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Variational Bayes (VB), variational maximum likelihood (VML), restricted maximum

likelihood (ReML), and maximum likelihood (ML) are cornerstone parametric statistical

estimation techniques in the analysis of functional neuroimaging data. However, the

theoretical underpinnings of these model parameter estimation techniques are rarely

covered in introductory statistical texts. Because of the widespread practical use of VB,

VML, ReML, and ML in the neuroimaging community, we reasoned that a theoretical

treatment of their relationships and their application in a basic modeling scenario may

be helpful for both neuroimaging novices and practitioners alike. In this technical study,

we thus revisit the conceptual and formal underpinnings of VB, VML, ReML, and ML

and provide a detailed account of their mathematical relationships and implementational

details. We further apply VB, VML, ReML, and ML to the general linear model (GLM)

with non-spherical error covariance as commonly encountered in the first-level analysis

of fMRI data. To this end, we explicitly derive the corresponding free energy objective

functions and ensuing iterative algorithms. Finally, in the applied part of our study, we

evaluate the parameter and model recovery properties of VB, VML, ReML, and ML, first

in an exemplary setting and then in the analysis of experimental fMRI data acquired from

a single participant under visual stimulation.

Keywords: variational Bayes, general linear model (GLM), fMRI neuroimaging, restricted maximum likelihood

estimation, covariance estimation, data analysis, machine learning

1. INTRODUCTION

Variational Bayes (VB), variational maximum likelihood (VML) (also known as expectation-
maximization), restricted maximum likelihood (ReML), and maximum likelihood (ML) are
cornerstone parametric statistical estimation techniques in the analysis of functional neuroimaging
data. In the SPM software environment (http://www.fil.ion.ucl.ac.uk/spm/), one of the most
commonly used software packages in the neuroimaging community, variants of these estimation
techniques have been implemented for a wide range of data models (Penny et al., 2011; Ashburner,
2012). For fMRI data, these models vary from mass-univariate general linear and auto-regressive
models (e.g., Friston et al., 1994, 2002a,b; Penny et al., 2003), over multivariate decoding models
(e.g., Friston et al., 2008a), to dynamic causal models (e.g., Friston et al., 2003; Marreiros et al.,
2008; Stephan et al., 2008). For M/EEG data, these models range from channel-space general
linear models (e.g., Kiebel and Friston, 2004a,b), over dipole and distributed source reconstruction
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models (e.g., Friston et al., 2008b; Kiebel et al., 2008; Litvak and
Friston, 2008), to a large family of dynamic causal models (e.g.,
David et al., 2006; Chen et al., 2008; Moran et al., 2009; Pinotsis
et al., 2012; Ostwald and Starke, 2016).

Because VB, VML, ReML, and ML determine the scientific
inferences drawn from empirical data in any of the above
mentioned modeling frameworks, they are of immense
importance for the neuroimaging practitioner. However, the
theoretical underpinnings of these estimation techniques are
rarely covered in introductory statistical texts and the technical
literature relating to these techniques is rather evolved. Because
of their widespread use within the neuroimaging community,
we reasoned that a theoretical treatment of these techniques in a
familiar model scenario may be helpful for both neuroimaging
novices, who would like to learn about some of the standard
statistical estimation techniques employed in the field, and for
neuroimaging practitioners, who would like to further explore
the foundations of these and alternative model estimation
approaches.

In this technical study, we thus revisit the conceptual
underpinnings of the aforementioned techniques and
provide a detailed account of their mathematical relations
and implementational details. Our exposition is guided by
the fundamental insight that VML, ReML, and ML can be
understood as special cases of VB (Friston et al., 2002a,
2007; Friston, 2008). In the current note, we reiterate and
consolidate this conceptualization by paying particular attention
to the respective technique’s formal treatment of a model’s
parameter set. Specifically, across the estimation techniques
of interest, model parameters are either treated as random
variables, in which case they are endowed with prior and
posterior uncertainty modeled by parametric probability
density functions, or as non-random quantities. In the latter
case, prior and posterior uncertainties about the respective
parameters’ values are left unspecified. Because the focus of
the current account is on statistical estimation techniques, we
restrict the model of application to a very basic scenario that
every neuroimaging practitioner is familiar with: the analysis
of a single-participant, single-session EPI time-series in the
framework of the general linear model (GLM) (Monti, 2011;
Poline and Brett, 2012). Importantly, in line with the standard
practice in fMRI data analysis, we do not assume spherical
covariance matrices (e.g., Zarahn et al., 1997; Purdon and
Weisskoff, 1998; Woolrich et al., 2001; Friston et al., 2002b;
Mumford and Nichols, 2008).

We proceed as follows. After some preliminary notational
remarks, we begin the theoretical exposition by first introducing
the model of application in Section 2.1. We next briefly discuss
two standard estimation techniques (conjugate Bayes andML for
spherical covariance matrices) that effectively span the space of
VB, VML, ReML, and ML and serve as useful reference points in
Section 2.2. After this prelude, we are then concerned with the
central estimation techniques of interest herein. In a hierarchical
fashion, we subsequently discuss the theoretical background and
the practical algorithmic application of VB, VML, ReML, andML
to the GLM in Sections 2.3–2.6. We focus on the central aspects
and conceptual relationships of the techniques and present all

mathematical derivations as Supplementary Material. In the
applied part of our study (Section 3), we then firstly evaluate
VB, VML, ReML, and ML from an objective Bayesian viewpoint
(Bernardo, 2009) in simulations; and secondly, apply them to
real fMRI data acquired from a single participant under visual
stimulation (Ostwald et al., 2010). We close by discussing the
relevance and relation of our exposition with respect to previous
treatments of the topic matter in Section 4.

In summary, we make the following novel contributions in
the current technical study. Firstly, we provide a comprehensive
mathematical documentation and derivation of the conceptual
relationships between VB, VML, ReML, and ML. Secondly, we
derive a collection of explicit algorithms for the application
of these estimation techniques to the GLM with non-
spherical linearized covariance matrix. Finally, we explore the
validity of the ensuing algorithms in simulations and in the
application to real experimental fMRI data. We complement
our theoretical documentation by the practical implementation
of the algorithms and simulations in a collection of Matlab .m
files (MATLAB and Optimization Toolbox Release 2014b, The
MathWorks, Inc., Natick, MA, United States), which is available
from the Open Science Framework (https://osf.io/c4ux7/). On
occasion, we make explicit reference to these functions, which
share the stub vbg_∗.m.

1.1. Notation and Preliminary Remarks
A few remarks on our mathematical notation are in order. We
formulate VB, VML, ReML, and ML against the background of
probabilistic models (e.g., Bishop, 2006; Barber, 2012; Murphy,
2012). By probabilistic models we understand (joint) probability
distributions over sets of observed and unobserved random
variables. Notationally, we do not distinguish between probability
distributions and their associated probability density functions
and write, for example, p(y, θ) for both. Because we are
only concerned with parametric probabilistic models of the
Gaussian type, we assume throughout the main text that all
probability distributions of real random vectors have densities.
We do, however, distinguish between the conditioning of a
probability distribution of a random variable y on a (commonly
unobserved) random variable θ , which we denote by p(y|θ), and
the parameterization of a probability distribution of a random
variable y by a (non-random) parameter θ , which we denote
by pθ (y). Importantly, in the former case, θ is conceived of as
random variable, while in the latter case, it is not. Equivalently, if
θ∗ denotes a value that the random variable θ may take on, we set
p(y|θ = θ∗) ⇔ pθ∗ (y).

Otherwise, we use standard applied mathematical notation.
For example, real vectors andmatrices are denoted as elements of
R
n andRm×n for n,m ∈ N, In ∈ R

n×n denotes the n-dimensional
identitymatrix, |·| denotes amatrix determinant, tr(·) denotes the
trace operator, and p.d. denotes a positive-definite matrix. Hf (a)
denotes the Hessian matrix of some real-valued function f (x)
evaluated at x = a. We denote the probability density function
of a Gaussian distributed random vector y with expectation
parameter µ and covariance parameter 6 by N(y;µ,6). Finally,
because of the rather applied character of this note, we formulate
functions primarily by means of the definition of the values they
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take on and eschew formal definitions of their domains and
ranges. Further notational conventions that apply in the context
of the mathematical derivations provided in the Supplementary
Material are provided therein.

2. THEORY

2.1. Model of Interest
Throughout this study, we are interested in estimating the
parameters of the model

y = Xβ + ε, (1)

where y ∈ R
n denotes the data, X ∈ R

n×p denotes a design
matrix of full column rank p, and β ∈ R

p denotes a parameter
vector. We make the following fundamental assumption about
the error term ε ∈ R

n

ε ∼ N(ε; 0,Vλ) with Vλ :=

k
∑

i=1

exp(λi)Qi ∈ R
n×n p.d. (2)

In words, we assume that the error term is distributed according
to a Gaussian distribution with expectation parameter 0 ∈ R

n

and positive-definite covariance matrix Vλ ∈ R
n×n. Importantly,

we do not assume that Vλ is necessarily of the form σ 2In, i.e.,
we allow for non-sphericity of the error terms. In Equation (2),
λ1, . . . , λk, is a set of covariance component parameters and
Q1, . . . ,Qk ∈ R

n×n is a set of covariance basis matrices, which
are assumed to be fixed and known. We assume throughout,
that the true, but unknown, values of λ1, . . . , λk are such that
Vλ is positive-definite. In line with the common denotation in
the neuroimaging literature, we refer to Equations (1) and (2) as
the general linear model (GLM) and its formulation by means of
Equations (1) and (2) as its structural form.

Models of the form (1) and (2) are widely used in the analysis
of neuroimaging data, and, in fact, throughout the empirical
sciences (e.g., Rutherford, 2001; Draper and Smith, 2014; Gelman
et al., 2014). In the neuroimaging community, models of the
form Equations (1) and (2) are used, for example, in the analysis
of fMRI voxel time-series at the session and participant-level
(Monti, 2011; Poline and Brett, 2012), for the analysis of group
effects (Mumford and Nichols, 2006, 2009), or in the context
of voxel-based morphometry (Ashburner and Friston, 2000;
Ashburner, 2009).

In the following, we discuss the application of VB, VML,
ReML, and ML to the general forms of Equations (1)
and (2). In our examples, however, we limit ourselves to the
application of the GLM in the analysis of a single voxel’s time-
series in a single fMRI recording (run). In this case, y ∈

R
n corresponds to the voxel’s MR values over EPI volume

acquisitions and n ∈ N represents the total number of volumes
acquired during the session. The design matrix X ∈ R

n×p

commonly constitutes a constant regressor and the onset stick
functions of different experimental conditions convolved with
a hemodynamic response function and a constant offset. This
renders the parameter entries βj (j ∈ Np) to correspond to
the average session MR signal and condition-specific effects.

Importantly, in the context of fMRI time-series analyses, the
most commonly used form of the covariance matrix Vλ employs
k = 2 covariance component parameters λ1 and λ2 and
corresponding covariance basis matrices

Q1 := In and Q2: = (Q2)ij : = exp

(

−
1

τ
|i− j|

)

. (3)

This specific form of the error covariance matrix encodes
exponentially decaying correlations between neighboring data
points, and, with τ := 0.2, corresponds to the widely used
approximation to the AR(1) + white noise model in the analysis
of fMRI data (Purdon andWeisskoff, 1998; Friston et al., 2002b).

In Figure 1, we visualize the exemplary design matrix and
covariance basis matrix set that will be employed in the example
applications throughout the current section. In the example, we
assume two experimental conditions, which have been presented
with an expected inter-trial interval of 6 s (standard deviation 1 s)
during an fMRI recording session comprising n = 400 volumes
and with a TR of 2 s. The design matrix was created using the
micro-time resolution convolution and downsampling approach
discussed in Henson and Friston (2007).

2.2. Conjugate Bayes and ML under Error
Sphericity
We start by briefly recalling the fundamental results of conjugate
Bayesian and classical point-estimation for the GLM with
spherical error covariance matrix. In fact, the introduction of
ReML (Friston et al., 2002a; Phillips et al., 2002) and later
VB (Friston et al., 2007) to the neuroimaging literature were
motivated amongst other things by the need to account for
non-sphericity of the error distributions in fMRI time-series
analysis (Purdon and Weisskoff, 1998; Woolrich et al., 2001).
Further, while not a common approach in fMRI, recalling the
conjugate Bayes scenario helps to contrast the probabilistic
model of interest in VB from its mathematically more tractable,
but perhaps less intuitively plausible, analytical counterpart.
Together, the two estimation techniques discussed in the current
section may thus be conceived as forming the respective
endpoints of the continuum of estimation techniques discussed
in the remainder.

With spherical covariance matrix, the GLM of Equations (1)
and (2) simplifies to

y = Xβ + ε, where ε ∼ N(ε; 0, σ 2In). (4)

A conjugate Bayesian treatment of the GLM considers the
structural form Equation (4) as a conditional probabilistic
statement about the distribution of the observed random
variable y

p(y|β , σ 2) = N(y;Xβ , σ 2In), (5)

which is referred to as the likelihood and requires the specification
of the marginal distribution p(β , σ 2), referred to as the prior.
Together, the likelihood and the prior define the probabilistic
model of interest, which takes the form of a joint distribution
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FIGURE 1 | (A) Example design and covariance basis matrices. The upper panels depict the design matrix X ∈ R
400×2 and the covariance basis matrices

Q1 ∈ R
400×400 used in the example applications of the current section. The design matrix encodes the onset functions of two hypothetical experimental conditions

which were convolved with the canonical hemodynamic response function. Events of each condition are presented approximately every 6 s, and n = 400 data points

with a TR of 2 s are modeled. The covariance basis matrices are specified in Equation (3) and shown here for n = 400 based on their evaluation using spm_Ce.m. (B)

The left panel depicts a magnification of the first 20 entries of Q2. The right panel depicts the entries of the first row of Q2 for 12 columns. For τ = 0.2 the entries

model exponentially decaying error correlations. (C) A data realization of the ensuing GLM model with true, but unknown, values of β = (2,−1)T and λ = (−0.5,−2)T .

Note that we do not model a signal offset, or equivalently, set the beta parameter for the signal offset to zero. For implementational details, please see vbg_1.m.

over the observed random variable y and the unobserved random
variables β and σ 2:

p(y,β , σ 2) = p(y|β , σ 2)p(β , σ 2). (6)

Based on the probabilistic model (Equation 5), the two
fundamental aims of Bayesian inference are, firstly, to determine
the conditional parameter distribution given a value of the
observed random variable p(β , σ 2|y), often referred to as the
posterior, and secondly, to evaluate the marginal probability p(y)
of a value of the observed random variable, often referred to
as marginal likelihood or model evidence. The latter quantity
forms an essential precursor for Bayesian model comparison, as
discussed for example in further detail in Stephan et al. (2016a).
Note that in our treatment of the Bayesian scenario the marginal
and conditional probability distributions of β and σ 2 are meant
to capture our uncertainty about the values of these parameters
and not distributions of true, but unknown, parameter values.
For the true, but unknown, values of β and σ 2 we postulate, as
in the classical point-estimation scenario, that they assume fixed
values, which are never revealed (but can of course be chosen ad
libitum in simulations).

The VB treatment of Equation (6) assumes proper prior
distributions for β and σ 2. In this spirit, the closest conjugate
Bayesian equivalent is hence the assumption of proper prior
distributions. For the case of the model (Equation 6), upon
reparameterization in terms of a precision parameter λ := 1/σ 2,
a natural conjugate approach assumes a non-independent prior

distribution of Gaussian-Gamma form,

p(β , λ) = p(β|λ)p(λ) = N(β;µβ ,6β )G(λ; aλ, bλ), (7)

where µβ ∈ R
p,6β := λ−1Vβ , aλ, bλ ∈ R are the prior

distribution parameters and Vβ ∈ R
p×p p.d. is the prior beta

parameter covariance structure. For the gamma distribution we
use the shape and rate parameterization. Notably, the Gaussian
distribution of β is parameterized conditional on the value of λ in
terms of its covariance6β . Under this prior assumption, it can be
shown that the posterior distribution is also of Gaussian-Gamma
form,

p(β , λ|y) = N(β;µβ|y,6β|y)G(λ; aλ|y, bλ|y), (8)

with posterior parameters

µβ|y = (XTX + V−1
β )−1(XTy+ V−1

β µβ )

6β|y = λ−1Vβ|y = λ−1(XTX + V−1
β )−1

aλ|y = (2aλ + n)/2

bλ|y = bλ +
1

2
yTy+

1

2
µT

βV
−1
β µβ −

1

2
µT

β|yV
−1
β|yµβ|y.

(9)

Furthermore, in this scenario the marginal likelihood evaluates
to a multivariate non-central T-distribution

p(y) = T(y;µy,6y, νy) (10)
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with expectation, covariance, and degrees of freedom parameters

µy = Xµβ , 6y =
2b

2a+ n− 1
(XVβX

T+In), and νy = 2a+n−1,

(11)
respectively. For derivations of Equations (8–11) see, for example,
Lindley and Smith (1972), Broemeling (1984), and Gelman et al.
(2014).

Importantly, in contrast to the VB, VML, ReML, and
ML estimation techniques developed in the remainder, the
assumption of the prior probabilistic dependency of the
effect size parameter on the covariance component parameter
in Equation (7) eshews the need for iterative approaches
and results in the fully analytical solutions of Equations
(8–11). However, as there is no principled reason beyond
mathematical convenience that motivates this prior dependency,
the fully conjugate framework seems to be rarely used in the
analysis of neuroimaging data. Moreover, the assumption of an
uninformative improper prior distribution (Frank et al., 1998)
is likely more prevalent in the neuromaging community than
the natural conjugate form discussed above. This is due to the
implementation of a closely related procedure in FSL’s FLAME
software (Woolrich et al., 2004, 2009). However, because VB
assumes proper prior distributions, we eschew the details of this
approach herein.

In contrast to the probabilistic model of the Bayesian scenario,
the classical ML approach for the GLM does not conceive of β

and σ 2 as unobserved random variables, but as parameters, for
which point-estimates are desired. The probabilistic model of the
classical ML approach for the structural model (Equation 4) thus
takes the form

pβ ,σ 2

(

y
)

= N(y;Xβ , σ 2In). (12)

TheML point-estimators for β and σ 2 are well-known to evaluate
to (e.g., Hocking, 2013)

β̂ = (XTX)−1XTy (13)

and

σ̂ 2 =
1

n
(y− Xβ̂)T(y− Xβ̂). (14)

Note that Equation (13) also corresponds to the ordinary least-
squares estimator. It can be readily generalized for non-spherical
error covariance matrices by a “sandwiched” inclusion of the
appropriate error covariance matrix, if this is (assumed) to be
known, resulting in the generalized least-squares estimator (e.g.,
Draper and Smith, 2014). Further note that Equation (14) is a
biased estimator for σ 2 and hence commonly replaced by its
restricted maximum likelihood counterpart, which replaces the
factor n−1 by the factor (n− p)−1 (e.g., Foulley, 1993).

Having briefly reviewed the conjugate Bayesian and classical
point estimation techniques for the GLM parameters under
the assumption of a spherical error covariance matrix, we next
discuss VB, VML, ReML, and ML for the scenario laid out in
Section 2.1.

2.3. Variational Bayes (VB)
VB is a computational technique that allows for the evaluation
of the primary quantities of interest in the Bayesian paradigm
as introduced above: the posterior parameter distribution and
the marginal likelihood. For the GLM, VB thus rests on
the same probabilistic model as standard conjugate Bayesian
inference: the structural form of the GLM (cf. Equations 1, 2) is
understood as the parameter conditional likelihood distribution
and both parameters are endowed with marginal distributions.
The probabilistic model of interest in VB thus takes the form

p(y,β , λ) = p(y|β , λ)p(β , λ) (15)

with likelihood distribution

p(y|β , λ) = N(y;Xβ ,Vλ). (16)

Above, we have seen that a conjugate prior distribution can be
constructed which allows for exact inference in models of the
form Equations (1) and (2) based on a conditionally-dependent
prior distribution and simple covariance form. In order to
motivate the application of the VB technique to the GLM, we here
thus assume that the marginal distribution p(β , λ) factorizes, i.e.,
that

p(β , λ) = p(β|λ)p(λ) := p(β)p(λ). (17)

Under this assumption, exact Bayesian inference for the GLM is
no longer possible and approximate Bayesian inference is clearly
motivated (Murphy, 2012).

To compute the marginal likelihood and obtain an
approximation to the posterior distribution over parameters
p(β , λ|y), VB uses the following decomposition of the log
marginal likelihood into two information theoretic quantities
(Cover and Thomas, 2012), the free energy and a Kullback-Leibler
(KL) divergence

ln p(y) = FVB(q(β , λ))+ KL(q(β , λ)||p(β , λ|y)). (18)

We discuss the constituents of the right-hand side of
Equation (18) in turn. Firstly, q(β , λ) denotes the so-called
variational distribution, which will constitute the approximation
to the posterior distribution and is of parameterized form, i.e.,
governed by a probability density. We refer to the parameters of
the variational distribution as variational parameters. Secondly,
the non-negative KL-divergence is defined as the integral

KL(q(β , λ)||p(β , λ|y)) =

∫∫

q(β , λ) ln

(

q(β , λ)

p(β , λ|y)

)

dβ dλ .

(19)
Note that, formally, the KL-divergence is a functional, i.e.,
a function of functions, in this case the probability density
functions q(β , λ) and p(β , λ|y), and returns a scalar number.
Intuitively, it measures the dissimilarity between its two input
distributions: the more similar the variational distribution
q(β , λ) is to the posterior distribution p(β , λ|y), the smaller the
divergence becomes. It is of fundamental importance for the VB
technique that the KL-divergence is always positive and zero if,
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and only if, q(β , λ) and p(β , λ|y) are equal. For a proof of these
properties, see Appendix A in Ostwald et al. (2014). Together
with the log marginal likelihood decomposition Equation (18)
the properties of the KL-divergence equip the free energy with
its central properties for the VB technique, as discussed below. A
proof of Equation (18) withϑ := {β , λ} is provided in Appendix B
in Ostwald et al. (2014).

The free energy itself is defined by

FVB(q(β , λ)) =

∫∫

q(β , λ) ln

(

p(y,β , λ)

q(β , λ)

)

dβ dλ . (20)

Due to the non-negativity of the KL-divergence, the free energy
is always smaller than or equal to the log marginal likelihood—
the free energy thus forms a lower bound to the log marginal
likelihood. Note that in Equation (20), the data y is assumed to
be fixed, such that the free energy is a function of the variational
distribution only. Because, for a given data observation, the
log marginal likelihood ln p(y) is a fixed quantity, and because
increasing the free energy contribution to the right-hand
side of Equation (18) necessarily decreases the KL-divergence
between the variational and the true posterior distribution,
maximization of the free energy with respect to the variational
distribution has two consequences: firstly, it renders the free
energy an increasingly better approximation to the log marginal
likelihood; secondly, it renders the variational approximation an
increasingly better approximation to the posterior distribution.

In summary, VB rests on finding a variational distribution
that is as similar as possible to the posterior distribution, which
is equivalent to maximizing the free energy with regard to
the variational distribution. The maximized free energy then
substitutes for the log marginal likelihood and the corresponding
variational distribution yields an approximation to the posterior
parameter distribution, i.e.,

max
q(β ,λ)

FVB(q(β , λ)) ≈ ln p(y) and argmax
q(β ,λ)

FVB(q(β , λ)) ≈ p(β , λ|y).

(21)
To facilitate the maximization process, the variational

distribution is often assumed to factorize over parameter
sets, an assumption commonly referred to as mean-field
approximation (Friston et al., 2007)

q(β , λ) := q(β)q(λ). (22)

Of course, if the posterior does not factorize accordingly, i.e., if

p(β , λ|y) 6= p(β|y)p(λ|y), (23)

the mean-field approximation limits the exactness of the method.
In applications, maximization of the free energy is commonly

achieved by either free-form or fixed-form schemes. In brief,
free-form maximization schemes do not assume a specific
form of the variational distribution, but employ a fundamental
theorem of variational calculus to maximize the free energy
and to analytically derive the functional form and parameters
of the variational distribution. For more general features of

the free-form approach, please see, for example, Bishop (2006),
Chappell et al. (2009), and Ostwald et al. (2014). Fixed-form
maximization schemes, on the other hand, assume a specific
parametric form for the variational distribution’s probability
density function from the outset. Under this assumption,
the free energy integral (Equation 20) can be evaluated (or
at least approximated) analytically and rendered a function
of the variational parameters. This function can in turn be
optimized using standard nonlinear optimization algorithms. In
the following section, we apply a fixed-form VB approach to the
current model of interest.

2.3.1. Application to the GLM
To demonstrate the fixed-form VB approach to the GLM of
Equations (1) and (2), we need to specify the parametric forms
of the prior distributions p(β) and p(λ), as well as the parametric
forms of the variational distribution factors q(β) and q(λ). Here,
we assume that all these marginal distributions are Gaussian,
and hence specified in terms of their expectation and covariance
parameters:

p(β) = N(β;µβ ,6β ), where µβ ∈ R
p and 6β ∈ R

p×p p.d.
(24)

p(λ) = N(λ;µλ,6λ), where µλ ∈ R
k and 6λ ∈ R

k×k p.d. (25)

q(β) = N(β;mβ , Sβ ), wheremβ ∈ R
p and Sβ ∈ R

p×p p.d. (26)

q(λ) = N(λ;mλ, Sλ), wheremλ ∈ R
k and Sλ ∈ R

k×k p.d. (27)

Note that we denote parameters of the prior distributions
with Greek and parameters of the variational distributions with
Roman letters. Together with Equations (1–3), Equations (24–27)
specify all distributions necessary to evaluate the free energy
integral and render the free energy a function of the variational
parameters. We document this derivation in Supplementary
Material S1.2 and here limit ourselves to the presentation of the
result: under the given assumptions about the prior, likelihood,
and variational distributions, the variational free energy is
a function of the variational parameters mβ , Sβ ,mλ, and Sλ,
and, using mild approximations in its analytical derivation,
evaluates to

FVB(mβ , Sβ ,mλ, Sλ) =−
n

2
ln 2π −

1

2
ln |Vmλ

|

−
1

2
(y− Xmβ )

TV−1
mλ

(y− Xmβ )

−
1

2
tr(SβX

TV−1
mλ

X)−
1

4
tr(Bmλ ,Sβ ,mλ

Sλ)

−
p

2
ln 2π −

1

2
ln |6β |

−
1

2
(mβ − µβ )

T6−1
β

(mβ − µβ )−
1

2
tr(6−1

β
Sβ )

−
k

2
ln 2π −

1

2
ln |6λ|

−
1

2
(mλ − µλ)

T6−1
λ

(mλ − µλ)−
1

2
tr(6−1

λ
Sλ)

+
k

2
ln(2πe)+

1

2
ln |Sβ |

+
p

2
ln(2πe)+

1

2
ln |Sλ|

(28)
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with

Bmβ ,Sβ ,mλ
:= Hln |Vλ|

(mλ)

+ H
tr

(

V−1
λ

XSβX
T
) (mλ)

+ H
(y−Xmβ )

TV−1
λ

(y−Xmβ )
(mλ) .

(29)

In Equation (28), the third term may be viewed as an accuracy
term which measures the deviation of the estimated model
prediction from the data, the eighth and twelfth terms may be
viewed as complexity terms, that measure how far the model
can and has to deviate from its prior expectations to account
for the data, and the last four terms can be conceived as
maximum entropy terms that ensure that the posterior parameter
uncertainty is as large as possible given the available data (Jaynes,
2003).

In principle, any numerical routine for the maximization of
nonlinear functions could be applied to maximize the free energy
function of Equation (28) with respect to its parameters. Because
of the relative simplicity of Equation (28), we derived explicit
update equations by evaluating the VB free energy gradient
with respect to each of the parameters and setting to zero as
documented in Supplementary Material S1.2. This analytical
approach yields a set of four update equations and, together
with the iterative evaluation of the VB free energy function
(Equation 28), results in a VB algorithm for the current model
as documented in Algorithm 1. Here, and in all remaining
algorithms, convergence is assessed in terms of a vanishing of the
free energy increase between successive iterations. This difference
is evaluated against a convergence criterion δ, which we set to
δ = 10−3 for all reported simulations.

Algorithm 1 VB Algorithm (for details, see vbg_est_vb.m)

Input: data y, prior parameters µβ ,6β ,µλ,6λ, model
components X,Q1,Q2

Output: variational parameters m
(i)
β , S

(i)
β ,m

(i)
λ , S

(i)
λ , free

energy FVB
(i)

1: Initialization: i := 1, m
(i)
β := µβ , S

(i)
β := 6β , m

(i)
λ := µλ,

S
(i)
λ := 6λ, 1FVB

(i)
:=∞, FVB

(i)
:= FVB

(

m
(i)
β , S

(i)
β ,m

(i)
λ , S

(i)
λ

)

2: while 1FVB
(i)

> δ do

3: i := i+ 1
4: evaluate B

m
(i−1)
β ,S

(i−1)
β ,m

(i−1)
λ

5: S
(i)
λ :=

(

1
2Bm(i−1)

β ,S
(i−1)
β ,m

(i−1)
λ

+ 6−1
λ

)−1

6: m
(i)
β :=

(

XTV−1
mλ

X + 6−1
β

)−1 (

XTV−1
mλ

Xy+ 6−1
β µβ

)

7: S
(i)
β :=

(

XTV−1
mλ

X + 6−1
β

)−1

8: solve ∂
∂mλj

f VB
(

m
(i)
λ

)

= 0 form
(i)
λ

9: evaluate FVB
(i)
= FVB

(

m
(i)
β , S

(i)
β ,m

(i)
λ , S

(i)
λ

)

10: 1FVB
(i)
:= FVB

(i)
− FVB

(i−1)

11: end while

In Figure 2, we visualize the application of the VB algorithm
to an example fMRI time-series realization from the model
described in Section 2.1 with true, but unknown, parameter
values β = (2,−1)T and λ = (−0.5,−2)T . We used imprecise
priors for both β and λ by setting

p(β) := N

(

β;

(

0
0

)

,

(

10 0
0 10

))

and

p(λ) := N

(

λ;

(

0
0

)

,

(

10 0
0 10

))

. (30)

Figure 2A depicts the prior distribution over β , and the true,
but unknown, value of β as black ×. Figure 2B depicts the
variational distribution over β after convergence for a VB free
energy convergence criterion of δ = 10−3. Given the imprecise
prior distribution, this variational distribution falls close to
the true, but unknown, value. In general, convergence of the
algorithm is achieved within 4–6 iterations. Figures 2C,D depict
the prior distribution over λ and the variational distribution over
λ upon convergence, respectively. As for β , the approximation
of the posterior distribution is close to the true, but unknown,
value of λ. Finally, Figures 2E,F depict the VB free energy
surface as a function of the variational parameters mβ and
mλ, respectively. For the chosen prior distributions, the VB
free energy surfaces display clear global maxima, which the VB
algorithm can identify. Note, however, that the maximum of the
VB free energy as a function of mλ is located on an elongated
crest.

2.4. Variational Maximum Likelihood (VML)
Variational Maximum Likelihood (Beal, 2003), also referred
to as (variational) expectation-maximization (McLachlan and
Krishnan, 2007; Barber, 2012), can be considered a semi-
Bayesian estimation approach. For a subset of model parameters,
VML determines a Bayesian posterior distribution, while for
the remaining parameters maximum-likelihood point estimates
are evaluated. As discussed below, VML can be derived as
a special case of VB under specific assumptions about the
posterior distribution of the parameter set for which only point
estimates are desired. If for this parameter set additionally
a constant, improper prior is assumed, variational Bayesian
inference directly yields VML estimates. In its application to the
GLM, we here choose to treat β as the parameter for which a
posterior distribution is derived, and λ as the parameter for which
a point-estimate is desired.

The current probabilistic model of interest thus takes the form

pλ(y,β) = pλ(y|β)p(β) (31)

with likelihood distribution

pλ(y|β) = N(y;Xβ ,Vλ). (32)

Note that in contrast to the probabilistic model underlying VB
estimation, λ is not treated as a random variable and thus merely
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FIGURE 2 | VB estimation. (A) Prior distribution p(β) with expectation µβ := (0, 0)T and covariance 6β := 10I2. Here, and in all subpanels, the black × marks the

true, but unknown, parameter value. (B) Variational approximation q(c)(β) to the posterior distribution upon convergence (δ = 10−3). (C) Prior distribution p(λ) with

expectation µλ := (0, 0)T and covariance 6λ = 10I2. (D) Variational approximation q(c)(λ) to the posterior distribution upon convergence. (E) Variational free energy

dependence on mβ . The blue × indicates the prior expectation parameter and the red + marks the approximated posterior expectation parameter. (F) Variational free

energy dependence on mλ. The blue × indicates the prior expectation parameter and the red × marks the approximated posterior expectation parameter. For

implementational details, please see vbg_1.m.

parameterizes the joint distribution of β and y. Similar to VB,
VML rests on a decomposition of the log marginal likelihood

ln pλ(y) =

∫

pλ(y,β) dβ (33)

into a free energy and a KL-divergence term

ln pλ(y) = FVML(q(β), λ)+ KL(q(β)||pλ(β|y)). (34)

In contrast to the VB free energy, the VML free energy is defined
by

FVML(q(β), λ) =

∫

q(β) ln

(

pλ(y,β)

q(β)

)

dβ , (35)

while the KL divergence term takes the form

KL(q(β)||pλ(β|y)) =

∫

q(β) ln

(

q(β)

pλ(β|y)

)

dβ . (36)

In SupplementaryMaterial S2, we show how the VML framework
can be derived as a special case of VB by assuming an
improper prior for λ and a Dirac measure δλ∗ for the variational
distribution of λ. Importantly, it is the parameter value λ∗ of the
Dirac measure that corresponds to the parameter λ in the VML
framework.

2.4.1. Application to the GLM
In the application of the VML approach to the GLM of Equations
(1) and (2) we need to specify the parametric forms of the prior
distribution p(β) and the parametric form of the variational
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distribution q(β). As above, we assume that these distributions
are Gaussian, i.e.,

p(β) = N(β;µβ ,6β ), where µβ ∈ R
p and 6β ∈ R

p×p p.d.
(37)

q(β) = N(β;mβ , Sβ ), wheremβ ∈ R
p and Sβ ∈ R

p×p p.d. (38)

Based on the specifications of Equations (37) and (38), the
integral definition of the VML free energy can be analytically
evaluated under mild approximations, which yields the VML free
energy function of the variational parametersmβ and Sβ and the
parameter λ

FVML(mβ , Sβ , λ) =−
n

2
ln 2π −

1

2
ln |Vλ| −

1

2
(y− Xmβ )

TV−1
λ

(y− Xmβ )

−
1

2
tr(SβX

TV−1
λ

X)

−
p

2
ln 2π −

1

2
ln |6β |

−
1

2
(mβ − µβ )

T6−1
β

(mβ − µβ )− tr(6−1
β

Sβ )

+
p

2
ln(2πe)+

1

2
ln |Sβ |.

(39)

We document the derivation of Equation (39) in Supplementary
Material S1.3. In contrast to the VB free energy (cf. Equation 28),
the VML free energy for the GLM is characterized by the absence
of terms relating to the prior and posterior uncertainty about the
covariance component parameter λ. To maximize the VML free
energy, we again derived a set of update equations as documented
in Supplementary Material S1.3. These update equations give rise
to a VML algorithm for the current model, which we document
in Algorithm 2.

Algorithm 2 VML Algorithm (for details, see vbg_est_vml.m)

Input: data y, prior parameters µβ ,6β , initial value λ(1), model
X,Q1,Q2

Output: variational parametersm
(i)
β , S

(i)
β , λ(i), free energy FVML(i)

1: Initialization: i := 1 and m
(i)
β := µβ , S

(i)
β := 6β ,

1FVML(i)
:=∞, and FVML(i)

:= FVML
(

m
(i)
β , S

(i)
β , λ(i)

)

.

2: while 1FVML(i) > δ do

3: i := i+ 1

4: m
(i)
β :=

(

XTV−1
λ X + 6−1

β

)−1 (

XTV−1
λ Xy+ 6−1

β µβ

)

5: S
(i)
β :=

(

XTV−1
λ X + 6−1

β

)−1

6: solve ∂
∂λj

f VML
(

λ(i)
)

= 0 for λ(i)

7: evaluate FVML(i)
:= FVML

(

m
(i)
β , S

(i)
β , λ(i)

)

8: 1FVML(i)
:= FVML(i) − FVML(i−1)

9: end while

In Figure 3, we visualize the application of the VML algorithm
to an example fMRI time-series realization of the model
described in Section 2.1 with true, but unknown, parameter

values β = (2,−1)T and λ = (−0.5,−2)T . As above, we used
an imprecise prior for β by setting

p(β) := N

(

β;

(

0
0

)

,

(

10 0
0 10

))

. (40)

and set the initial covariance component estimate to λ(1) =

(0, 0)T . Figure 3A depicts the prior distribution over β and the
true, but unknown, value of β . Figure 3B depicts the variational
distribution over β after convergence with a VML free energy
convergence criterion of δ = 10−3. As in the VB scenario, given
the imprecise prior distribution, this variational distribution falls
close to the true, but unknown, value and convergence is usually
achieved within 4–6 iterations. Figures 3C,D depict the VML
free energy surface as a function of the variational parameter
mβ and the parameter λ, respectively. For the chosen prior
distributions, the VML free energy surfaces displays a clear global
maximum as a function of mβ , while the maximum location as a
function ofmλ is located on an elongated crest.

2.5. Restricted Maximum Likelihood
(ReML)
ReML is commonly viewed as a generalization of the maximum
likelihood approach, which in the case of the GLM yields
unbiased, rather than biased, covariance component parameter
estimates (Harville, 1977; Phillips et al., 2002; Searle et al., 2009).
In this context and using our denotations, the ReML estimate
λ̂ReML is defined as the maximizer of the ReML objective function

λ̂ReML := argmax
λ

ℓReML(λ), (41)

where

ℓReML(λ) := −
1

2
ln |Vλ|−

1

2
ln |XTV−1

λ
X|−

1

2
(y−Xβ̂GLS)

TV−1
λ

(y−Xβ̂GLS)

(42)
denotes the ReML objective function and

β̂GLS := (XTVλX)
−1XTV−1

λ y (43)

denotes the generalized least-squares estimator for β . Because
β̂GLS depends on λ in terms of Vλ, maximizing the ReML
objective function necessitates iterative numerical schemes.
Traditional derivations of the ReML objective function, such as
provided by LaMotte (2007) and Hocking (2013), are based on
mixed-effects linear models and the introduction of a contrast
matrix A with the property that ATX = 0 and then consider the
likelihood of ATy after canceling out the deterministic part of the
model. In Supplementary Material S1.4 we show that, up to an
additive constant, the ReML objective function also corresponds
to the VML free energy under the assumption of an improper
constant prior distribution for β , and an exact update of the
VML free energy with respect to the variational distribution of β ,
i.e., setting q(β) = pλ(β|y). In other words, for the probabilistic
model

pλ(y,β) = pλ(y|β)p(β) with pλ(y|β) = N(y;Xβ ,Vλ) and

p(β) := 1 (44)
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FIGURE 3 | VML estimation. (A) Prior distribution p(β) with expectation µβ := (0, 0)T and covariance 6β := 10I2. Here, and in all subpanels, the black × marks the

true, but unknown, parameter value. (B) Variational approximation q(c)(β) to the posterior distribution upon convergence of the algorithm. (C) VML free energy

dependence on mβ . The blue × indicates the prior expectation parameter and the red + marks the approximated posterior expectation parameter. (D) VML free

energy dependence on λ. The blue × indicates the parameter value at algorithm initialization and the red + marks the parameter value upon algorithm convergence.

For implementational details, please see vbg_1.m.

it holds that

FVML(pλ(β|y), λ) = ℓReML(λ)+ c, (45)

where

c := −
n

2
ln 2π +

p

2
ln(2π), (46)

and thus

λ̂ReML = argmax
λ

FVML(pλ(β|y), λ). (47)

ReML estimation of covariance components in the context of
the general linear model can thus be understood as the special
case of VB, in which β is endowed with an improper constant
prior distribution, the posterior distribution over λ is taken
to be the Dirac measure δλ∗ , and the point estimate of λ∗

maximizes the ensuing VML free energy under exact inference
of the posterior distribution of β . In this view, the additional
term of the ReML objective function with respect to the ML
objective function obtains an intuitivemeaning:− 1

2 ln |X
TV−1

λ X|
corresponds to the entropy of the posterior distribution pλ(β|y)
which is maximized by the ReML estimate λ̂ReML. The ReML
objective function thus accounts for the uncertainty that stems
from estimating of the parameter β by assuming that is as large
as possible under the constraints of the data observed.

In line with the discussion of VB and VML, we may define
a ReML free energy, by which we understand the VML free
energy function evaluated at pλ(β|y) for the probabilistic model
(Equation 44). In Supplementary Material S1.4, we show that this
ReML free energy can be written as

FReML(mβ , Sβ , λ) = −
n

2
ln 2π −

1

2
ln |Vλ|

−
1

2
(y− Xmβ )

TV−1
λ (y− Xmβ )

−
1

2
tr(SβX

TV−1
λ X)

+
p

2
ln(2πe)+

1

2
ln |Sβ |. (48)

Note that the equivalence of Equation (48) to the constant-
augmented ReML objective function of Equation (45) derives
from the fact that under the infinitely imprecise prior distribution
for β the variational expectation and covariance parameters
evaluate to

mβ = β̂GLS and Sβ = (XTV1−
λ X)−1, (49)

respectively. With respect to the general VML free energy, the
ReML free energy is characterized by the absence of a term
that penalizes the deviation of the variational parameter mβ
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from its prior expectation, because the infinitely imprecise prior
distribution p(β) provides no constraints on the estimate of β . To
maximize the ReML free energy, we again derived a set of update
equations which we document in Algorithm 3. In Figure 4, we

Algorithm 3 ReML Algorithm (for details, see vbg_est_reml.m)

Input: data y, initial valuesm
(1)
β , S

(1)
β , λ(1), model X,Q1,Q2

Output: variational parameters m
(i)
β , S

(i)
β , λ(i), free energy

FReML(i)

1: Initialization: i := 1, 1FReML(i)
:= ∞, and

FReML(i)
:= FReML

(

m
(i)
β , S

(i)
β , λ(i)

)

.

2: while 1FReML(i) > δ do

3: m
(i)
β :=

(

XTV−1
λ X

)−1
XTV−1

λ y

4: S
(i)
β :=

(

XTV−1
λ X

)−1

5: solve ∂
∂λj

f ReML
(

λ(i)
)

= 0 for λ(i)

6: evaluate FReML(i)
:= FReML

(

m
(i)
β , S

(i)
β , λ(i)

)

7: 1FReML(i)
:= FReML(i) − FReML(i−1)

8: end while

visualize the application of the ReML algorithm to an example
fMRI time-series realization of the model described in Section
2.1 with true, but unknown, parameter values β = (2,−1)T

and λ = (−0.5,−2)T . Here, we chose the β prior distribution
parameters as the initial values for the variational parameters by
setting

m
(1)
β :=

(

0
0

)

and S
(1)
β :=

(

10 0
0 10

)

, (50)

and as above, set the initial covariance component estimate to
λ(1) = (0, 0)T .

Figure 4A depicts the converged variational distribution over
β and the true, but unknown, value of β for a ReML free
energy convergence criterion of δ = 10−3. Figures 4B,C depict
the ReML free energy surface as a function of the variational
parametermβ and λ, respectively. Note that due to the imprecise
prior distributions in the VB and VML scenarios, the resulting
free energy surfaces are almost identical to the ReML free energy
surfaces.

2.6. Maximum Likelihood (ML)
Finally, also the ML objective function can be viewed as the
special case of the VB log marginal likelihood decomposition for
variational distributions q(β) and q(λ) both conforming to Dirac
measures. Specifically, as shown in Supplement Material S2 the
ML estimate

(β̂ML, λ̂ML) := argmax
β ,λ

ℓML(β , λ) := argmax
β ,λ

lnN(y;Xβ ,Vλ)

(51)
corresponds to the maximizer of the VML free energy for the
probabilistic model

pλ(y,β) = pλ(y|β)p(β) with q(β) = δβ∗ (β) and p(β) = 1, (52)

i.e., a Dirac measure δβ∗ for the variational distribution and
an improper and constant prior density for the parameter β .
Formally, we thus have

(β̂ML, λ̂ML) := argmax
β ,λ

FVML(δβ∗ (β), λ). (53)

To align the discussion of ML with the discussion of VB, VML,
and ReML, we may define the thus evaluated VML free energy
as the ML free energy, which is just the standard log likelihood
function of the GLM:

FML(β , λ) = −
n

2
ln 2π −

1

2
ln |Vλ| −

1

2
(y− Xβ)TV−1

λ (y− Xβ).

(54)
Note that the posterior approximation q(β) does not encode
any uncertainty in this case, and thus the additional term
corresponding to the entropy of this distribution in the
ReML free energy vanishes for the case of ML. Finally, to
maximize the ML free energy we again derived a set of update
equations (Supplementary Material S1.5) which we document
in Algorithm 4. In Figure 5, we visualize the application of this
ML algorithm to an example fMRI time-series realization of
the model described in Section 2.1 with true, but unknown,
parameter values β = (2,−1)T and λ = (−0.5,−2)T , initial
parameter settings of β(1) = (0, 0)T and λ(1) = (0, 0)T , and
ML free energy convergence criterion δ = 10−3 . Figure 5A
depicts the ML free energy maximization with respect to β(i) and
Figure 5B depicts the ML free energy maximization with respect
to λ(i). Note the similarity to the equivalent free energy surfaces
in the VB, VML, and ReML scenarios.

Algorithm 4ML Algorithm (for details, see vbg_est_ml.m)

Input: data y, initial values β(1), λ(1), model X,Q1,Q2

Output: parameter estimates β(i), λ(i), free energy FML(i)

1: Initialization: i := 1,1FML(i)
:=∞, FML(i)

:= FML(β(i), λ(i)).

2: while 1FML(i) > δ do

3: i := i+ 1
4: β(i)

:=
(

XTV−1
λ X

)−1
XTV−1

λ y

5: solve ∂
∂λj

fML
(

λ(i)
)

= 0 for λ(i)

6: FML(i)
:= FML

(

β(i), λ(i)
)

7: 1FML(i)
:= FML(i) − FML(i−1)

8: end while

In summary, in this section we have shown how VML, ReML,
and ML estimation can be understood as special case of VB
estimation. In the application to the GLM, the hierarchical
nature of these estimation techniques yields a nested set of
free energy objective functions, in which gradually terms that
quantify uncertainty about parameter subsets are eliminated
(cf. Equations 28, 39, 48, and 54). In turn, the iterative
maximization of these objective functions yields a nested set
of numerical algorithms, which assume gradually less complex
formats (Algorithms 1–4). As shown by the numerical examples,
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FIGURE 4 | ReML estimation. (A) Variational distribution q(c)(β) after convergence based on the initial values mβ := (0, 0)T and Sβ := 10I2 (convergence criterion

δ = 10−3). Here, and in all subpanels, the black × marks the true, but unknown, parameter value. (B) ReML free energy dependence on mβ . Here, and in (C) the blue

× indicates the parameter value at algorithm initialization and the red + marks the parameter value upon algorithm convergence. (C) ReML free energy dependence

on λ. For implementational details, please see vbg_1.m.

FIGURE 5 | ML estimation. (A) ML free energy dependence on β. Here, and in (B), the black × marks the true, but unknown parameter value, the blue × indicates

the parameter value at algorithm initialization and the red + marks the parameter value upon algorithm convergence. (B) ML free energy dependence on λ. For

implementational details, please see vbg_1.m.

under imprecise prior distributions, the resulting free energy
surfaces and variational (expectation) parameter estimates are
highly consistent across the estimation techniques. Finally, for all
techniques, the relevant parameter estimates converge to the true,
but unknown, parameter values after a few algorithm iterations.

3. APPLICATIONS

In Section 2 we have discussed the conceptual relationships and
the algorithmic implementation of VB, VML, ReML, and ML
in the context of the GLM and demonstrated their validity for
a single simulated data realization. In the current section, we
are concerned with their performance over a large number of
simulated data realizations (Section 3.1) and their exemplary
application to real experimental data (Section 3.2).

3.1. Simulations
Classical statistical theory has established a variety of criteria
for the assessment of an estimator’s quality (e.g., Lehmann and
Casella, 2006). Commonly, these criteria amount to the analytical
evaluation of an estimators large sample behavior. In the current
section we adopt the spirit of this approach in simulations. To

this end, we first capitalize on an objective Bayesian standpoint
(Bernardo, 2003) by employing imprecise prior distributions
to focus on the estimation techniques’ ability to recover the
true, but unknown, parameters of the data generating model
and the model structure itself. Specifically, we investigate the
cumulative average and variance of the β and λ parameter
estimates under VB, VML, ReML, and ML and the ability of each
technique’s (marginal) likelihood approximation to distinguish
between different data generating models. In a second step, we
then demonstrate exemplarily how parameter prior specifications
can induce divergences in the relative estimation qualities of the
techniques.

3.1.1. Parameter Recovery
To study each estimation technique’s ability to recover true,
but unknown, model parameters, we drew 100 realizations
of the example model discussed in Section 2.1 and focussed
our evaluation on the cumulative averages and variances of

the converged (variational) parameter estimates m
(c)
β ∈ R

2

(VB, VML, ReML), β(c) ∈ R
2 (ML), m

(c)
λ ∈ R

2 (VB), and

λ(c) ∈ R
2 (VML, ReML, ML). The simulations are visualized
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in Figure 6. Each panel column of Figure 6 depicts the results
for one of the estimation techniques, and each panel row
depicts the results for one of the four parameter values of
interest. Each panel displays the cumulative average of the
respective parameter estimate. Averages relating to estimates
of β are depicted in blue, averages relating to estimates of λ

are depicted in green. In addition to the cumulative average,
each panel shows the cumulative variance of the parameter
estimates as shaded area around the cumulative average line,
and the true, but unknown, values β = (2, 1)T and λ =

(−0.5,−2)T as gray line. Overall, parameter recovery as depicted
here is within acceptable bounds and the estimates variances
are tolerable. While there are no systematic differences in
parameter recovery across the four estimation techniques,
there are qualitative differences in the recovery of effect size
and covariance component parameters. For all techniques, the
recovery of the effect size parameters is unproblematic and
highly reliable. The recovery of covariance component recovery,
however, fails in a significant amount of approximately 15–
20% of data realizations. In the panels relating to estimates
of λ in Figure 6, these cases have been removed using an
automated outlier detection approach (Grubbs, 1969). In the
outlying cases, the algorithms converged to vastly different
values, often deviating from the true, but unknown, values
by an order of magnitude (for a summary of the results
without outlier removal, please refer to Supplementary Material
S3). To assess whether this behavior was specific to our
implementation of the algorithms, we also evaluated the de-facto
neuroimaging community standard for covariance component
estimation, the spm_reml.m and spm_reml_sc.m functions of
the SPM12 suite in the same model scenario. We report these
simulations as Supplementary Material S4. In brief, we found a
similar covariance component (mis)estimation behavior as in our
implementation.

Further research revealed that the relative unreliability
of algorithmic covariance component estimation is a well-
known phenomenon in the statistical literature (e.g., Groeneveld
and Kovac, 1990; Boichard et al., 1992; Groeneveld, 1994;
Foulley and van Dyk, 2000). We see at least two possible
explanations in the current case. Firstly, we did not systematically
explore the behavior of the algorithmic implementation for
different initial values. It is likely, that the number of
estimation outliers can be reduced by optimizing, for each
data realization, the algorithm’s starting conditions. However,
also in this case, an automated outlier detection approach
would be necessary to optimize the respective initial values.
Secondly, we noticed already in the demonstrative examples
in Section 2, that the free energy surface with respect to
the covariance components is not as well-behaved as for
the effect sizes. Specifically, the maximum is located on
an elongated crest of the function, which is relatively flat
(see e.g., Figure 5B) and hence impedes the straight-forward
identification of the maximizing parameter value (see also
Figure 4 of Groeneveld and Kovac, 1990 for a very similar
covariance component estimation objective function surface).
In the Discussion section, we suggest a number of potential
remedies for the observed outlier proneness of the covariance

component estimation aspect of the VB, VML, ReML, and ML
estimation techniques.

3.1.2. Model Recovery
Having established overall reasonable parameter recovery
properties for our implementation of the VB, VML, ReML, and
ML estimation techniques, we next investigated the ability of the
respective techniques’ (marginal) log likelihood approximations
to recover true, but unknown, model structures. We here
focussed on the comparison of two data generating models
that differ in the design matrix structure and have identical
error covariance structures. Model MG1 corresponds to the first
column of the example design matrix of Figure 1 and thus is
parameterized by a single effect size parameter. Model MG2
corresponds to the model used in all previous applications
comprising two design matrix columns. To assess the model
recovery properties of the different estimation techniques, we
generated 100 data realizations based on each of these twomodels
with true, but unknown, effect size parameter values of β1 = 2
(MG1 and MG2) and β2 = −1 (MG2 only), and covariance
component parameters λ = (−0.5,−2)T (MG1 and MG2), as
in the previous simulations. We then analyzed each model’s data
realizations with data analysis models that corresponded to only
the single data-generating designmatrix regressor (MA1) or both
regressors (MA2) for each of the four estimation techniques.

The results of this simulation are visualized in Figure 7. For
each estimation technique (panels), the average free energies,
after exclusion of outlier estimates for the covariance component
parameters, are visualized as bars. The data-generating models
MG1 and MG2 are grouped on the x-axis and the data-analysis
models are grouped by bar color (MA1 green, MA2 yellow). As
evident from Figure 7, the correct analysis model obtained the
higher free energy, i.e., log model evidence approximation, for
both data-generating models across all estimation techniques.
This difference was more pronounced when analysing data
generated by model MG2 than when analysing data generated
by model MG1. In this case, the observed data pattern is clearly
better described by MA2. In the case of the data-generating
model MG1, data analysis model MA2 can naturally account for
the observed data by estimating the second effect size parameter
to be approximately zero. Nevertheless, this additional model
flexibility is penalized correctly by all algorithms, such that the
more parsimonious data analysis model MA1 assumes the higher
log model evidence approximation also in this case. We can
thus conclude that model recovery is achieved satisfactorily by
all estimation techniques. A more detailed decomposition of the
average free energies into the respective free energy’s sum terms
is provided in Supplementary Material S5.

3.1.3. Estimation Quality Divergences
Thus far, we have concentrated on the nested character of VML,
ReML, and ML in VB and demonstrated that for the current
model application the maximum-a-posteriori (MAP) estimates
of VB and VML and the point estimates of ReML andML are able
to recover true, but unknown, parameter values. Naturally, the
four estimation techniques differ in the information they provide
upon estimation: VB estimates quantify posterior uncertainty
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FIGURE 6 | Parameter recovery. The panels along the figure’s columns depict the cumulative averages (blue/green lines), cumulative variances (blue/green shaded

areas), and true, but unknown, parameter values (gray lines) for VB, VML, ReML, and ML estimation. Parameter estimates relating to the effect sizes β are visualized in

blue, parameter estimates relating to the covariance components λ are visualized in green. The panels along the figure’s rows depict the parameter recovery

performance for the subcomponents of the effect size parameters (row 1 and 2) and covariance component parameters (row 3 and 4), respectively. The covariance

component parameter estimates are corrected for outliers as discussed in the main text. For implementational details, please see vbg_2.m.

FIGURE 7 | Model recovery. Each panel depicts the average free energies of the indicated estimation technique over 100 data realizations. Two data generating

models (MG1 and MG2, panel x-axis) were used and analyzed in a cross-over design with two data analysis models (MA1 and MA2, bar color). MG1 and MA1

comprise the same single column design matrix, and MG2 and MA2 comprise the same two column design matrix. Models MG1 and MA1 are nested in MG2 and

MA2. Across all estimation techniques, the correct data generating model is identified as indexed by the respective higher free energy log model evidence

approximation. For implementational details, please see vbg_3.m.

about both effect size and covariance component parameters,
VML estimates quantify posterior uncertainty about effect
size parameters only, and ReML and ML do not quantify
posterior uncertainty about either parameter class. Beyond
these conceptual divergences, an interesting question concerns
the qualitative and quantitative differences in estimation that
result from the estimation techniques’ specific characteristics.
In general, while the properties of ML estimates are fairly well
understood from a classical frequentist perspective, the same
cannot be said for the other techniques (e.g., Blei et al., 2016).

We return to this point in the Discussion section. In the
current section, we demonstrate divergences in the quality of
parameter estimation that emerge in high noise scenarios, which
are able to uncover prior distribution induced regularization
effects. We demonstrate this for both effect size (Figure 8A) and
covariance component parameters (Figure 8B) in the example
model described in Section 2.1.

The panels in Figure 8A depict simulation estimates of the the
root-mean-square-error (RMSE) E(||βMAX − β||2) (uppermost
panel) and biases of the effect size parameter entries E(βMAX

1 −β1)
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FIGURE 8 | Estimation quality divergences. Each panel depicts the estimated RMSE and estimation bias for all four estimation techniques over a range of noise levels

parameterized by λ1. The estimation techniques are color and linewidth coded. (A) Visualizes a simulation with focus on the effect size parameter estimates β,

(B) visualizes a simulation with focus on the covariance component parameters λ. For a detailed description of the simulation, please refer to the main text and for

implementational details, please see vbg_4.m. Note that for (A), the results of VB and VML and the results of ReML and ML coincide, and for (B) the results of ReML

and VML coincide.

and E(βMAX
2 − β2) (middle and lowermost panel, respectively)

over a range of values of the first covariance component
parameter λ1. Here, βMAX = (βMAX

1 ,βMAX
2 )T denotes the MAP

estimates resulting under the VB and VML techniques, and the
maximum (restricted) likelihood estimates resulting under ReML
and ML, β denotes the true, but unknown, effect size parameter,
E(·) denotes the expectation parameter, Ê(·) the estimation of
an expectation by means of an average, and || · ||2 denotes
the Euclidean norm of a vector. The results for the different
estimation techniques are color- and linewidth-coded and were
obtained under the following simulation: the true, but unknown,
effect size parameter values were set to β = (1, 1)T and the
true, but unknown, parameter value of the second covariance
component parameter was constant at λ2 = −2. Varying the
true, but unknown, value λ1 on the interval [6, 12] thus increased
the contribution of independent and identically distributed noise
to the data. For each estimation technique, the respective effect
size estimates were initialized as specified in Table 1. In brief,
the estimates for β1 were initialized to the true, but unknown,
value and β2 to zero. Crucially, VB and VML allow for the
specification of prior distributions over β . Here, we used a precise
prior covariance of 6β1 = 10−2 and an imprecise variance
of 6β2 = 101. Note that these algorithm parameters do not
exist in ReML and ML. For each setting of λ1, 100 realizations
of the model were obtained, subjected to all four estimation
techniques, and the RMSE and biases estimated by averaging
over realizations. The following pattern of results emerges: in
terms of the RMSE (upper panel), VB and VML exhibit a
more stable estimation of β , with a lower deviation from zero
compared to the trend of ReML and ML estimates, at higher
noise levels. Inmore detail, this pattern results from the following

effects on the individual β1 and β2 estimates: first, for VB and
VML, the estimates β1 exhibit virtually no biases, because their
precise prior distribution fixes them at the true, but unknown
value, (middle panel). For β2 this regularization of β1 results in
more stable estimates as compared to ReML and ML, but for
higher levels of noise also results in a downward bias (lowermost
panel). Taken together, this simulation demonstrates, how, in
the case of prior knowledge about the effect size parameters, the
endowment of their estimates with precise priors in VB and VML
can stabilize the overall effect size estimation and yield better
estimates compared to ReML and ML.

In a second simulation, visualized in Figure 8B, we
investigated the interaction between prior regularization and
estimation quality for the covariance component parameters. As
in Figure 8A, the uppermost panel depicts the estimated RMSE
for the λ parameters, and the middle and lowermost panels
the biases of each component parameter. As in the previous
simulation, the true, but unknown, effect size parameter values
were set to β = (1, 1) and λ2 = −2 and λ1 was varied on
the interval [−1, 1]. The initial parameters for each estimation
technique are documented in Table 1. In brief, all effect size
parameter estimates (expectations) were initialized to zero, and
isotropic, imprecise prior covariance matrices were employed
for VB and VML. The only estimation technique that endows
λ estimates with a prior distribution is VB. Here, we employ
the imprecise prior covariance 6λ := 101I2, which is, however,
“precise enough” to exert some stabilization effects: as shown
in the uppermost panel of Figure 8B, only the RMSE of the
VB technique remains largely constant over the investigated
space of λ1 values, while for all other estimation techniques the
RMSE increases linearly. Two things are noteworthy here. First,
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TABLE 1 | Parameter initialization for the simulations reported in Figures 8A,B design.

VB VML ReML ML

m
(1)
β

S
(1)
β

m
(1)
λ

S
(1)
λ

m
(1)
β

S
(1)
β

λ(1) β (1) λ(1) β (1) λ(1)

8A





1

0









0.01 0

0 10









−1

−1









10 0

0 10









1

0









0.01 0

0 10









−1

−1









1

0









−1

−1









1

0









−1

−1





8B





0

0









10 0

0 10









−1

−1









10 0

0 10









0

0









10 0

0 10









−1

−1









0

0









−1

−1









0

0









−1

−1





at the level of the β estimates all techniques perform equally
well in a bias-free manner (data not shown). Second, the λ1
parameter space investigated includes a region (around 0.5)
for which also the VB estimation quality declines, but recovers
thereafter, suggesting an interaction between the structural
model properties and the parameter regime. For the individual
entries of λ, the decline in estimation quality in VML, ReML,
and ML is not uniform: for λ1, the estimation quality remains
largely constant up to the critical region around 0.5, whereas the
estimation quality of λ2 deteriorates with increasing values of
λ1 and recovers briefly in the critical region around 0.5. Note
that for both simulations of Figure 8 we did not attempt to
remove potential estimation outliers, because their definition in
high noise scenarios is virtually impossible. It is thus likely, that
the convergence failures observed in the first set of simulations
contribute to the observed estimation errors. However, because
these failures also afflict the VB and VML techniques which
displayed improved estimation behavior in the simulations
reported in Figure 8, it is likely that the observed pattern of
results is indicative of qualitative estimation divergences.

In summary, in the reported simulations we tried to evaluate
our implementation of VB, VML, ReML, and ML estimation
techniques for a typical neuroimaging data analysis example.
In our first simulation set, we observed generally satisfactory
parameter recovery for imprecise priors, with the exception of
covariance component parameter recovery on a subset of data
realizations. In our second simulation, we additionally observed
satisfactory model recovery. In our last set of simulations, we
probed for estimation quality divergences between the techniques
and could show how regularizing prior distributions of the
advanced estimation techniques VB and VML can aid to stabilize
effect size and covariance component parameter estimation.
Naturally, the reported simulations are conditional on our chosen
model structure, the true, but unknown, parameter values, and
the algorithm initial conditions (prior distributions), and hence
not easily generalizable.

3.2. Application to Real Data
Having validated the VB, VML, ReML, and ML implementation
in simulations, we were interested in their application to real
experimental data with the main aim of demonstrating the
possible parameter inferences that can (and cannot) be made
with each technique. To this end, we applied VB, VML,
ReML, and ML to a single participant fMRI data set acquired
under visual checkerboard stimulation as originally reported in

Ostwald et al. (2010). In brief, the participant was presented
with a single reversing left hemi-field checkerboard stimulus
for 1 s every 16.5–21 s. These relatively long inter-stimulus
intervals were motivated by the fact that the data was acquired
as part of an EEG-fMRI study that investigated trial-by-trial
correlations between EEG and fMRI evoked responses. Stimuli
were presented at two contrast levels and there were 17 stimulus
presentations per contrast level. 441 volumes of T2∗-weighted
functional data were acquired from 20 slices with 2.5 × 2.5 × 3
mm resolution and a TR of 1.5 s. The slices were oriented parallel
to the AC-PC axis and positioned to cover the entire visual
cortex. Data preprocessing using SPM5 included anatomical
realignment to correct for motion artifacts, slice scan time
correction, re-interpolation to 2 × 2 × 2 mm voxels, anatomical
normalization, and spatial smoothing with a 5 mm FWHM
Gaussian kernel. For full methodological details, please see
Ostwald et al. (2010).

To demonstrate the application of VB, VML, ReML, and
ML to this data set, we used the SPM12 facilities to create
a three-column design matrix for the mass-univariate analysis
of voxel time-course data. This design matrix included HRF-
convolved stimulus onset functions for both stimulus contrast
levels and a constant offset. The design matrix is visualized in
Figure 10C. We then selected one slice of the preprocessed fMRI
data (MNI plane z = 2) and used our implementation of the
four estimation techniques to estimate the corresponding three
effect size parameters β ∈ R

3 and the covariance component
parameters λ ∈ R

2 of the two covariance basis matrices
introduced in Section 2.1 for each voxel. We focus our evaluation
on the resulting variational parameter estimates of the effect
size parameter β1, corresponding to the high stimulus contrast,
and the first covariance component parameter λ1, corresponding
to the isotropic error component. In line with the common
practice in neuroimaging data analysis, no outlier removal was
performed for the latter parameter. The results are visualized in
Figures 9, 10.

Figure 9 visualizes the parameter estimates relating to the
effect size parameter β1. The subpanels of Figure 10A depict
the resulting two-dimensional map of converged variational
parameter estimates, which differs only minimally between the
four estimation techniques as indicated on the left of each panel.
The variational parameter estimates are highest in the area of
the right primary visual cortex, and lowest in the area of the
cisterna ambiens/lower lateral ventricles. Figure 10B depicts the

associated variational covariance parameter S
(c)
β1
, i.e., the first
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FIGURE 9 | Effect size estimation. The figure panels depict the effect size parameter β1 estimation results of the VB, VML, ReML, and ML algorithm application to the

analysis of a single-participant single-run fMRI data set. This effect size parameter captures the effect of high contrast left visual hemifield checkerboard stimuli as

encoded by the first column of the design matrix shown in (C). The first column (A) displays the converged expectation parameter estimates, the second column

(B) the associated variance estimates, and the third column (C) the posterior probability for the true, but unknown, effect size parameter to assume values larger than

4. For visual comparison, (D) depicts the result of a standard GLM data analysis of the same data set using SPM12. For implementational details, please see vbg_5.m.

diagonal entry of the of the variational covariance matrix S
(c)
β ∈

R
3×3. Here, the highest uncertainty is observed for ventricular

locations and the right medial cerebral artery. Overall, the
uncertainty estimates are marginally more pronounced for the
VB and VML techniques compared to the ReML estimates. Note
that the ML technique does not quantify the uncertainty of the
GLM effect size parameters. Based on the variational parameters

m
(c)
β1

and S
(c)
β1
, Figure 10C depicts the probability that the true, but

unknown, effect size parameter is larger than η = 4, i.e.,

p(β1 > η) = 1− Ncdf (η;mβ1 , Sβ1 ), (55)

where Ncdf denotes the univariate Gaussian cumulative density
function. Here, the stimulus-contralateral right hemispheric
primary visual cortex displays the highest values and the
differences between VB, VML, and ReML are marginal. For

comparison, we depict the result of a classical GLM analysis
with contrast vector c = (1, 0, 0)T at an uncorrected cluster-
defining threshold of p < 0.001 and voxel number threshold of
k = 0 overlaid on the canonical single participant T1 image in
Figure 9D. This analysis also identifies the right lateral primary
visual cortex as area of strongest activation—but in contrast to
the VB, VML, and ReML results does not provide a visual account
of the uncertainty associated with the parameter estimates and
ensuing T-statistics. In summary, the VB, VML, and ReML-based
quantification of effect sizes and their associated uncertainty
revealed biologically meaningful results.

Figure 10 visualizes the variational expectation parameters
relating to the effect size parameter λ1. Here, the subpanels of
Figure 10A visualize the variational (expectation) parameters
across the four estimation techniques. High values for this
covariance component are observed in the areas covering
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FIGURE 10 | Covariance component parameter estimation. The figure panels

depict the covariance component parameter λ1 estimation results of the VB,

VML, ReML, and ML algorithm application to the analysis of a

single-participant single-run fMRI data set. This covariance component

parameter captures the effect of independently distributed errors. The first

column (A) displays the converged (expectation) parameter estimates. The

second column (B) displays the associated variance estimate and posterior

probability for λ1 > 2, which is only quantifiable under the VB estimation

technique. (C) Depicts the GLM design matrix that was used for the fMRI data

analysis presented in Figures 8, 9 (HC, high contrast stimuli regressor; LC,

low contrast stimuli regressor; BL, baseline offset regressor). For

implementational details, please see vbg_5.m.

cerebrospinal fluid (cisterna ambiens, lateral and third
ventricles), lateral frontal areas, and the big arteries and
veins. Notably, also in right primary visual cortex, the covariance
component estimate is relatively large, indicating that the design
matrix does not capture all stimulus-induced variability. The
only estimation technique that also quantifies the uncertainty
about the covariance component parameters is VB. The results
of this quantification are visualized in Figure 10B. The first

subpanel visualizes the variational covariance parameter S
(c)
λ1
,

i.e., the first diagonal entry of the variational covariance matrix

S
(c)
λ ∈ R

2×2. The second subpanel visualizes the probability that
the true, but unknown, covariance component parameter λ is
larger than η = 2, i.e.,

p(λ1 > η) = 1− Ncdf (η;mλ1 , Sλ1 ), (56)

which, due to the relatively low uncertainty estimates Sλ1 shows
high similarity with the variational expectation parameter map.

In summary, our exemplary application of VB, VML, ReML,
and ML to real experimental data revealed biologically sensible
results for both effect size and covariance component parameter
estimates.

4. DISCUSSION

In this technical study, we have reviewed the mathematical
foundations of four major parametric statistical parameter
estimation techniques that are routinely employed in the analysis
of neuroimaging data. We have detailed, how VML (expectation-
maximization), ReML, and ML parameter estimation can be
viewed as special cases of the VB paradigm. We summarize
these relationships and the non-technical application scenarios
in which each technique corresponds to the method of choice in
Figure 11. Further, we have provided a detailed documentation
of the application of these four estimation techniques to the GLM
with non-spherical, linearly decomposable error covariance, a
fundamental modeling scenario in the analysis of fMRI data.
Finally, we validated the ensuing iterative algorithms with
respect to both simulated and real experimental fMRI data. In
the following, we relate our exposition to previous treatments
of similar topic matter, discuss potential future work on the
qualitative properties of VB parameter estimation techniques,
and finally comment on the general relevance of the current
study.

The relationships between VB, VML, ReML, and ML have
been previously pointed out in Friston et al. (2002a) and Friston
et al. (2007). In contrast to the current study, however, Friston
et al. (2002a) and Friston et al. (2007) focus on high-level general
results and provide virtually no derivations. Moreover, when
introducing VB in Friston et al. (2007), the GLM with non-
spherical, linearly decomposable error covariance is treated as
one of a number of model applications and is not studied in
detail across all estimation techniques. From this perspective,
the current study can be understood as making many of the
implicit results in Friston et al. (2002a) and Friston et al. (2007)
explicit and filling in many of the detailed connections and
consequences, which are implied by Friston et al. (2002a) and
Friston et al. (2007). The relationship between VB and VML has
been noted already from outset of the development of the VB
paradigm (Beal, 2003; Beal and Ghamarani, 2003). In fact, VB
was originally motivated as a generalization of the EM algorithm
(Neal and Hinton, 1998; Attias, 2000). However, these treatments
do not provide an explicit derivation of VML from VB based on
the Dirac measure and do not make the connection to ReML.
Furthermore, these studies do not focus on the GLM and its
application in the analysis of fMRI data. Finally, a number
of treatises have considered the application of VB to linear
regressionmodels (e.g., Bishop, 2006; Tzikas et al., 2008; Murphy,
2012). However, these works do not consider non-spherical
linearly decomposable error covariance matrices and also do
not make the connection to classical statistical estimation using
ReML for functional neuroimaging. Taken together, the current
study complements the existing literature with its emphasis on
the mathematical traceability of the relationship between VB,
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FIGURE 11 | VB, VML, ReML, and ML relationships and application scenarios. N/A denotes non-applicable.

VML, ReML, and ML, its focus on the GLM application, and its
motivation from a functional neuroimaging background.

4.1. Estimator Quality
Model estimation techniques yield estimators. Estimators are
functions of observed data that return estimates of true, but
unknown, model parameters, be it the point-estimates of classical
frequentist statistics or the posterior distributions of the Bayesian
paradigm (e.g., Wasserman, 2010). An important issue in the
development of estimation techniques is hence the quality of
estimators to recover true, but unknown, model parameters and
model structure. While this issue re-appears in the functional
neuroimaging literature in various guises every couple of years
(e.g., Vul et al., 2009a; Eklund et al., 2016), often accompanied by
some flurry in the field (e.g., Abbott, 2009; Nichols and Poline,
2009; Vul et al., 2009b; Eklund et al., 2016; Miller, 2016), it
is perhaps true to state that the systematic study of estimator
properties for functional neuroimaging data models is not the
most matured research field. From an analytical perspective, this
is likely due to the relative complexity of functional neuroimaging
data models as compared to the fundamental scenarios that
are studied in mathematical statistics (e.g., Shao, 2003). In the
current study, we used simulations to study both parameter and
model recovery, and while obtaining overall satisfiable results, we
found that the estimation of covariance component parameters
can be deficient for a subset of data realizations. As pointed
out in Section 3, this finding is not an unfamiliar result in the
statistical literature (e.g., Harville, 1977; Groeneveld and Kovac,
1990; Boichard et al., 1992; Groeneveld, 1994). We see two
potential avenues for improving on this issue in future research.
Firstly, there exist a variety of covariance component estimation
algorithm variants in the literature (e.g., Gilmour et al., 1995;
Witkovskỳ, 1996; Thompson and Mäntysaari, 1999; Foulley and
van Dyk, 2000; Misztal, 2008) and research could be devoted
to applying insights from this literature in the neuroimaging
context. Secondly, as the deficient estimation primarily concerns

the covariance component parameter that scales the AR(1) +
WN model covariance basis matrix, it remains to be seen,
whether the inclusion of a variety of physiological regressors in
the deterministic aspect of the GLM will eventually supersede
the need for covariance component parameter estimation in the
analysis of first-level fMRI data altogether (e.g., Glover et al.,
2000; Lund et al., 2006). Finally, we presented the application
of VB, VML, ReML, and ML in the context of fMRI time-
series analysis. As pointed out in Section 1, the very same
statistical estimation techniques are of eminent importance for
a wide range of other functional neuroimaging data models.
Moreover, together with the GLM, they also form a fundamental
building block of model-based behavioral data analyses as
recently proposed in the context of “computational psychiatry”
(e.g., Montague et al., 2012; Schwartenbeck and Friston, 2016;
Stephan et al., 2016a,b,c) and recent developments in the analysis
of “big data” (e.g., Allenby et al., 2014; Ghahramani, 2015).

On a more general level, the relative merits of the parameter
estimation techniques discussed herein form an important field
for future research. Ideally, the statistical properties of estimators
resulting from variational approaches were understood for the
model of interest, and known properties of their specialized
cases, such as the bias-free covariance component parameter
estimation under ReML with respect to ML, would be deducible
from these. However, as pointed out by Blei et al. (2016),
the statistical properties of variational approaches are not yet
well understood. Nevertheless, there exists a few results on
the statistical properties of variational approaches, typically in
terms of the variational expectations upon convergence and for
fairly specific model classes. Of relevance for the model class
considered herein is the recent work by You et al. (2014), who
could show the consistency of the variational expectation in the
frequentist sense, albeit for spherical covariance matrices and a
gamma distribution for the covariance component parameter.
For a broader model class with posterior support in real space
(including the current model class of interest), Westling (2017)
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have worked toward establishing the consistency and asymptotic
normality of variational expectation estimates. Finally, a number
of authors have addressed consistency and asymptotic properties
in selected model classes, such as Poisson-mixed effect models,
stochastic block models, and Gaussian mixture models (Wang
and Titterington, 2006; Hall et al., 2011; Celisse et al., 2012; Bickel
et al., 2013).

In summary, understanding the qualitative statistical
properties of variational Bayesian estimators and their relative
merits with respect to more specialized approaches forms a
burgeoning field of research. New impetus in this direction may
also arise from recent attempts to understand the properties
of deep learning algorithms from a probabilistic variational
perspective (Gal and Ghahramani, 2017).

5. CONCLUSION

To conclude, we believe that the mathematization and validation
of model estimation techniques employed in the neuroimaging

field is an important endeavor as the field matures. With the
current work, we attempted to provide a small step in this
direction. We further hope to be able to contribute to a better
understanding of the statistical properties of the parameter
estimation techniques for neuroimaging-relevant model classes
in our future work.
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