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The vast majority of what is considered fact about adult neurogenesis comes from

research on laboratory mice and rats: where it happens, how it works, what it does.

However, this relative exclusive focus on two rodent species has resulted in a bias on

how we think about adult neurogenesis. While it might not prevent us from making

conclusions about the evolutionary significance of the process or even prevent us from

generalizing to diverse mammals, it certainly does not help us achieve these outcomes.

Here, we argue that there is every reason to expect striking species differences in

adult neurogenesis: where it happens, how it works, what it does. Species-specific

adaptations in brain and behavior are paramount to survival and reproduction in diverse

ecological niches and it is naive to think adult neurogenesis escaped these evolutionary

pressures. A neuroethological approach to the study of adult neurogenesis is essential for

a comprehensive understanding of the phenomenon. Furthermore, most of us are guilty

of making strong assertions about our data in order to have impact yet this ultimately

creates bias in how work is performed, interpreted, and applied. By taking a step back

and actually placing our results in a much larger, non-biomedical context, we can help

to reduce dogmatic thinking and create a framework for discovery.

Keywords: comparative, neuroethology, neurogenesis, reproduction, social behavior

With his prescient metaphor of the laboratory rat (Ratticus norvegicus) as the Pied Piper leading
experimentalists away from the path to discovery, Frank Beach shed light on the increasing species
bias in fundamental biomedical research (Beach, 1950). Now, nearly 70 years later, history appears
to rhyme as scientists are led not by one but two species, with the second being the standard
laboratory mouse, Mus musculus. While it might not be the case for all disciplines (see Adkins-
Regan, 1990; Shettleworth, 2009 for further discussion of Beach, 1950), we believe the study of
adult neurogenesis is an example of a field now saturated with research using these two traditional
mammalian laboratory models. This species bias appears to result from active choice as scientists
have failed to embrace studying adult neurogenesis in non-traditional models (i.e., not mice or rats)
twice since the conception of the field. First, Altman’s original publication on adult neurogenesis in
the rat (Altman, 1962) was trailed by similar findings in the guinea pig (Cavia porcellus; Altman and
Das, 1967). The second instance occurred two decades later when the study of adult neurogenesis
was reinvigorated with the relatively simultaneous findings of Bayer et al. in rats (Bayer et al., 1982)
and Goldman and Nottebohm in canaries (Serinus carinia; Goldman and Nottebohm, 1983). As
publication history shows, scientists largely, albeit not exclusively, chose the route of the rat/mouse:
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aWeb of Science search performed August 8, 2017 returns 14,344
hits using the search term “adult neurogenesis” for the period
1990–2017 (+ “mouse”= 6,251;+ “rat”= 6,563;+ “bird”= 175;
+ “canary” = 110; + “guinea pig” = 83). However, if we are to
truly understand adult neurogenesis, including the puzzle of how
and why it varies across species, we need to consider approaches
that might require “out of the box” thinking, so to speak.

Here, we acknowledge the significance of mouse and rat
research for establishing the current depth of knowledge about
adult neurogenesis, but we argue for a contrasting approach: it
is by studying a wide variety of species across vertebrate groups
that we will gain a broader understanding of neurogenesis,
including species differences in neurogenic brain regions,
and the proximate and ultimate mechanisms underlying this
diversity. We believe the rat/mouse-bias has led many scientists
off the path to pioneering discoveries, and toward parametric
manipulations and/or redundant findings with comparatively
less advancement of knowledge. For example, it is widely
agreed that the dentate gyrus of the hippocampus (DG) and
the subventricular zone of the forebrain (SVZ) are canonical
mammalian neurogenic regions (Messier et al., 1958; Altman,
1963; Altman and Das, 1965a,b; Kaplan and Hinds, 1977;
Kaplan and Bell, 1984; rev. in Braun and Jessberger, 2013).
These two regions contain adult neural stem cells (NSC) and are
spontaneously and robustly neurogenic, with adult generated
neurons integrating into functional neural circuits. By contrast,
the neurogenic ability of other brain regions is a topic of active
scientific debate. These “non-neurogenic” regions are thought
to either not contain adult NSC or, if they do, significant
perturbations are often required to trigger neurogenesis and/or
permit cell survival (e.g., stroke can trigger neurogenesis in
the adult mouse striatum by reprogramming astrocytes to
produce neuroblasts; Magnusson et al., 2014). To be sure, we
have gained tremendous depth of insight into mechanisms
influencing hippocampal and subventricular neurogenesis but
there is much to be gained by actively integrating a “breadth”
approach. It is our perspective that, in lieu of using invasive
perturbations in mice and rats to explore neurogenesis outside
of traditional niches, we should capitalize on naturally-
occurring phenomena in other animals to inform this
debate.

The need for the study of diverse species is exemplified
by the debate over adult neurogenesis in the cerebellum. In
teleosts, cerebellar neurogenesis persisting into adulthood is well-
accepted (rev. in Zupanc, 2006). Cells are born and migrate
from and within the cerebellum, with roughly half possessing
a neuronal phenotype and integrating into existing networks of
cerebellar neurons. By contrast, the cerebellum has long been
considered the most static region within the adult mammalian
brain (Altman, 1969), with researchers rejecting the prospect
of constitutive cerebellar neurogenesis despite some evidence of
cell proliferation (albeit glial phenotypes) in the cerebellum of
mice and rats (Grimaldi and Rossi, 2006; Su et al., 2014) and
manipulation-induced generation of neurons in the cerebellum
of cats and mice (Tighilet et al., 2007; Kumar et al., 2014). Yet,
evidence supports the presence of constitutively active neuronal
and glial progenitors in the cerebellar cortex of peripubertal

and adult rabbits (Orictolagus cuniculus), perhaps owing to the
longevity of rabbits as compared to other mammalian species
studied (Ponti et al., 2006, 2008). If we were to consider results
from rats and mice as conclusive, we might underestimate the
existence of cerebellar neurogenesis in mammals. Instead, to
address the continued skepticism surrounding cerebellar adult
neurogenesis, we can test the longevity hypothesis by studying
the phenomena in other long-lived mammalian species [e.g.,
Eastern gray squirrel (24 years; Sciurus carolinensis), nakedmole-
rat (28 years;Heterocephalus glaber; Gorbunova et al., 2008), little
brown bat (34 years;Myotis lucifugus; Austad, 2009)].

Thus, in a turn from the current approach that focuses on
the use of essentially only two laboratory models to represent all
mammals, we need to move toward a paradigm that celebrates
and capitalizes on the remarkable variability between species.
Evolution has sculpted animals to be well-suited to their physical
and social environments and each species faces unique pressures
and challenges depending on their ecological niche. Yet, the
current approach in much biomedical research is to over-
generalize findings across species in an effort to translate to
humans. Rather, we need to pursue and promote the idea
of evolutionary experimentation, which focuses on the natural
mechanisms that evolution has provided to solve biological
problems (Buffenstein et al., 2014). Indeed, by returning to
the roots of the field we see that evolutionary experimentation
was instrumental in generating widespread acceptance of adult
neurogenesis (rev. in Balthazart and Ball, 2016). Nottebohm’s
original finding of adult neurogenesis in the female canary
(Goldman andNottebohm, 1983) came at a timewhen the dogma
was that no new neurons were born in adulthood, certainly
not in mammals. However, by capitalizing on the remarkable
production and perception of song in canaries, which varies
by season, Nottebohm and colleagues demonstrated naturally-
occurring adult neurogenesis that was linked to species-specific
reproductive behavior. Importantly, these adult generated
neurons are found in regions of the song circuit, not exclusively
regions homologous with the dentate gyrus and subventricular
zone. Given the significance of these comparative data to the
field’s origins, we should collectively reflect on the various factors
that have contributed to the rat/mouse species bias present
today.

Not surprisingly, given their direct relevance to reproductive
fitness, species-specific adaptations in sociosexual behavior
provide a rich opportunity to explore atypical neurogenic
patterns. Table 1 outlines a diverse list of other species in
which adult neurogenesis linked to sociosexual adaptations
has been identified, or at least suggested, in “non-neurogenic
niches.” While the available data might not always conclusively
demonstrate constitutive neurogenesis in “non-neurogenic”
regions, they should open the door for more research rather
than simply be dismissed as impossible or irrelevant. Changes
in the social and reproductive environment can have profound
influences on an organism’s survival and fitness and a small
but growing literature reveals how these transitions appear to
influence neurogenesis in “non-neurogenic” brain regions. As
in the songbird brain, season influences adult neurogenesis
in sheep (Ovies aries). Specifically, increased cell proliferation
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TABLE 1 | Evidence for adult neurogenesis in non-neurogenic niches in non-traditional animals likely attributed to sociosexual adaptations.

Species Region Notes

African cichlid fish (Astatotilapia

burtoni)

Central posterior thalamic nucleus; nucleus of the

lateral recess; preoptic area; periventricular nucleus

of the posterior tuberculum; ventral nucleus of the

ventral telencephalon

Increased cell proliferation in socially-dominant males

(Muraska et al., 2012)

Golden hamster Posterior medial amygdala Testosterone increases cell proliferation, but not cell

survival (Antzoulatos et al., 2008)

Green treefrog (Hyla cinerea) Pre-optic area (male only), infundibular

hypothalamus

Acoustic stimuli (mating chorus) increased cell

proliferation (Almli and Wilczynski, 2012)

Iberian wall lizard (Podarcis

hispanica)

Main and accessory olfactory bulbs, lateral cortex,

nucleus sphericus

Males demonstrated increased cell proliferation and

enhanced responsiveness to social chemical stimuli

(Sampedro et al., 2008)

Meadow vole Posterior cortical and posterior medial nuclei of

amygdala

Estradiol treatment increases cell proliferation as

compared to prairie voles (Fowler et al., 2005)

Prairie vole Amygdala, hypothalamus Male-exposure increases cell proliferation as

compared to isolation (Fowler et al., 2002)

Red-sided garter snake

(Thanophis sirtalis parietalis)

Septal nucleus, nucleus sphericus, pre-optic area,

hypothalamus

Increased cell proliferation during the fall (Maine

et al., 2014)

Ring dove Pre-optic area GnRH neuron regeneration in response to electrolytic

damage (Cheng et al., 2011)

Soay sheep Thalamus, hypothalamus (including median

eminence, tanycyte projection zone)

Short photoperiod increases cell proliferation

(Migaud et al., 2011; Hazlerigg et al., 2013)

Zebra finch (Taeniopygia guttata) High vocal center, neostriatum caudale, Area X Large group pairing increases new cell survival

(Lipkind et al., 2002)

Zebrafish (Danio rerio) Ventral telencephalon, diencephalic periventricular

pre-optic area, dorsal hypothalamic nuclei

Estradiol treatments decreases cell proliferation

(Makantasi and Dermon, 2014)

This is not an exhaustive list; rather, it demonstrates the diversity of species and regions in which evidence for adult-generated neurons exists.

occurs when animals are housed in short photoperiod (Migaud
et al., 2011) and a higher number of doublecortin-expressing
cells, thought to be immature neurons, are also seen in
short day conditions (Batailler et al., 2016). These newly
born cells are located in hypothalamic nuclei (e.g., arcuate
nucleus) that are critically involved in neuroendocrine control
of reproduction and sheep are seasonal breeders (Migaud et al.,
2011). Similarly, an increased number of newly born cells is
seen in the hypothalamus of Golden hamsters (Mesocricetus
auratus), also seasonal breeders, housed in short photoperiods
and at least some of these cells will survive and express neuronal
markers (Huang et al., 1998). The effects of photoperiod on
adult neurogenesis in Golden hamsters are also seen in the
cingulate cortex and retrosplenial cortex in addition to the
canonical neurogenic niche, the DG (Huang et al., 1998). Social
environment manipulations alter adult neurogenesis in prairie
voles (Microtus ochrogaster), which are highly affiliative and
form strong, stable opposite-sex pair bonds. Being paired with
a male increases adult-born neurons in the amygdala and
hypothalamus of females compared to single-housed females;
same-sex paired females are intermediate on these measures,
suggesting both social and reproductive cues are influencing
neurogenic processes (Fowler et al., 2002). Indeed, social isolation
reduces cell survival, proliferation, and neuronal differentiation
in the amygdala of female prairie voles, proliferation in
the medial pre-optic area and survival in the ventromedial
hypothalamus (Lieberwirth et al., 2012). Female prairie voles

seem more sensitive than males to these social and reproductive
manipulations as exposure to opposite-sex soiled bedding
increases cell proliferation in the amygdala of females but not
males; effects in the hypothalamus were not reported (Liu
et al., 2014). The effects of sociosexual cues on adult-generated
neurons in the amygdala and hypothalamus of female prairie
voles are likely due to their species-specific affiliative adaptations.
They exhibit increased cell proliferation and survival in the
hypothalamus and amygdala compared to female meadow voles
(Microtus pennsylvanicus), which do not form pair-bonds; no
species differences were detected in the DG (Pan et al., 2016).
Furthermore, adult proliferating and surviving cells in the
amygdala and hypothalamus are correlated with social affiliation
and recognition behaviors while no significant relationships
between DG neurogenesis and these behaviors were detected
(Pan et al., 2016).

Puberty is arguably the most profound transition in both
reproductive and social functioning that an organism will
experience. In rats, pubertal animals show sex-specific patterns
of cell birth that correspond to adult sex differences in
brain region morphology: males have greater cell addition
in the sexually dimorphic nucleus of the pre-optic area
and the medial amygdala, whereas females have more newly
born cells in the anteroventral periventricular nucleus (AVPV;
Ahmed et al., 2008). Indeed, these newly generated cells
might have tremendous significance for the onset of adult-
typical neuroendocrine function and reproductive behaviors.
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For example, increased cell proliferation in the AVPV of
pubertal females might be associated with the female-specific
spike in luteinizing hormone that begins at puberty due to
the kisspeptin neuron population in the AVPV (Mohr et al.,
2016). Perhaps not surprising given that puberty is a virtually
ubiquitous developmental process in mammals, pubertally-
born cells are also seen in the medial pre-optic area, arcuate
nucleus, and medial amygdala (i.e., hypothalamic and amygdalar
regions) of male Golden hamsters (Mohr and Sisk, 2013).
Importantly, a subset of these cells go on to express mature
neuronal markers and activate during an interaction with
a potential female mate (Mohr and Sisk, 2013). Adult ring
doves (Streptopelia risoria) of both sexes can produce new
GnRH neurons in the pre-optic area of the hypothalamus in
response to electrolytic damage (Cheng et al., 2011). Given
that these neurons are essential for successful reproduction
(e.g., Mantei et al., 2008), the ability to regenerate the neural
population is extremely adaptive. Collectively, pubertal and/or
adult sculpting of hypothalamic neural circuits via neurogenesis
may prove to be critically important for successful social
and reproductive function and thus warrants much future
investigation.

Our own work utilizes naked mole-rats to investigate how
reproductive and social transitions might influence adult
neurogenesis in both canonical and non-canonical neurogenic
regions. Naked mole-rats are eusocial and live in a rigid social
hierarchy dominated by a single reproductive female who
breeds with one to three males while all others in the colony
are sexually suppressed and socially subordinate (Jarvis, 1981).
Subordinates are further differentiated into subcastes: soldiers,
responsible for colony defense, and workers, responsible for
colony maintenance and pup care. Through removal from
the suppressive environmental cues imposed by breeders,
subordinates undergo a one-way transition to sexual maturation
and can compete for dominance, providing the opportunity
to study how the social environment influences adult neural
plasticity and, in turn, how adult neurogenesis contributes
to behavioral differences. To date, our work suggests that the
DG, piriform cortex, and basolateral amygdala (BLA) have
increased neurogenesis, based on doublecortin staining, in
subordinate animals relative to dominants (Peragine et al., 2014).
Interestingly, female animals removed from their colony and
paired with a female show evidence of increased neurogenesis
in the basolateral amygdala (BLA) relative to animals paired
with males (Peragine et al., 2016). This might reflect the role
of the BLA in mediating stress and threat in other mammals
(Levinson et al., 1980; Fanselow and LeDoux, 1999; Jacobs et al.,
2006) coupled with the unique female-dominant aspect of naked
mole-rat social organization. Next, we aim to capitalize on the
socially-mediated pubertal transition of naked mole-rats to gain
more insight into the significance of hypothalamic neurogenesis
seen in other species. Our preliminary explorations indicate a
population of BrdU-labeled cells in the arcuate nucleus of the
hypothalamus (Figure 1). We hypothesize that this population
of proliferating cells is related to the role of the arcuate nucleus
in regulating reproduction through downstream effects on
gonadotropin releasing and inhibitory hormones, similar to

FIGURE 1 | Photomicrograph of BrdU-immunoreactive (ir) cells in the

hypothalamus of a subordinate female naked mole-rat collected 2 h after a

single BrdU injection. Black arrowhead points to small group of BrdU-ir cells

within the boundaries of the arcuate nucleus (black arrows). V, 3rd ventricle.

Scale bar = 50 µm.

the pubertally born putative kisspeptin AVPV neurons in rats
discussed above (Mohr et al., 2016). Indeed, we have recently
demonstrated that naked mole-rats have a unique population
of neurons expressing the gonadotropin-inhibitory hormone
ligand, RFRP-3, in the arcuate nucleus and that subordinates
have significantly greater RFRP immunofluorescence in
this region (Peragine et al., 2017). Determining whether
the adult-generated cells in the arcuate nucleus mature
and influence neuroendocrine signaling is a critical
next step.

In sum, we by no means intend to minimize the importance
of the SVZ or DG work in mice and rats. There have been
tremendous advances in the mechanistic understanding of adult
neurogenesis by focusing on these regions in these species.
Nor are we the first to consider how the concerns raised by
Beach (1950) apply to a particular research area (e.g., Adkins-
Regan, 1990; Shettleworth, 2009). Indeed, similar to the views
presented by Adkins-Regan (1990) and Shettleworth (2009), we
acknowledge the fascinating and not insubstantial comparative
neurogenesis work done to date. However, we argue that a strong
species bias exists in the neurogenesis literature and that this
bias serves to promote dogmatic thinking, ultimately impeding
on creativity and advancement of knowledge. If one thinks of a
research question as a puzzle, we can appreciate that we need
to put together many pieces to reveal the complete image. In
the case of adult neurogenesis, one can think of that puzzle very
specifically (e.g., “adult neurogenesis as a process in mice and/or
rats”) or as a broad, general phenomenon. The types of pieces
needed to solve the puzzle will differ, to be sure, but the problem
is thinking you are working on one puzzle when you are actually
working on another. If it is our goal to solve the puzzle of “adult
neurogenesis,” including both proximate and ultimate questions,
we must pursue this goal with rigor: accepting or rejecting a
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hypothesis (i.e., neurogenesis in a “non-neurogenic” niche) based
on substantial comparative evidence. History does not need to
continue to rhyme as it has in the time since Beach’s manifesto
(Beach, 1950) to experimental psychologists. We must go back to
the roots of the field and assume the role of Altman who, despite
the prolific Ramón yCajal deeming the adult brain static, pursued
the idea of adult neurogenesis in the face of emphatic assertions
backed by experimental evidence (Ramón y Cajal, 1928; Altman,
1962). By pursuing evolutionary experimentation with an open
yet critical mind, the future will not be that of the lab rat leading
the scientist, but the scientist leading the vast diversity of species
along the path to discovery.
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