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Independent component analysis (ICA) has been widely used in functional magnetic

resonance imaging (fMRI) data analysis to evaluate functional connectivity of the brain;

however, there are still some limitations on ICA simultaneously handling neuroimaging

datasets with diverse acquisition parameters, e.g., different repetition time, different

scanner, etc. Therefore, it is difficult for the traditional ICA framework to effectively handle

ever-increasingly big neuroimaging datasets. In this research, a novel feature-map based

ICA framework (FMICA) was proposed to address the aforementioned deficiencies,

which aimed at exploring brain functional networks (BFNs) at different scales, e.g., the

first level (individual subject level), second level (intragroup level of subjects within a

certain dataset) and third level (intergroup level of subjects across different datasets),

based only on the feature maps extracted from the fMRI datasets. The FMICA was

presented as a hierarchical framework, which effectively made ICA and constrained

ICA as a whole to identify the BFNs from the feature maps. The simulated and real

experimental results demonstrated that FMICA had the excellent ability to identify the

intergroup BFNs and to characterize subject-specific and group-specific difference of

BFNs from the independent component feature maps, which sharply reduced the size of

fMRI datasets. Compared with traditional ICAs, FMICA as a more generalized framework

could efficiently and simultaneously identify the variant BFNs at the subject-specific,

intragroup, intragroup-specific and intergroup levels, implying that FMICA was able to

handle big neuroimaging datasets in neuroscience research.

Keywords: fMRI, feature maps, big neuroimaging data, ICA, subject-specific analysis, intragroup analysis,

intergroup analysis

INTRODUCTION

Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) has been
used as an effective neuroimaging tool to study functional connectivity, which can reveal the
neural correlates of cognitive processes, among multiple cortical brain regions (Biswal et al., 1995,
1997; Kawashima et al., 2000; Greicius et al., 2003; Yang et al., 2014; Shi et al., 2015b). A recent
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research interest in the literature is to study functional
connectivity at multiple levels using fMRI technique (Yeo et al.,
2011), and for this purpose a variety of well-known methods
have been utilized, e.g., general linear model (GLM; Friston
et al., 1994; Bagarinao et al., 2003), clustering methods (Golay
et al., 1998; Fadili et al., 2000; Cordes et al., 2002; Zhang et al.,
2011; Ren et al., 2014; Tang et al., 2015), principal/independent
component analysis (PCA/ICA; McKeown et al., 1998; Biswal
and Ulmer, 1999; Baumgartner et al., 2000; Kiviniemi et al.,
2000; Beckmann and Smith, 2004), sparse dictionary learning
(Georgiev et al., 2007; Lv et al., 2015a,b; Wang et al., 2016a), etc.
As a representative of the model-based methods, GLM requires a
prior knowledge of design matrix. Therefore, GLM is not able to
detect intrinsic brain functional networks (BFNs) at the resting
state where no design matrix is available. On the contrary, since
no prior knowledge on the spatial or temporal pattern prior of
the BFNs is required, the data-driven methods are more widely
used in functional connectivity study. Examples of such data-
driven methods include spatial ICA (McKeown et al., 1998) and
temporal ICA (Biswal and Ulmer, 1999), assuming the spatial
and temporal independence, respectively, while probabilistic
ICA (PICA) carries out a probabilistic modeling, to achieve
an asymptotically unique decomposition of the fMRI data
(Beckmann and Smith, 2004). Other ICA methods for fMRI data
analysis include an approach making use of spatial regularity
of sources (Valente et al., 2009), and the models combining the
sparsity and the mutual independence of components (Calhoun
et al., 2013; Wang et al., 2013, 2015), to improve the accuracy of
the estimated brain sources.

In order to investigate the commonality of the functional
connectivity inferred by ICAs across a group of subjects, roughly
five group analysis methods have been developed by many
researchers (Calhoun and Adali, 2012). The first group analysis
method performs ICA on the average of the fMRI data across all
subjects, with the underlying assumption that all subjects have
common time courses (TCs) and spatial maps (SMs; Schmithorst
andHolland, 2004). The secondmethod, temporal concatenation
group ICA model (TCGICA), performs ICA on the temporal
concatenation of the fMRI data for all subjects, which allows for
unique TCs for each subject but assumes common group SMs
(Calhoun et al., 2001). The third one was spatial concatenation
group ICA model (SCGICA), which allows for unique SMs
but assumes common TCs (Svensén et al., 2002). However,
for most resting-state fMRI functional connectivity studies,
SCGICA does not perform so well as TCGICA (Schmithorst
and Holland, 2004), possibly because the assumption of the
unique time course across subjects, is more appropriate than
the common-SM assumption. The fourth group ICA method
called tensor-ICA concatenates the multi-subject fMRI data
along a separate third dimension, and estimates a single spatial,
temporal, and subject-specific mode for each component to
attempt to capture a multidimensional structure of the data
(Beckmann and Smith, 2005), with the assumption of both
temporal and spatial consistency across the subjects. The fifth
group analysis approach, makes a post-hoc analysis of the single-
subject ICAs, to combine the components into groups by spatial
correlation (Schöpf et al., 2010; Wang et al., 2012), self-organized

clustering (Esposito et al., 2005), or retrospective matching of
the components (Langers, 2010). Additionally, by incorporating
the intragroup sources as a priori of ICA model, called ICA-R
(ICA with references; Lu and Rajapakse, 2006; Shi et al., 2015a),
it is expected to obtain the more accurate subject-specific brain
sources. For example, a novel group information guided ICA
model (GIG-ICA) with the spatial reference of the intragroup
sources generated by TCGICA (Calhoun et al., 2001) was able
to extract more accurate subject-specific brain sources than the
traditional ICA (Du and Fan, 2013).

Though the ICA or ICA-based models have been widely
used to analyze the fMRI data, the aforementioned methods
have the many kinds of deficiencies. For example, the multi-
step PCA operations in TCGICA, SCGICA and GIG-ICA for
data reduction, possibly eliminate the subtle signals (Cordes and
Nandy, 2004), which likely is not quite proper for handling
the big neuroimaging data; since tensor ICA assumes common
TCs among subjects, it is inappropriate for when they are
different, such as in a resting-state study or when events are
randomized between subjects; the single-subject ICAs also have
the disadvantage that since the data are noisy, the components
might not be necessarily unmixed in the same way for all subjects.
Moreover, to our knowledge, these methods are just applied
in BFNs identification at individual or/and intragroup levels,
and there is a need to further investigate BFNs identification
at intragroup-specific and intergroup levels, especially across
the multiple fMRI datasets with different acquisition parameters
such as variant time of repetition (TR) and different kinds of
scanners. In this study, a generalized feature-map based ICA
model (FMICA) is proposed to address the aforementioned
deficiencies, which can be used to analyze the big fMRI datasets
at individual, intragroup and intergroup levels.

The remainder of this paper is organized as follows. Theory
and methods of FMICA are firstly presented in the next section,
and followed by the description of the experimental designs and a
subsequent section on BFN identification ability validation using
both the simulation data and real fMRI datasets of task and rest
at the subject-specific, intragroup and intergroup levels. Results
and discussions are then presented, followed by final conclusions
related to the advantages and limitations of FMICA.

THEORY AND METHODS

In this section, the related theory of ICA and ICA-R is presented,
followed by the detailed procedures of FMICA and some key
issues in FMICA implementation.

BFNs Extraction and ICA/ICA-R
The BFNs extraction has been formulated as a source separation
problem, based on the functional integration property of the
brain (McKeown et al., 1998; Du and Fan, 2013; Shi et al., 2015a).
This source separation problem can usually be divided into blind
source separation (BSS) and semi-blind source separation (SBSS),
depending on whether the prior is given or not. With the respect
to ICA model, as a representative of BSS, it is assumed that the
observed fMRI mixtures (denoted as X) are linearly mixed by a
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set of non-Gaussian sources, namely BFNs (denoted as S), which
can be formulated as

X = AS (1)

The goal of ICA is to estimate an unmixing matrix W, such that
the estimated sources Y computed by the following equation are
good approximation of the true sources S:

Y = WX (2)

To solve Equation (1), many ICA algorithms have been proposed,
e.g., the commonly used Infomax (Bell and Sejnowski, 1995) and
FastICA (Hyvärinen and Oja, 1997).

ICA-R model of SBSS incorporates the prior spatial reference
(denoted as r), and can be modeled in a constrained ICA
framework, to the following constrained optimization problem

maximize J(y), s.t. g(y) ≤ 0 and h(y) = E(y2)− 1 = 0, (3)

where J(y) is the contrast function of a standard ICA algorithm,
and g(y) = ε(y, r)− ξ , with ε(y, r) denotes the closeness between
y (the estimated BFN) and the reference signal r, and ξ signifies a
threshold parameter used to restrain the distance between y and
r. To solve Equation (3), the Lagrange multiplier method can be
utilized to search for the solution using Newton-like learning (Lu
and Rajapakse, 2006), fixed-point learning (Lin et al., 2007), or
multi-object optimization (Du and Fan, 2013).

FMICA
Supposing that there are m scanned fMRI datasets, i.e., Datasetk,
1 ≤ k ≤ m, the fMRI data of subject i in Datasetk is
denoted as Subi

k
, where 1 ≤ i ≤ nk, 1 ≤ k ≤ m, and

nk signifying the subject number in Datasetk. As described in
Figure 1, the FMICA model mainly consists of three levels of
ICA decomposition and two re-estimation of group-specific and
subject-specific feature maps using ICA-R: (1) the first (or single-
subject) level ICA decomposition on Subi

k
to obtain the feature

maps, i.e., independent components ICSi
k
, where 1 ≤ i ≤ nk

and 1 ≤ k ≤ m; (2) the second (or intragroup) level ICA

decomposition on the aggregated feature maps, i.e., ICS
Agg

k
for

Datasetk, to obtain the feature maps at intragroup level, i.e.,
GICSk for Datasetk, 1 ≤ k ≤ m; (3) the third (or intergroup)
level ICA decomposition on the aggregated feature maps across

the datasets (Datasetk, 1 ≤ k ≤ m), i.e., GICS
Agg
1:m, to extract

the intergroup feature maps across the different datasets, i.e.,

ĜICS; (4) the ICA-R algorithm first runs on the GICSk regrading
Datasetk (1 ≤ k ≤ m) to extract the correspondingly intragroup-

specific feature maps, i.e., G̃ICSk, then on the ICS
i
k
regarding Subi

k
(1 ≤ i ≤ nk, 1 ≤ k ≤ m) to obtain the correspondingly

subject-specific featured maps (denoted as ĨCS
i
k).

Specifically, in order to make the last procedure in FMICA
more apparent, the corresponding details are described in the
following. On the one hand, for extracting the intragroup-

specific feature maps, i.e., G̃ICSk, 1 ≤ k ≤ m, the ICA-R
algorithm (Du and Fan, 2013) is implemented on each GICSk,

where the correspondingly intergroup feature maps ĜICS are
used as the spatial references. On the other hand, in order to

extract the subject-specific feature maps (ĨCS
i
k) corresponding

to the subject data Subi
k
, 1 ≤ i ≤ nk, and 1 ≤ k ≤ m, the

similar ICA-R procedure with spatial reference is implemented
on each ICSi

k
. It is noteworthy that the spatial references may

have two choices: the intergroup feature maps ĜICS or the

corresponding intragroup-specifc feature maps G̃ICSk. Repeating
the above procedure for Datasetk (1 ≤ k ≤ m), all the

corresponding intragroup-specific G̃ICSk and subject-specific

feature maps ĨCS
i
k (1 ≤ i ≤ nk) are retrieved. However, when

the number of the involved datasets is <2, i.e., m = 1, the
third level ICA decomposition procedure is not implemented,
and both the intergroup and intragroup-specific feature maps
are not generated. Facing this situation, the subject-specific

feature maps (ĨCS
i
1) are also obtained by ICA-R, where the

intragoup feature maps (GICS1) determined by the second level
ICA decomposition procedure are used as the required spatial
references.

Further, the corresponding statistical parametrical maps

(SPMs) for ĨCS
i
k, G̃ICSk, ĜICS, and GICSk (1 ≤ i ≤ nk and

1 ≤ k ≤ m) are obtained by the z-score transformation, where
the BFNs are generated by threshing the corresponding SPMs
with cluster size controlling.

Finally, in FMICA, it is worthy of noting that the intragroup
or intergroup BFNs are identified by the second or third level
ICA decomposition procedure, while the intragroup-specific or
subject-specific BFNs are both identified by ICA-R procedure
using the ones at the intragroup or intergroup level as references.
It is expected that the BFNs at the intergroup, intragroup-specific
and subject-specific levels, have some degree of similarity to each
other in spatial distribution, but orderly capture the commonness
across different groups, the specific activation parts of the spatial
distribution within a certain group and within a single subject
data. In a word, for a given intergroup BFN, the corresponding
intragroup-specific or subject-specific one belongs to the same
kind of BFN, but captures the group-specific or subject-specific
difference in spatial distribution of BFN.

Based on the above description, FMICA is a quite generalized
framework using feature maps, which is effective to capture the

common BFNs (i.e., ĜICS, GICSk), subject-specific ones (i.e.,

ĨCS
i
k) and intragroup-specific ones (i.e., G̃ICSk). This implies

that FMICA can be used to not only explore the subject-specific
differences within a group, but also to reveal the intragroup-
specific differences across the multiple datasets.

Some Key Points in FMICA Implementation
With respect to the FMICA implementation, the number
of independent components (IC) in ICA decomposition at
different levels should be first addressed. For the first level ICA
decomposition procedure (depicted in Figure 1), the Laplace
approximation (Minka, 2000) previously used in probabilistic
ICA for fMRI data analysis (Beckmann and Smith, 2004) is
used to estimate the components number for each single-subject
fMRI data; for the second level ICA decomposition, the mean
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FIGURE 1 | Framework of FMICA.

order corresponding to all subjects within the same dataset is
used, while the average order is usually used as the number
of intragroup level components in TCGICA (Calhoun et al.,
2001; Li et al., 2007) implemented in the GIFT software (http://
mialab.mrn.org/software/gift/index.html); for the third level ICA
decomposition, the average number of components in GICSk,

1 ≤ k ≤ m is used due to the situation of the different
session scans of the same subjects under the same condition
(for example, Experiment 2 of Section Experimental Designs);
otherwise, the stability measure retrieved by ICASSO (Himberg
et al., 2004) is used to determine the optimal components
number, where ICASSO runs from the minimum number (i.e.,
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min{x
∣∣x = #(GICSk), 1 ≤ k ≤ m}) to the maximum one (i.e.,

max{x
∣∣x = #(GICSk), 1 ≤ k ≤ m}) to obtain the stability values

under different order number. Specifically, #() is an operation
of obtaining the components number of the intragroup feature
maps GICSk, 1 ≤ k ≤ m (for example, Experiment 3 of Section
Experimental Designs). Moreover, in this research, FMICA takes
advantage of the FastICA (Hyvärinen and Oja, 1997) and GIG-
ICA (Du and Fan, 2013), to perform the ICA decomposition
and ICA-R decomposition, respectively. Additionally, since the
performance of ICA-R depends on the accuracy of the spatial
references (Du and Fan, 2013;Wang et al., 2014; Shi et al., 2015a),
slightly thresholded feature maps which are more similar to the
real activated BFNs are used as spatial references, where the
corresponding z threshold value is set to 1.0 empirically. Finally,
the z-threshold value and the cluster size threshold are set to 2.0
and 10 voxels, respectively, to obtain the ultimate BFNs.

EXPERIMENTAL TESTS

In this section, the efficacy of the proposed FMICA model, was
validated on the simulation data, task-related fMRI data and
resting-state fMRI data. The details of the designed experiments
were presented as follows.

Experimental Datasets
Simulation Dataset
The SimTB toolbox (http://mialab.mrn.org/software; Allen et al.,
2012; Erhardt et al., 2012) was used to generate simulation dataset
including 20 subjects. Each subject data was with V= 148× 148
voxels, 12 spatial sources and 120 time points at TR= 2 s (s). The
baseline intensity was set to 800, and the baseline map was shown
in Figure S1A. Each source, depicted in Figure S1B, represented a
spatial pattern that underwent certain activation over time. Two
sources (10 and 12) shared task-related modulation in addition
to having unique fluctuations. For source 10, the strength of
task-modulation (expressed as the ratio between task event
amplitude and unique event amplitude) was set to 4, while task-
relatedness was smaller for source 12, set to 2. Task-modulation
was introduced with a block design (24 s on, 24 s off, five blocks),
convolved with a canonical hemodynamic response function to
simulate the slow dynamics of the vascular response (Friston
et al., 1995). Activation for the other 10 sources was described
solely unique hemodynamic fluctuations with no task-related
variation. All sources had unique events that occurred with a
probability of 0.2 at each TR. For task-modulated sources (10
and 12), unique events were added with smaller amplitudes
(0.2 and 0.4, respectively). For sources not of interest (no task
modulation), the unique amplitude was 1. For all sources, the
percent signal change was centered at 3 with a standard deviation
of 0.25. Additive noise was included to reach a specified contrast-
to-noise ratio of 1. The time courses corresponding to the
simulated 12 sources were depicted in Figure S1C. To simulate
the subject-specific variations in spatial domain, modifications
such as translation, rotation, expansion, and contraction, were
also randomly added to each source of each subject, where the
corresponding parameters were depicted in Figure S1D.

Visual Task Dataset
Six subjects (4 males and 2 females) took part in this visual
task experiment, all informed about the purpose of this study
and all the participants included in this study provided written
informed consent according to procedures approved by the IRB
of East China Normal University (ECNU). The designed visual
paradigm was a two-states (OFF,ON) × 3 block design with
a duration of 40 s. At the “ON” state, visual stimulus was
corresponding to a radial blue/yellow checkerboard, reversing at
7 Hz. While at the “OFF” state, the participants were required
to focus on the cross presented at the center of the screen. The
BOLD fMRI data were acquired in the Shanghai Key Laboratory
of Magnetic Resonance of ECNU, on a Siemens 3.0 Tesla scanner
with a gradient echo EPI with 36 slices providing whole-brain
coverage, TR = 2.0 s, scan resolution = 64 × 64, in-plane
resolution = 3.75 × 3.75 mm; the slice thickness was 4 mm; and
the slice gap was 1mm. This dataset was also used in our previous
study (Ren et al., 2014).

Test-Retest Task-Related Datasets for Motor,

Language, and Spatial Attention
This test-retest fMRI datasets for motor, language and spatial
attention functions were downloaded from the openfmri website
(https://openfmri.org/dataset/; Gorgolewski et al., 2013). Three
task-related fMRI time series (motor, covert verb generation, and
landmark tasks) were selected to validate our proposed FMICA
model. Ten healthy subjects (median age 52.5 years, min= 50,
max = 58) included four males and six females, of which
three were left-handed and seven right-handed. Each subject
was scanned twice, either 2 (eight subjects) or 3 (two subjects)
days apart. All subjects were provided with the written informed
consent and this study was approved by South East Scotland
Research Ethics Committee 01. The fMRI data acquisition
parameters were set as follows: GE SignaHDxt 1.5TMRI scanner,
FOV= 256× 256mm, in-planematrix= 64× 64, slice thickness
= 4 mm, slice number = 30, TR = 2.5 s, flip angle = 90◦.
The number of volumes in time series regarding the motor,
covert verb generation and landmark tasks were 173, 184, and
238, respectively. For the convenience of description, the motor,
covert verb generation and landmark tasks were denoted as
Task1, Task2, and Task3, respectively.

Test-Retest NYU Resting-State Datasets
The test-retest resting-state fMRI datasets with 25 normal
participants were drawn from the Human Connectome Project
(http://www.nitrc.org/projects/nyu_trt; Zuo et al., 2010). All the
participants included in this study were provided with written
informed consent according to procedures approved by the
IRB of New York University (NYU). Also, the fMRI data were
collected according to protocols approved by the institutional
review boards of NYU and the NYU School of Medicine. Each
participant was scanned three times at rest by a Siemens Allegra
3.0 Tesla MRI scanner and the fMRI data for each subject
consisted of 197 contiguous EPI functional volumes (TR = 2 s,
TE = 25 ms, flip angle = 90◦, slice number = 39, matrix = 64
× 64, FOV = 192 × 192 mm2, acquisition voxel size = 3 × 3
× 3 mm3). Data of sessions 2 and 3 were collected 5–16 months
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(mean 11± 4 months) after session 1 with an interval of 45 min.
A high-resolution T1-weighted magnetization prepared gradient
echo sequence was also obtained for each participant (MPRAGE,
TR = 2.5 ms, TE = 4.35 ms, TI =900 ms, flip angle = 8◦, slice
number= 176, FOV= 256× 256 mm2).

Data Preprocessing
All computations of this study were performed on a personal
computer with intel(R) Core(TM) i5-3210M 2.5 GHz CPU and
4 GB RAM. The operation system platform was Windows 7. All
steps for preprocessing or processing were run on the Matlab
platform (Matlab 2012b, Mathworks Inc., Sherborn, MA, USA).

No preprocessing step was involved for the simulation dataset;
For the other real data, the widely used DPARSF (Yan and
Zang, 2010) batch processing pipeline with embedding SPM8
software (http://www.fil.ion.ucl.ac.uk/spm/) was used to perform
the preprocessing operations including slice-timing, motion
correction, spatial normalization to the Montreal Neurological
Institute (MNI) EPI template and spatial smoothing with the full
width at half maximum (FWHM) equal to 6 mm. Specifically,
considering magnetization equilibrium, the first ten volumes
were discarded for the test-retest NYU datasets. For the task-
related datasets, no first volumes were discarded.

The z threshold of the z-scored SPMs from all the real fMRI
datasets was set to 2.0, and the least active cluster size was set to
10 voxels. The BFNs were displayed by the MRIcroN software
(https://www.nitrc.org/projects/mricron), and their locations
were assessed by the PickAtlas toolbox (Maldjian et al., 2003,
2004).

Experimental Designs
Three kinds of experiments were designed to validate the
effectiveness of FMICA in this study.

Experiment 1: the simulation dataset with only one session
was used to validate effectiveness of FMICA in two aspects,
i.e., the BFN identification ability at the subject-specific and
intragroup levels. Specifically, the third level ICA step was
not involved in this experiment. The corresponding pipeline
consisted of three procedures: the first level ICA on simulation
dataset for obtaining the initial FMs (ICs), the second level ICA
for extracting the second level (or intragroup) FMs and the ICA-
R procedure using the intragroup FMs as the references for
obtaining the subject-specific BFNs, respectively.

Experiment 2: the NYU resting-state datasets with three
sessions were used to validate effectiveness of FMICA in three
aspects, i.e., the BFN identification ability at the subject-specific,
intragroup-specific and intergroup levels. The corresponding
pipeline consisted of the following steps: the first level ICA on
fMRI datasets of each rest session for obtaining the initial FMs,
the second level ICA for extracting the second level FMs, the
third level ICA for obtaining the intergroup FMs and the ICA-
R using the intergroup FMs as the references for obtaining the
intragroup-specific and subject-specific FMs, respectively.

Experiment 3: the ability of capturing the group difference
of intrinsic BFNs across the multiple kinds of datasets using
FMICA was validated using a combination of the test-retest
NYU resting-state datasets, the test-retest task-related datasets

for motor, language, and spatial attention and the visual task
dataset. The corresponding pipeline consisted of the following
steps: the first level ICA on each aforementioned dataset for
obtaining the initial FMs, the second level ICA for extracting the
intragroup FMs, the third level ICA for retrieving the intergroup
FMs and the ICA-R procedure using the intergroup FMs as the
references for obtaining the intragroup-specific FMs.

RESULTS AND ANALYSIS

Results of Experiment 1
According to Experiment 1, the BFN detection ability of FMICA
at the subject-specific and intragroup levels was designed to
be validated on the simulation dataset. The order in both first
(individual) and second (intragroup) level ICA decomposition
was set to 13 (twelve designed sources and one background
source). Firstly, the 12 sources determined by FMICA at
intragroup level were displayed in Figure 2, which were highly
approximate to the simulated ground truth sources. The Pearson
correlation coefficients between the 12 estimated intragroup
sources and the corresponding 12 ground truth sources were
0.9783, 0.9672, 0.989, 0.9858, 0.9634, 0.9687, 0.9687, 0.9877,
0.9717, 0.9670, 0.9868, and 0.9703, respectively, quantitatively
implying the effectiveness of FMICA in the intragroup BFNs
identification. Moreover, in order to investigate the intragroup
BFNs estimation from the different ratios of the retained ICA
components of the intragroup level to that of the individual
level, FMICA was performed with a variety of such intragroup-
to-individual ratios on the simulation dataset to obtain the
intragroup-level BFNs, and then the mean and standard
deviation (std) values of Pearson correlation coefficients between
the estimated intragroup sources and the corresponding ground
truth sources at each run were calculated. As shown in Table S1,
from which, one could draw a conclusion that increasing the
number of retained components at the individual level had no
effect on performance, while greatly increasing the number of
retained components at intragroup level had a certain degree of
negative impact on the estimated intragroup sources, possibly
due to the over-spilt effects in ICA decomposition in the
simulation dataset. Table S1 also demonstrated that using the 13
components in both first-level and second-level ICA exhibited
good BFNs identification performance in this simulation dataset.

The subject-specific BFNs for each simulated subject
were also estimated by FMICA, and then the correlation
coefficients between these estimated subject-specific BFNs and
the corresponding ground truth sources for each subject were
also calculated, with the mean correlation coefficient across the
12 sources for each subject denoted as its subject-specific BFNs
identification accuracy, which was compared to those of the
traditional ICA model, demonstrating superior subject-specific
BFNs identification ability as shown in Figure 3.

Results of Experiment 2
In this experiment, the test-retest NYU resting-state datasets
with three sessions were used to validate effectiveness of
the proposed FMICA model on identifying the BFNs at the
intergroup, intragroup-specific, and subject-specific levels. At
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FIGURE 2 | The simulated ground truth sources and the intragroup sources estimated by FMICA.

FIGURE 3 | The comparative curves of spatial correlation regarding the

subject-specific sources identified by ICA and FMICA, respectively, for the

simulated 20 subjects on simulation dataset.

the subject-specific level, compared to the intrinsic BFNs from
different subjects, the intrinsic BFNs originated from the different
sessions of the same subject should bemore correlated.Moreover,
the intragroup-specific intrinsic BFNs from different sessions
should be also highly correlated with each other due to the high
reproducibility of the intrinsic BFNs (Shehzad et al., 2009; Zuo
et al., 2010; Wang et al., 2016b).

Eighteen intrinsic BFNs at the intergroup and intragroup-
specific levels for the resting session 1 (S1), session 2 (S2),
and session 3 (S3) were selected visually by the experts from
the estimated components by FMICA, as displayed in Figure 4,
respectively, with the involved Talairach Daemon (TD) lobes,
Brodmann areas, Automated Anatomical Labeling (AAL) atlas
regions, and the representative MNI coordinates, presented in
Table 1. The components IC1-IC4 were referred to the well-
known default mode network (DMN; Raichle et al., 2001;
Damoiseaux et al., 2006; De Luca et al., 2006), which were
divided into four sub-networks (Zuo et al., 2010); IC5, IC6, IC7,
and IC10 were called the auditory network, predominant visual
network, lateral visual network, and sensorimotor network,
respectively (Beckmann et al., 2005; Damoiseaux et al., 2006;
De Luca et al., 2006; Schöpf et al., 2010; Wang et al., 2012);
IC8 and IC9 were involved with the working memory function
related brain regions (Wang et al., 2012, 2013; Iraji et al.,
2016); IC11 and IC12 involved dorsal parietal and lateral
prefrontal cortex, which were two split separate components
of a dorsal pathway network (Damoiseaux et al., 2008; Schöpf
et al., 2010; Wang et al., 2012, 2013); IC13 was the salience
network as reported by Menon and Uddin (2010) and Uddin
(2015); IC14 was the basal ganglia network, involving mainly
caudate nucleus and putamen (Iraji et al., 2016); IC15 involved
the cerebellum posterior lobe and a portion of calcarine area
in the occipital lobe; IC16 was located at the brainstem
and cerebellum, e.g., cerebellar vermis; IC17 involved mainly
brodmann areas 47 and 34, e.g., the superior temporal pole;
IC18 was located at a portion of the limic and frontal
cortex, e.g., hippocampus, some areas of superior frontal gyrus,
etc. The successful identification of the aforementioned well-
known intrisic BFNs at the intergroup and intragroup-specific
levels demonstrated the effectiveness of the proposed FMICA
model.
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FIGURE 4 | The spatial map distribution of the intrinsic BFNs at the intergroup and intragroup-specific levels on test-retest resting-state datasets: the first column

depicted the intergroup intrinsic BFNs from the three rest sessions; the second, third, and fourth columns displayed the intragroup-specific intrinsic BFNs from the first

(S1), second (S2), and third (S3) rest session, respectively.
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TABLE 1 | The location information of the 18 intrinsic BFNs from the test-retest

resting-state datasets shown in Figure 4: the MNI coordinates (in mm), the

involved brain lobes, Brodmann areas and AAL atlas regions for each network.

IC

number

Representative

MNI coordinates

(X, Y, Z) in mm

TD lobes/Brodmann areas/AAL atlas

IC1 0, −57, 30 Parietal Lobe, Frontal Lobe/brodmann areas 7, 40

9/Frontal_Sup_Medial_L, Frontal_Sup_Medial_R,

Angular_R, Precuneus_R, Precuneus_L, Angular_L

IC2 −2, 55, 7 Frontal Lobe, Limbic Lobe/brodmann areas 10,

31/Frontal_Sup_Medial_L, Precuneus_L

IC3 11, −56, 18 Limbic Lobe, Parietal Lobe/brodmann area

23/Precuneus_R, Precuneus_L

IC4 −2, −77, 41 Parietal Lobe/brodmann area 7/Precuneus_L

IC5 −58, −15, 11 Temporal Lobe/brodmann areas 42,

41/Temporal_Sup_L

IC6 3, −83, 6 Occipital Lobe/brodmann area 18/Calcarine_R

IC7 28, −94, −1 Occipital Lobe, Middle Occipital Gyrus/brodmann

area 17/Occipital_Sup_L, Occipital_Sup_R,

Occipital_Mid_L

IC8 −43, −56, 51 Parietal Lobe, Frontal Lobe/brodmann areas 7,

8/Frontal_Mid_L, Parietal_Inf_L

IC9 50, −53, 46 Parietal Lobe, Frontal Lobe/brodmann area 40/

Frontal_Mid_R, Parietal_Inf_R

IC10 0, −19, 53 Frontal Lobe/brodmann areas 3,

4/Supp_Motor_Area_R, Postcentral_L, Precentral_R

IC11 27, −56, 53 Parietal Lobe/brodmann area 7/Parietal_Inf_L,

Parietal_Inf_R

IC12 1, 19, 40 Frontal Lobe/brodmann areas 32,

9/Cingulum_Mid_R, Cingulum_Mid_L,

Frontal_Mid_L, Frontal_Mid_R

IC13 −44, 20, −3 Frontal Lobe/brodmann areas 47,

6/Frontal_Inf_Orb_L, Frontal_Inf_Tri_L,

Frontal_Inf_Orb_R, Supp_Motor_Area_L

IC14 −20, 7, 6 Sub-lobar/Putamen/Caudate_L, Putamen_R,

Putamen_L

IC15 6, −80, −17 Occipital Lobe, Cerebellum Posterior

Lobe/brodmann area 18/Calcarine_L, Vermis_6,

Cerebelum_6_R, Cerebelum_6_L

IC16 2, −39, −25 Midbrain, Brainstem, Cerebellum/Vermis_1_2,

Vermis_4_5, Cuneus_L

IC17 31, 13, −20 Frontal Lobe, Limbic Lobe/brodmann areas 47,

34/Insula_R, Temporal_Pole_Sup_L

IC18 32, −17, −27 Limbic Lobe, Frontal Lobe/brodmann area

10/ParaHippocampal_R, Hippocampus_L,

Frontal_Mid_R, Frontal_Sup_R

From Figure 4, it could be observed that the intrinsic
BFNs at the intragroup-specific level from each session were
quite approximate to the corresponding ones at the intergroup
level. Meanwhile, three pairs of mutual correlations among the
intragroup-specific BFNs estimated from the three sessions, were
calculated, as shown in Figure 5, from which high correlations
could be clearly observed, demonstrating great reproducibility of
the intrinsic BFNs across the sessions.

At the subject-specific level, the BFNs identified by FMICA
were compared among sessions of the same subject and among
different subjects, respectively, and mean correlation coefficients

FIGURE 5 | The spatial map correlation curves among the correspondingly

intragroup-specific intrinsic BFNs identified by FMICA from the first (S1),

second (S2), and third (S3) session of resting-state datasets, respectively.

between pairs of BFNs under comparison for each subject were
shown in Figure 6, where Figures 6A,B were for across-sessions
and across-subjects comparison, respectively. Similar to FMICA,
the BFNs identified by the first level ICA were also compared
among sessions of the same subject and among different
subjects, respectively, and mean correlation coefficients between
pairs of BFNs under comparison for each subject were also
shown in Figures 6C,D for across-sessions and across-subjects
comparison, respectively. It was worth noting that the 18 intrinsic
BFNs at the intergroup level were used as the templates to match
the best ones from the individual FMs generated by the first level
ICA decomposition on each session data of each subject, aiming
at overcoming the random order of the components. Moreover,
based on the contrast values presented in Figures 6A,C, and
the contrast ones in Figures 6B,D, two sample T-tests with
significance level equal to 0.05 were implemented, respectively,
where the mean value (0.5644, marked in Figure 6A) of all
points in Figure 6A was significantly larger than the one (0.3168,
marked in Figure 6C) of all points in Figure 6C with p value
equal to 6.1630×e−80, and the mean value (0.3591, in Figure 6B)
of all points in Figure 6Bwas also significantly larger than the one
(0.1853, marked in Figure 6D) of all points in Figure 6D with p
value equal to 2.1511 × e−172. The mean values of the points in
Figures 6B,D corresponding to the first level ICA were relatively
small, and this was possibly due to that some BFNs could be
identified at the intergroup level, but not separated at the single
subject level by the traditional ICA. However, the ICA-R re-
estimation procedure in FMICA could identify most of BFNs at
the single subject level, demonstrating that the proposed FMICA
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FIGURE 6 | The correlation bar chart of 18 intrinsic BFNs against 25 subjects on the test-retest resting-state datasets: (A) denoted the mean across-sessions

correlation among the intrinsic BFNs estimated by FMICA for the different sessions of the same subject; (B) denoted the mean across-subjects correlation among the

intrinsic BFNs estimated by FMICA for the different subjects; (C) denoted the mean across-sessions correlation among the intrinsic BFNs estimated by FastICA for the

different sessions of the same subject; (D) denoted the mean across-subjects correlation among the intrinsic BFNs estimated by FastICA for the different subjects.

could identify the subject-specific BFNs more effectively than the
traditional ICA did.

To intuitively compare the performance between the proposed
FMICA and the traditional ICA, the spatial maps of IC1
(DMN) identified by FMICA and FastICA for all three sessions
of the first four subjects (for space limitation) as shown in
Figures 7A,B, respectively, were taken as an example, fromwhich
it was obvious that the DMNs identified by FMICA had higher
across-sessions than across-subjects consistency and much
higher both across-sessions and across-subjects consistency
compared to the results of FastICA, implying that FMICA
had higher subject-specific BFNs identification capability than
traditional ICA.

In summary, results from the test-retest resting-state datasets
demonstrated that the proposed FMICA model had high BFN
identification capability at intergroup, intragroup-specific and
subject-specific levels.

Results of Experiment 3
In this experiment, the intergroup and intragroup-specific
analysis ability of FMICA was further validated by combining
the test-retest resting-state datasets, the test-retest task-related
datasets for motor, language and spatial attention (i.e., Task1,

Task2, and Task3) and the visual task dataset. Namely, there
were ten datasets as the input of FMICA, i.e., the resting-state
datasets with three sessions, three test-retest task-related datasets
(i.e., Task1, Task2, and Task3) with two sessions and the visual
task dataset with one session. In this experiment, as described
in Section Some Key Points in FMICA Implementation, the
ICASSO method was used to determine the optimal order for
the intergroup-level analysis based on the stability measure
of the estimated components for each order, as shown in
Figure S2, demonstrating that the estimated components had
the highest mean/median stability and relatively small values of
standard deviation (STD) and inter-quartile range (IQR), when
the order was equal to 57. Therefore, the order was set to 57 in
Experiment 3.

Intragroup-specific BFNs for each of the 10 datasets and the
corresponding intergroup BFNs, selected visually by the experts
from the estimated components by FMICA, were showed in
Figure 8 for the first five BFNs due to space limitation, and
results for the remaining 25 BFNs were shown in Figure S3. The
TD lobes, Brodmann areas, AAL regions and the representative
MNI coordinates involved in these BFNs, were recorded in
Table S2. It could be observed that most of the intrinsic
BFNs extracted in Experiment 2 had high reproducibility in
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FIGURE 7 | The individual DMNs identified by FMICA and FastICA on the test-retest resting-state fMRI datasets with respect to four examplars: (A) subject-specific

DMNs identified by FMICA; (B) subject-specific DMNs identified by FastICA.

Experiment 3, and better across-sessions than across-datasets
consistency of the BFNs was also observed. Correlation analysis
was performed to quantify such consistency in various cases.
Firstly, mean and std values of correlation coefficients among the
intragroup-specific BFNs from different sessions of the resting-
state datasets under the same condition (e.g., session 1 and
session 2 of resting-state datasets), were calculated and presented
in Figure 9A, demonstrating a high mean correlation of 0.8464
and thus implying high across-sessions reproducibility of the
BFNs in resting-state datasets (Wang et al., 2016b). Then, the

same correlation analysis were performed across the test-retest
task datasets of Tasks 1, 2, and 3 from the same subjects,
with results presented in Figure 9B, showing also a high mean
correlation of 0.8314 and thus implying across-tasks similarity
of the intrinsic functional connectivity architecture (Finn et al.,
2015). Finally, correlation analysis were performed on completely
different kinds of datasets sharing neither sessions nor tasks,
with results shown in Figure 9C, indicating a low correlation of
0.5814 inferior to that in Figures 9A,B and thus demonstrating
that the proposed FMICA was able to effectively capture the
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FIGURE 8 | The spatial map distribution of first five BFNs at the intergroup and intragroup-specific levels in Experiment 3: each column depicted a BFN at the

intergroup and intragroup-specific levels; Rest_S i denoted the ith session of test-retest resting-state datasets; Task i_S j denoted the jth session of Task i from the

test-retest task-related datasets; Visual denoted the visual task dataset.
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FIGURE 9 | The spatial correlation curves of the intragroup-specific BFNs generated by FMICA among the test-retest resting-state datasets, three test-retest

task-related datasets and visual task dataset: (A) the spatial map correlation curves among the intragroup-specific BFNs from the same kinds of datasets with

different sessions; (B) the spatial map correlation curves among the intragroup-specific BFNs with respect to the test-retest task-related datasets; (C) the spatial map

correlation curves among the intragroup-specific intrinsic BFNs from different kinds of datasets.

differences of intragroup BFNs across the different kinds of
datasets.

To summarize, it could be stated that the proposed FMICA
was effective for the intergroup and intragroup-specific analysis,
and could characterize the group-specific difference.

DISCUSSION

In this paper, a BFNs parcellation model based on feature maps,
called FMICA, was proposed with demonstrated effectiveness.

This FMICA consisted of four main procedures: (1) the first-
level ICA decomposition to extract independent component
feature maps for each dataset of each subject; (2) the second-
level ICA decomposition to obtain the intragroup feature
maps for each dataset; (3) the third-level ICA decomposition
to acquire intergroup BFNs across multiple datasets; (4)
the ICA-R decomposition to extract intragroup-specific BFNs
and subject-specific BFNs based on intragroup feature maps
and individual IC feature maps, respectively. On one hand,
since FMICA used only the feature maps identified by
the single-subject level ICA and the subsequent hierarchical
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processing steps were incorporated for multi-level analysis, it
was able to effectively handle the big neuroimaging datasets
with different acquisition parameters. On the other hand,
the experimental results showed that FMICA had great
capability for brain network identification at the subject-
specific, intragroup, intragroup-specific and intergroup levels.
For example, the results of Figures 3, 6, 7 demonstrated the
FMICA’s more effective identification ability of the subject-
specific BFNs in contrast to the traditional ICA method;
based on the results showed in Figure 9, the intragroup-
specific BFNs showed the better across-sessions than across-
datasets consistency, while the intragroup-specific ones also
uncovered group-specific difference in the spatial distribution
compared to the intergroup ones (showed in Figure 8 and
Figure S3).

Comparison with Other Feature-Based ICA
Methods
It was proposed to perform ICA analysis by summarizing
fMRI data of each subject as a feature map and applying
subsequently traditional ICA algorithms on these feature maps,
where features could be the amplitude of low frequency
fluctuations (ALFF) maps for resting-state data or T-statistic
maps for task-related data, yielding BFNs strikingly similar to
but slightly noisier than the results of spatiotemporal group
ICA analysis (i.e., TCGICA; Calhoun and Allen, 2013). Very
recently, another novel feature-based ICA model using seed-
based functional connectivity as summarizing features was
proposed (Iraji et al., 2016), with performance highly depending
on the choice of seeds. The proposed FMICA in this paper
took spatial maps of the independent components of the
subjects as feature maps for group analysis. FMICA could
produce the comparable intragroup BFNs to the spatiotemporal-
domain based group ICA, as shown in Figure S4, implying
that it was more effective than the first feature-based ICA
model. Meanwhile, FMICA without the seed-based functional
connectivity identification procedure was more flexible than
the second feature-based ICA model, and it had extra unique
advantages of identifying subject-specific, intragroup-specific
and intergroup BFNs due to hierarchical processing incorporated
in the model.

Limitations and Future Research
Single-subject independent components were used as the input
feature maps in the proposed FMICA model. However, edges
and shapes of the feature-maps could be susceptible to the
preprocessing steps in fMRI data analysis, such as the spatial
smoothing with FWHM kernels of different size. Therefore, one
future research topic on FMICA might be to develop a more
robust model to deal with the effects of the preprocessing steps
on the feature maps.

Since brain activity at either resting or task states is non-
stationary, and it is very important to characterize the dynamics
of brain networks (Calhoun et al., 2014). Although static brain
functional activity is considered in the current study, the FMICA

has also the potential to provide new options to the investigation
of the dynamic characteristics of brain networks.

CONCLUSION

In this study, we proposed a generalized feature-map based
ICA model, named FMICA, which aimed at facing the
ever-increasingly big neuroimaging datasets with diverse
acquisition parameters. This proposed model was effective
to characterize BFNs at the subject-specific, intragroup,
intragroup-specific and intergroup levels. The success of
FMICA also implied that the feature maps used as the
single-subject representatives could not only reduce the
high dimensions of the original fMRI data to a small
one, but also capture the useful common and distinct
properties embedded in each original data. In summary,
this proposed FMICA was expected to have wide applications
in neuroimaging neuroscience research, e.g., determining
individual brain functional ROIs, characterizing differences of
BFNs among individual subjects or among the contrast groups,
etc.
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