non-sinusoidal sawtooth-like
properties of alpha oscillations during stimulus period compared
to baseline.

Simulated PAC
To further validate our PAC results, we generated simulated
data with known alpha-gamma coupling (10–11 Hz phase, 50–70
Hz amplitude). Using the same MATLAB code as for the MEG
data, we were able to successfully detect this alpha-gamma PAC
using the MVL-MI-Canolty, MVL-MI-Özkurt, PLV-MI-Cohen
and KL-MI-Tort algorithms (Figure 5A). By varying the trial
length of the simulated data, we found that PAC values were

affected by trial length, with data segments under 1 s producing
artificially inflated PAC (Figure 5B).

DISCUSSION

This article has outlined various steps involved in the detection
and validation of PAC in a visual MEG dataset (data shared
at: https://doi.org/10.6084/m9.figshare.c.3819106.v1), utilizing
the open-source Fieldtrip toolbox (Oostenveld et al., 2010)
and customized Matlab scripts (all scripts shared at: https://
github.com/neurofractal/sensory_PAC). We first confirmed that
presentation of the visual grating was accompanied by decreases
in alpha power (8–13 Hz) and increases in gamma power
(>40 Hz) within visual area V1. Although this may seem
redundant given the wealth of evidence for alpha and gamma
oscillations in visual processing (Hoogenboom et al., 2006;
Bonnefond and Jensen, 2015; Michalareas et al., 2016), it
is crucial to establish clear increases/decreases in the power
spectrum at two distinct frequencies as a first step in MEG-
PAC analysis (Aru et al., 2015; Hyafil et al., 2015). Using four
PAC algorithms, we showed that visual responses obtained
from area V1 displayed a general increase in alpha-gamma
PAC as expected (Voytek et al., 2010; Spaak et al., 2012;
Bonnefond and Jensen, 2015). However, it is important to note
that specific patterns of coupling depended on the algorithm
selected. TheMVL-MI-Canolty algorithm showed large increases
in PAC during the grating period, covering almost the entire
alpha and gamma frequency ranges, most likely as a result of
MI values being biased by increases in high-frequency power
following presentation of the visual grating (Canolty et al.,
2006). This approach is therefore less suitable for detecting
PAC between separate periods of data and/or trials. The MVL-
MI-Özkurt algorithm, which normalizes the MI value by high
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FIGURE 5 | Results of the simulated PAC analysis. (A) Phase-amplitude comodulograms produced using the MVL-MI-Canolty, MVL-MI-Özkurt, PLV-MI-Cohen, and
KL-MI-Tort algorithms were able to successfully detect the 1.2 s of simulated coupling between 10 Hz phase and 50–70 Hz amplitude. (B) The coupling between
10 Hz phase and 60 Hz amplitude was calculated as a function of simulated data trial length. For trial data under 1 s, all four algorithms produced artificially inflated
PAC.

amplitude power, along with the PLV-MI-Cohen algorithm
produced a much more constrained pattern of significant alpha-
gamma PAC, with peaks between 9–11 Hz phase and 50–70
Hz amplitude. Whilst the KL-MI-Tort approach also showed a
general increase in alpha-gamma PAC around 9–11 Hz, none
of the phase-amplitude clusters reached significance. This may
be due to the relatively short number of trials used in the
experiment, the low signal-to-noise ratio of MEG recordings
(Goldenholz et al., 2009), variations in the peak alpha and
gamma oscillatory frequencies (Muthukumaraswamy et al.,
2009), combined with the fact that the KL-MI-Tort approach is
relatively conservative (van Driel et al., 2015). More generally,
it is important to emphasize that all four PAC metrics are
highly sensitive to a range of factors (Dvorak and Fenton, 2014;
Aru et al., 2015), which are often hard to control (Berman
et al., 2012), resulting in both type I and type II statistical
errors.

One such issue is the presence of non-sinusoidal sawtooth-
like oscillations in electrophysiological data, which can result
in spurious PAC (Lozano-Soldevilla et al., 2016), especially
when phase is obtained with wide band-pass filters. By
computing the ratio between rise-time and decay-time of
alpha oscillations within area V1, we showed that non-
sinusoidal oscillations did not differ between baseline and
grating periods, and are unlikely to account for our results.
Another issue in trial-based PAC analysis is data length,
with some previous reports suggesting that 10 s or more is
required for detecting theta-gamma coupling (Dvorak and
Fenton, 2014; Aru et al., 2015). However, using simulated alpha-
gamma PAC we determined that 1 s of data was sufficient
to obtain stable estimates. We encourage the reader to run
similar follow-up analyses after finding significant PAC to

check for spurious coupling caused by, for example, non-
sinusoidal oscillations (Jensen et al., 2016; Lozano-Soldevilla
et al., 2016) and/or insufficiently long trials (Dvorak and Fenton,
2014).

Practical Considerations for PAC Analysis
Cross-frequency coupling is gaining significant interest within
the electrophysiological community (Canolty and Knight, 2010;
Dvorak and Fenton, 2014; Aru et al., 2015; Hyafil et al., 2015),
and therefore it is important for researchers to consider the
methodological pitfalls and caveats which commonly arise during
PAC analysis. Firstly, due to the presence of edge artifacts at the
start and end of time-series created by bandpass filtering, which
can result in artefactual PAC (Kramer et al., 2008), sufficient
padding should be included around trials. Concatenating data
from separate trials to create longer data segments results
in similar edge artifacts (Kramer et al., 2008), and should
be avoided. Secondly, if the bandwidth of the filter used to
extract the amplitude does not contain the side-bands of the
modulating phase frequency, PAC cannot be detected even
if present (Dvorak and Fenton, 2014). The use of a variable
band-pass filter which scales with amplitude frequency, can
alleviate this issue and improve the sensitivity of detecting PAC
(Berman et al., 2012; Voloh et al., 2015). Thirdly, periods which
contain non-stationary periods should be avoided. This includes
sensory evoked potentials which induce correlations between
frequency bands via phase reset (Sauseng et al., 2007), and can
be misinterpreted as PAC (Aru et al., 2015). For this reason,
we did not analyse the first 300 ms following visual grating
presentation, due to the presence of visual evoked potentials (Di
Russo et al., 2002). Fourth, given that PAC algorithms produce
values ranging from 0 to 1, data are commonly not normally
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distributed, and therefore the use of non-parametric statistics is
paramount.Whilst surrogate data are often employed (Tort et al.,
2010b; Aru et al., 2015), this may not be possible where data
are organized into short trials and temporal correlations between
surrogate and true time-series are high (Dvorak and Fenton,
2014). Therefore, to assess changes in PAC, using a baseline
period or contrasting between conditions, combined with non-
parametric statistics may prove to be a useful alternative for
sensory neurocognitive research.

LIMITATIONS

This study has compared four PAC algorithms (Canolty et al.,
2006; Cohen, 2008; Tort et al., 2010b; Özkurt and Schnitzler,
2011), which are among the most commonly used approaches
in sensory EEG/MEG research (Mathewson et al., 2011; Khan
et al., 2013; Bonnefond and Jensen, 2015; Cho et al., 2015).
However, these only comprise a small subset of the available
algorithms designed to quantify PAC (Canolty and Knight,
2010; Hyafil et al., 2015). There have also been advances in
measuring transient changes in PAC (Dvorak and Fenton, 2014),
directed PAC (Jiang et al., 2015) and algorithms designed for
spontaneous neural activity (Florin and Baillet, 2015; Weaver
et al., 2016). A more comprehensive evaluation of algorithms
and their application to real-world electrophysiological data is
beyond the scope of this article, but would nevertheless benefit
the field of cross-frequency coupling. Secondly, in order to detect
alpha-gamma PAC within visual area V1, we used a broad
filter bandwidth, defined as ±0.4 times the amplitude center-
frequency. Consequently, the alpha-gamma comodulograms will
be unable to differentiate between adjacent gamma sub-bands,
which have been proposed to fulfill differing neurocognitive
roles (Buzsáki and Wang, 2012; Bosman et al., 2014), and
patterns of PAC (Vaz et al., 2017). However, for the visual
MEG data presented here, there was only an increase in
gamma power within one band (40–70 Hz), and therefore the
smearing of adjacent sub-bands is unlikely. Finally, we have
focussed on PAC within the visual cortex, which is known to
display highly sinusoidal alpha oscillations (Tort et al., 2010a).
However, there are many examples of non-sinusoidal brain
oscillations caused by physiological neuronal spiking patterns
(Fontanini and Katz, 2005), including hippocampal theta (4–
8 Hz) and sensorimotor mu (9–11 Hz) rhythms (Lozano-
Soldevilla et al., 2016; Scheffer-Teixeira and Tort, 2016), which
are indicative of behavior and disease states (Cole and Voytek,
2017). Therefore, whilst non-sinusoidal oscillations generate
spurious PAC, this does not mean that these oscillations
are uninteresting, but simply that common PAC algorithms,

such as, the ones employed in this article, are ill-suited for
these scenarios. Where non-sinusoidal oscillations are present,
PAC analysis could proceed by correcting for non-uniform
phase distributions (e.g., van Driel et al., 2015) in order to
disentangle nested oscillations from neural spiking (Vaz et al.,
2017).

CONCLUSION

In conclusion, we have outlined the key analysis steps
for detecting changes in alpha-gamma PAC during sensory
processing, using an example visual MEG dataset. While alpha-
gamma PAC was shown to increase, the specific patterns of
alpha-gamma coupling depended upon the specific algorithm
employed. Follow-up analyses showed that these results were
not driven by non-sinusoidal oscillations or insufficient data.
In future, we hope that a variety of PAC algorithms will be
implemented alongside existing open-source MEG toolboxes
(Oostenveld et al., 2010; Tadel et al., 2011; Gramfort et al., 2014),
with detailed guidance and advice, so that PAC can form a natural
analysis step in electrophysiological research.
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