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Significant advances in gene therapy have enabled exploration of therapies for inherited

retinal disorders, many of which are in preclinical development or clinical evaluation.

Gene therapy for retinal conditions has led the way in this growing field. The loss of

retinal ganglion cells (RGCs) is a hallmark of a number of retinal disorders. As the

field matures innovations that aid in refining therapies and optimizing efficacy are in

demand. Gene therapies under development for RGC-related disorders, when delivered

with recombinant adeno associated vectors (AAV), have typically been expressed from

ubiquitous promoter sequences. Here we describe how a novel promoter from themurine

Nefh gene was selected to drive transgene expression in RGCs. The Nefh promoter, in

an AAV2/2 vector, was shown to drive preferential EGFP expression in murine RGCs in

vivo following intravitreal injection. In contrast, EGFP expression from a CMV promoter

was observed not only in RGCs, but throughout the inner nuclear layer and in amacrine

cells located within the ganglion cell layer (GCL). Of note, the Nefh promoter sequence is

sufficiently compact to be readily accommodated in AAV vectors, where transgene size

represents a significant constraint. Moreover, this promoter should in principle provide a

more targeted and potentially safer alternative for RGC-directed gene therapies.
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INTRODUCTION

In recent years significant progress has been made in gene therapy with the market authorisation
of therapies such as Glybera R©, T-VEC (ImlygicTM), and StrimvelisTM. Many more potential gene
therapies are currently in later phase clinical trials (clinicaltrials.gov) and it is likely that the rate of
clinical development will continue to increase. Advances in our understanding of viral vectors has
allowed for the generation of a range of delivery vehicles that can collectively target a wide array of
cell types.

The retina in particular has been the focus of many gene therapy studies, stimulated in
part by the elucidation of the genetic pathogenesis of inherited retinal degenerations (Farrar
et al., 2017). The retina is a confined but readily accessible target, and retinal neurons are
non-dividing in mammals—thus a gene therapy can in theory provide long-term benefit.
Furthermore the retina is immune privileged and therefore, in principle, may be more
tolerant of treatments. Indeed, over 30 gene therapy clinical trials have been completed or are
ongoing in the retina (clinicaltrials.gov). Adeno-associated virus (AAV) has been the vehicle
of choice for the majority of retinal gene therapy studies as it achieves efficient neuronal
transduction, provides long-term expression in terminally differentiated cells and has demonstrated
a good safety profile in humans (Hauswirth et al., 2008; MacLaren et al., 2014; Bainbridge
et al., 2015; Bennett et al., 2016; Feuer et al., 2016; Ghazi et al., 2016; clinicaltrials.gov).
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The successful completion of a Phase III trial to treat RPE65-
linked inherited retinal degenerations, such as Leber congenital
amaurosis (LCA, www.sparktx.com) represents a significant
milestone in the field.

Many therapeutic studies to date targeting the retina have
been directed toward photoreceptor cells and the retinal pigment
epithelium (RPE). Approximately 1/3000 people worldwide
suffer from an inherited retinal degeneration (IRD); many
of these are caused by mutations directly or indirectly
affecting photoreceptors (Bessant et al., 2001). However, retinal
disorders involving the ganglion cell layer (GCL) will also
be readily amenable to gene therapy, given efficient cell
targeting. Intravitreal injection of AAV for delivery to GCL
typically involves less surgical trauma than subretinal injection.
Notably, anti-VEGF treatments, such as Lucentis, are routinely
administered intravitreally to age related macular degeneration
(AMD) patients.

Limiting expression of a gene therapy to a target cell type
is often preferable, and in principle represents a valuable safety
feature. Although AAV-mediated ocular gene therapy has been
shown to be well-tolerated (Hauswirth et al., 2008; MacLaren
et al., 2014; Bainbridge et al., 2015; Bennett et al., 2016; Feuer
et al., 2016; Ghazi et al., 2016), directing transgene expression
to the target cells of interest may reduce the chance of immune
response(s) or other unwanted off-target effects, thus providing
a more efficacious therapy. A number of gene therapies have
been directed toward retinal ganglion cells (RGCs) using AAV
serotype 2, with several ongoing or completed clinical trials
(Feuer et al., 2016; Yang et al., 2016; clinicaltrials.gov). Such
therapies have typically utilized ubiquitous promoters such as
cytomegalovirus (CMV) or chicken-β-actin (CBA; Boye et al.,
2010; Koilkonda et al., 2010; Bennett et al., 2016; Feuer et al.,
2016). These promoters typically offer high levels of expression,
and tend to be small in size, which is valuable as the packaging
capacity of AAV is limited to approximately 2–5 kb, with an
optimum at 4.7 kb (Dong et al., 1996; Grieger and Samulski,
2005). However, a significant disadvantage of generic promoters
is that, they may drive gene expression in cell types other than
the target cells. Cell-type specific promoters such as rhodopsin
(Flannery et al., 1997; Bennett et al., 1998; O’Reilly et al., 2007;
Palfi et al., 2010; Wert et al., 2013), rhodopsin kinase (Khani
et al., 2007; Boye et al., 2010; Sun et al., 2010; Kay et al.,
2013; Molday et al., 2013), RPE65 (Bainbridge et al., 2008,
2015) and retinaldehyde binding protein 1 (RLBP1; Choi et al.,
2015), among others, have successfully been used in retinal gene
therapy approaches. Preferential RGC expression in transgenic
animalmodels has been achieved using theThy1 promoter, which
confers high-level expression that is limited to RGCs. It has been
shown that an enhancer element contained in the first intron of
Thy1 is necessary for both high level and specific gene expression
(Spanopoulou et al., 1991; Alić et al., 2016). However, while the
core promoter and enhancer element are both small (∼100–
200 bp each), approximately 6 kb of spacing between the two
elements is necessary for specific promoter function, making
the Thy1 promoter unsuitable for use in AAV vectors. A 0.48
kb promoter derived from the human synapsin-1 gene (hSYN)
can provide pan-neuronal expression in rodent and primate

brains when utilized in adenoviral or AAV vectors (Kügler et al.,
2003a,b; Diester et al., 2011; Lopez et al., 2016). In the rodent
retina, intravitreal injection of an AAV gene construct driven
by hSYN resulted in expression in the GCL (Gaub et al., 2014).
However, in the context of the primate retina, hSYN promoter-
mediated expression only appears to occur in damaged retinas or
vitreolysed eyes (Yin et al., 2011). The therapeutic relevance of the
hSYN promoter therefore remains to be fully established. Hence,
the characterization of a promoter that exhibits preferential RGC
expression and is appropriately sized for AAV would represent a
significant refinement for RGC gene therapies.

Increasingly, RGC subtypes are being defined by
differential gene expression, rather than morphological
differences. Several groups have worked on establishing the
transcriptional differences between different classes of RGCs
using immunological, transcriptomic and transgenic methods
(Sanes and Masland, 2014; Sun et al., 2015; Rousso et al., 2016;
Sweeney et al., 2017). There are approximately 1.5 million
RGCs in the human retina, comprising approximately 1% of
retinal neurons, (Callaway, 2005) and composed of in the region
of 30 different classes of cells (Baden et al., 2016). However,
knowledge regarding the different types of RGCs populating
the GCL is still emerging. Transcriptomics offers a powerful
means to analyse gene expression in different cell types. In order
to identify potential RGC promoters, GCL-specific microarray
expression data from post-mortem human retinas was used (Kim
et al., 2006). Kim et al. isolated GCL populations consisting of
1,000 RGCs using laser-capture microdissection (LCM) and cell
populations consisting of 1,000 cells from the remainder of the
retina (termed outer retina, OR) and compared gene expression
in the two populations. Using these data, we assessed promoter
conservation between mammalian species for genes that were
highly expressed and enriched in RGCs, using data drawn from
the UCSC database (mm10; Kent et al., 2002). Conservation
of non-coding DNA sequence across species was used as an
indicator of potential function, and a number of highly conserved
promoter upstream sequences were identified from genes shown
to be both highly expressed and enriched in RGCs (Kim et al.,
2006; Choudhury et al., 2016; Struebing et al., 2016). The lead
candidate promoter, upstream of the Nefh gene, was evaluated
and compared to CMV-driven gene expression in RGCs in vivo.
The Nefh promoter directed expression preferentially to RGCs
when administered intravitreally to adult wild type mice using
AAV2, in contrast to the broad expression pattern observed
with the CMV promoter. The study identifies a functional RGC
promoter, which is suitable for AAV-mediated ocular gene
delivery, while also describing an approach to identify putative
promoters.

MATERIALS AND METHODS

In silico RGC Promoter Analyses
Human genes whose relative expression was enriched in the RGC
layer by over 10-fold compared to relative expression in OR
were selected (Kim et al., 2006). Genes were assessed based on
GCL expression level (ELGCL) compared to the OR expression
(ELOR), termed the enrichment factor (EF = ELGCL/ ELOR; Kim
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et al., 2006) and the genes with the highest EFs were selected
for further investigation. A gene score (GS = ELGCL × EF) was
used to rank genes for suitability as potential promoters. Further
analysis was performed on mouse genomic data, as a mouse
promoter was the desired output. Data from the UCSC genome
browser (mm10 mouse mammalian conservation track; UCSC;
Kent et al., 2002) were used to establish conservation upstream
of the transcriptional start site of candidate genes; results from
analysis of 2.5 kb upstream of the start site are presented
(Figures 1, 2). An in silico pipeline (Python) was developed to
isolate basewise conservation data from UCSC (conservation
data ranged from 0 to 1 for a given base, where 0 represents
no significant conservation between mammals and 1 indicates
complete conservation). The forty mammalian species and their
sequence assembly names thatmake up this conservation data are
listed inTable S1. This was plotted in a graph in order to visualize
conserved regions. NEFH was chosen as having the highest GS
of the genes analyzed. Using the parameters defined above, the
mouse Nefh upstream region was selected for evaluation in vivo,
given the expression profile of the gene and conservation of its 5′

upstream sequence.

Cloning and AAV Production
pAAV.CMV-EGFP was cloned as described (Palfi et al., 2010).
To generate pAAV.Nefh-EGFP, a 2,251 bp fragment of mouse
Nefh upstream sequence (NM_010904.3) was amplified from
genomic DNA and were substituted for the CMV promoter
in pAAV.CMV-EGFP. Recombinant AAV2/2 viruses AAV.Nefh-
EGFP and AAV.CMV-EGFP were generated, and genomic titres
determined as described (O’Reilly et al., 2007).

Animals and Intravitreal Injections
Wild type 129 S2/SvHsd mice (Harlan UK Ltd, Oxfordshire,
UK) were maintained in a specific pathogen free (SPF) facility.
Intravitreal injections were undertaken in strict compliance with
the European Communities Regulations 2002 and 2005 (Cruelty
to Animals Act) and the Association for Research in Vision
and Ophthalmology (ARVO) statement for the use of animals.
Adult mice were anesthetized and pupils dilated as described
(O’Reilly et al., 2007). Using topical anesthesia (Amethocaine),
a small puncture was made in the sclera. A 34-gauge blunt-
ended microneedle attached to a 10 µl Hamilton syringe was
inserted through the puncture, and 3 µl AAV2/2 was slowly,
over a 2-min period, administered into the vitreous. Following
intravitreal injection, an anesthetic reversing agent (100 mg/10 g
body weight; Atipamezole Hydrochloride) was delivered by
intraperitoneal injection. Body temperature was maintained
using a homeothermic heating device. Animals were sacrificed
by CO2 asphyxiation.

Histology
Histology was performed as described (Chadderton et al.,
2013) with some modifications. Briefly, transduced eyes (n
= 6) were fixed in 4% paraformaldehyde and cryosectioned
(12 µm). Sections were co-labeled for EGFP (chicken anti-
GFP; Abcam, ab13970, 1/2000 dilution; Palfi et al., 2012)
and either Brn3a (Nadal-Nicolás et al., 2009; Trost et al.,

2015; Santa Cruz Biotechnology, sc-31984, 1/200 dilution;
goat anti-Brn3a), ChAT (goat anti-choline acetyltransferase;
Millipore, AB144P, 1/500 dilution; Zhu et al., 2014) or
GABA (rabbit anti-GABA; Sigma, A2052, 1/2000 dilution; Zhu
et al., 2014) using immunohistochemistry. EGFP was labeled
with FITC-conjugated secondary antibody (1/400 dilution,
Jackson ImmunoResearch Laboratories) while Brn3a, ChAT and
GABA were labeled with Cy3-conjugated secondary antibody
(1/400 dilution, Jackson ImmunoResearch Laboratories). Cell
nuclei were counterstained with 4,6-diamidino-2-phenylindole
(DAPI). Background labeling was determined using parallel
processed sections where the primary antibodies were omitted.
Corresponding microscope images were taken using a Zeiss
Axiophot fluorescent microscope (Carl Zeiss Ltd., Welwyn
Garden City, UK). Immunohistochemical signals obtained with
different filters were overlaid using Photoshop v.13 (Adobe
Systems Europe, Glasgow, UK). For analysis, levels for each
channel were set to predetermined values to help discrimination
between signal and background; signal levels above threshold
were taken as positive. Additionally, cellular colocalisation of
the positive immunohistochemical signals with the nuclear label
was a criterion for identification of positive cells. However, it is
possible that at the low spectrum identification of either positive
or negative cells failed. This would have implicated a small
percentage of cells and affected all groups similarly, therefore
should not have any significant effects on the results. Labeled
and co-labeled cells were counted manually using the count tool
in Photoshop. Two transduced sections (approximately 300 µm
apart) from the central part of the retina (∼1,500 µm span
in total) were analyzed for each marker (n = 4–5). Statistical
analysis (one way ANOVA, Tukey’s multiple comparison post-
hoc test) was performed using Prism 5 (GraphPad); p < 0.05 was
considered statistically significant.

Flow Cytometry Cell Sorting
Retinas were harvested 3 weeks post-injection and trypsin-
dissociated, as previously described (Palfi et al., 2012). To
isolate RGCs, cells were labeled with anti-Thyl-PE-Cy5, (CD90.2,
Rat Thy1.2, 53-2.1 1:100; eBioscience Inc., San Diego, CA).
DRAQ5TM (BioStatus, Leicestershire, UK) was used to sort
nucleus-positive cells after which cell populations were sorted
on the basis of forward and sideways scatter, and subsequently
two stages of singlet selection. From these, retinal cells expressing
both EGFP and Thy1 were identified (BD FACSAria IIIu high
speed cell sorter, BD Bioscience, San Jose, CA). EGFP was
excited by a 488 nm laser and the emission was collected using
a 530/30 band pass filter. Thy-1 PECy5 had been measured
exciting the probe with a 561 nm laser and collecting the
signal with a 690/40 nm band pass. QC of the cell sorter
had been done with BD CS&T beads and the drop delay had
been adjusted using the BD Accudrop beads (RUO), following
manufacture specifications. EGFP-positive cells expressing Thy1
were represented as a percentage of the total EGFP positive cells.
Data has been reanalyzed with the FCSExpress 6 Flow software
(DeNovo Software). Statistical analysis (Student’s t-test) was
performed using Microsoft Excel and p < 0.05 was considered
statistically significant.
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RT-qPCR
Thy1-positive cells collected from n = 12 retinas and non-
labeled retinal cells with a similar forward and side scatter
from n = 9 retinas were collected by flow cytometry and
total RNA was extracted as described (Millington-Ward et al.,
2011). Thy1 mRNA was amplified in triplicate from pooled
sorted populations using the QuantiTect SYBR green RT-PCR
kit (Qiagen, Hilden, Germany) using the manufacturer’s protocol
and the following primers:

F 5′ TGAACCAAAACCTTCGCCTG 3′

R 5′ AGCTCACAAAAGTAGTCGCC 3′

Resulting CT values were standardized to cell number, as
standardly used housekeeping genes could be expressed at
different levels in different cell populations, making them
unreliable for this analysis.

RESULTS

The objective of the current study was the characterization and
in vivo evaluation of an RGC promoter for future use in AAV-
mediated gene therapies. A comparative evaluation of genes with
highly enriched RGC expression was undertaken in silico and
the lead candidate was investigated in vivo (Figure 1). Whilst
gene expression profiles of RGCs are available, the promoters
that drive this expression are ill defined. We chose several key
criteria to identify candidate promoters using microarray data
for RGCs (Kim et al., 2006; Choudhury et al., 2016; Struebing
et al., 2016). Conservation data of regions upstream of the
most enriched RGC candidate genes were obtained from the
UCSC genome browser database (UCSC, mm10). In the study
conservation of sequence across mammals (using the mouse
genome as a base) was used as a proxy for presumed function
in vivo to identify putative promoters. To ensure that any

FIGURE 1 | RGC promoter analysis. A: Putative promoter identification

methodology. Transcriptomic data (Kim et al., 2006) was used to identify

candidate genes, based on expression levels in the retina (ELOR) and the GCL

(ELGCL ). Enrichment factor (EF) for the GCL was calculated as EF =

ELGCL/ELOR; top candidates were identified based on EF. A gene score (GS)

was calculated as a means of discerning between candidates.

promoter chosen would be suitable for future use in AAV
vectors, conservation analysis was limited to the immediate 2.5
kb upstream sequence of genes. Based on the expression level
of a gene in the GCL (ELGCL) and the enrichment factor of that
gene (EF), a gene score was generated to rank genes as candidates
(GS = ELGCL × EF; Table 1). The basewise species conservation
in the selected upstream sequences was plotted (conservation
numbered between 0 and 1) and the five genes with the highest
GS are presented (Figure 2).

Following analysis, Nefh was deemed to be the most highly
enriched gene in RGCs with an enrichment factor (EF) of 245-
fold, as well as demonstrating an extremely high ELGCL (21,899.1;
Table 1). Some of the mouse genes analyzed showed greater
average conservation in their 2.5 kb upstream regions than Nefh
(Nefm 0.289, Stmn2 0.292, Crtac1 0.349 vs.Nefh 0.185). However,
due to their lower EF and ELGCL scores, Nefh was deemed likely
to drive higher levels of RGC-specific expression and hence to
be a better candidate promoter (GS: Nefh 5.37 × 106 vs. Nefm
1.54 × 106, Stmn2 1.16 × 06, Crtac1 5.78 × 104). Tmsb10,
Nefl, and Sparcl1 had lower scores than Nefh in all categories.
Brn3a, a commonly used marker for RGCs (Kim et al., 2006;
Nadal-Nicolás et al., 2014), was found to have an extremely high
conservation within a 2.5 kb upstream region, and a high EF
(0.576, 79.1 respectively). However, its ELGCL was found to be
approximately 39 times lower than that of Nefh (719.7), and so
was not included as a candidate gene. The hSYN gene showed no
significant GCL enrichment or expression in the Kim et al. (2006)
study.

To explore the strength and specificity of the putative Nefh
promoter, 2,251 bp of upstream sequence from the mouse
homolog was used to drive expression of an EGFP reporter

TABLE 1 | List of putative ganglion cell promoters.

Rank Gene name ELGCL ELOR EF GS

1 NEFH 21,899.1 89.4 245 5.37 × 106

2 NEFM 6,984.1 31.7 220.6 1.54 ×106

3 NEFL 7,841.1 50.5 155.3 1.22 ×106

4 VSNL1 4,659.33 67.35 69.18 3.22 ×105

5 SPARCL1 5077 149.75 33.9 1.72 ×105

6 SLC17A6 1,302.9 10.3 126.8 1.65 × 105

7 TMSB10 7,124.3 324.6 21.9 1.56 × 105

8 ANXA2 2,221.4 37.5 59.3 1.32 × 105

9 STMN2 4,139.9 147.9 28 1.16 × 105

10 PRPH1 1,238.5 18.4 67.5 8.36 × 104

11 CRTAC1 4,478.6 347 12.9 5.78 × 104

12 RBPMS 832.5 12.6 66 5.49 × 104

13 RAB13 1,802.7 59.7 30.2 5.44 × 104

14 ATP1B1 3,803.3 299.2 12.7 4.83 × 104

15 FABP3 1,054.6 24.9 42.4 4.47 × 104

Human transcriptomic data of 1,000 cell populations from RGCs versus OR (Kim et al.,

2006) was used to determine relative expression levels in the outer retina (ELOR) and the

GCL (ELGCL). Enrichment factor (EF) for the GCL was calculated as EF = ELGCL/ELOR. A

gene score (GS) was calculated as GS = (ELGCL x EF) to provide an overall score. Genes

are listed in order of GS.
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FIGURE 2 | Analysis of 5′ upstream sequence of candidate promoter sequences. Regions ∼2.5 kb upstream of the transcriptional start were analyzed. The genes

displayed represent the most highly expressed genes of the genes that are enriched >10-fold in RGCs. The y-axis represents conservation across mammals (CS),

where 0 equals no significant conservation and 1 equals full conservation across mammalian species in the UCSC genome database.

gene in an AAV2/2 vector (AAV-Nefh-EGFP) and expression
compared to that mediated by the CMV promoter (AAV-CMV-
EGFP; Chadderton et al., 2013; Palfi et al., 2015). The mouse
gene was chosen to ensure that function or non-function was not
due to species incompatibility. The CMV promoter incorporated
into AAV vectors has previously been shown to drive high levels
of transgene expression in a wide variety of retinal cell types
(Lebherz et al., 2008; Li et al., 2008; Mueller and Flotte, 2008),
including RGCs (Chadderton et al., 2013; Tshilenge et al., 2016)
and was used as a control vector for transgene expression.

Adult mice were injected intravitreally with 3 × 109 viral
genomes (vg)/eye AAV.CMV-EGFP or with either 3× 109 vg/eye
or 9 × 109 vg/eye AAV.Nefh-EGFP. Histological analysis 12
weeks post-injection revealed widespread EGFP expression in
the retina (Figure 3). Individual cells exhibited a broad range
of EGFP expression levels from low to very high, possibly due
to varying viral transduction. However, cellular EGFP labeling
(colocalised to DAPI stained nuclei), even for cells expressing
low levels of EGFP, was easily distinguishable from uniform
background levels. EGFP expression from both promoters was
observed in a significant number of cells in the GCL (50.2 ±

14.1% AAV.CMV-EGFP, Figures 3A,D; 42 ± 11.2% AAV.Nefh-
EGFP, Figures 3B,E; and 37± 11.1% high dose AAV.Nefh-EGFP,
Figures 3C,F, 5A). However, while the Nefh promoter mediated
EGFP expression was predominantly confined to the GCL

(Figures 3B,C,E,F), CMV promoter driven expression extended
into the INL (Figures 3A,D); 84.5± 34.2% AAV.CMV-EGFP, 3.6
± 2.9% AAV.Nefh-EGFP and 5.6 ± 3.8% high dose AAV.Nefh-
EGFP (Figure 5A; EGFP-positive cells in the INL expressed as
a percentage of all cells in the GCL). Notably, the increased
dose of AAV.Nefh-EGFP did not increase the transduction rate
in the INL (Figures 3, 5A). AAV.CMV-EGFP demonstrated
significantly greater INL expression compared to AAV.Nefh-
EGFP, p < 0.001 (Figures 3, 5A).

Approximately fifty percent of cells in the GCL are RGCs with
the other 50% being displaced amacrine cells (Jeon et al., 1998;
Akopian et al., 2016; webvision.med.utah.edu). To delineate
further the expression profile of the Nefh promoter, EGFP
transgene expression was analyzed in the GCL using antibodies
targeting Brn3a, an RGC marker (Schlamp et al., 2013) and
two amacrine cell markers, ChAT and GABA (Figure 4) (Wässle
et al., 1987; Jeon et al., 1998; webvision.med.utah.edu). Brn3a
label was confined to the GCL in the retina and was used to
explore the specificity of the putative Nefh promoter for RGCs
(Figures 4A–E). In line with previously published data, 50–
55% of all cells in the GCL were Brn3a positive (Figures 4,
5B; Jeon et al., 1998; Schlamp et al., 2013). Figure 4 displays
representative images from eyes injected with the 3 × 109

vg/eye dose of AAV.Nefh-EGFP. While AAV.CMV-EGFP and
AAV.Nefh-EGFP expressed in comparable numbers of Brn3a
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FIGURE 3 | Comparison of CMV and Nefh mediated EGFP expression in vivo. Retinas were injected intravitreally with AAV.CMV-EGFP (3 × 109 vg; A,D) or two

different doses of AAV.Nefh-EGFP (3 × 109 vg; B,E; and 9 × 109 vg; C,F). Transduced eyes (n = 4–5) were fixed and cryosectioned 12 weeks post-delivery.

FITC-labeled immunocytochemistry was performed for EGFP. DAPI was used for nuclear counterstaining; DAPI signals are overlaid on the right side of the images.

ONL, outer nuclear layer; INL, inner nuclear layer, GCL, ganglion cell layer. Arrowheads: transduced cells in the INL. Scale bars: 500 µm (C) and 25 µm (F).

positive cells (41.9 ± 8.5% AAV.CMV-EGFP, 39.5 ± 12.7%
AAV.Nefh-EGFP and 33.9 ± 11.2% high dose AAV.Nefh-EGFP;
Figures 4, 5B), Nefh promoter-mediated EGFP expression in the
GCL was observed in significantly fewer Brn3a negative cells
(p < 0.001, 12.1 ± 3.3 AAV.CMV-EGFP, 3.5 ± 1.7 AAV.Nefh-
EGFP and 3.4 ± 1.2 high dose AAV.Nefh-EGFP; Figures 4, 5B).
ChAT (Figures 4F–J) and GABA (Figures 4K–O) markers were
used to analyse subpopulations of amacrine cells. ChAT labeled
cells in both the INL and GCL, resulting in prominent “double-
layered” staining within the IPL (Figures 4F–J); ChAT labeling
identified approximately 17% cells in the mouse GCL (Figure 4,
5C), in line with previous data (Crooks and Kolb, 1992). GABA
immunostaining resulted in widespread labeling in the mouse
retina (Figures 4K–O); GABA labeling identified approximately
15% of cells in the GCL in our study (Figure 4, 5D).EGFP
expressing cells were significantlymore likely to be ChAT positive
amacrine cells (Figures 4F–J) when EGFP expression was driven
by theCMV promoter, compared to theNefh promoter (p< 0.05,
7.5 ± 4.6% AAV.CMV-EGFP, 3.1 ± 1.4% AAV.Nefh-EGFP and
3.2± 1.9% high dose AAV.Nefh-EGFP; Figure 5C). Additionally
a greater number of CMV promoter driven EGFP positive cells
were also co-labeled with GABA, however this represented a
trend rather than reaching significance (8.3 ± 4.0% AAV.CMV-
EGFP, 5.8 ± 2.4% AAV.Nefh-EGFP and 4.0 ± 3.7% high dose
AAV.Nefh-EGFP; Figure 5D).

As a second method of assessing preferential gene expression
in RGCs from the Nefh promoter, adult wildtype mice were
intravitreally injected with 9 × 109vg/eye AAV.Nefh-EGFP or
3 × 109vg/eye AAV.CMV-EGFP. Three weeks post injection,
retinas were taken, cells dissociated and analyzed by cell
sorting and EGFP-positive cells assessed for Thy1 expression.
Interestingly levels of Thy1 enrichment in these populations

were significantly higher in AAV.Nefh-EGFP versus AAV.CMV-
EGFP transduced retinal samples (5.4-fold, n = 12 vs. only
1.6-fold, n = 9 respectively; p < 0.005). These data support
the immunohistochemical observations above. Notably, Thy1
mRNA levels were found to be 3.23-fold higher in Thy1-positive
cells than in non-antibody labeled retinal cells with a similar
forward and sideways scatter (CT values of 32.618 and 33.477
respectively), indicating that the Thy1 antibody enriches for
RGCs (Figure S1).

DISCUSSION

AAV has become one of the most commonly used vectors for
gene therapy, with many clinical trials ongoing or completed
and a number of gene therapies approved or seeking approval
(clinicaltrials.gov). AAV is also the predominantly used vector
in ocular gene therapies, with AAV2 currently the serotype
of choice for RGC directed approaches (Hauswirth et al.,
2008; MacLaren et al., 2014; Bainbridge et al., 2015; Bennett
et al., 2016; Feuer et al., 2016; Ghazi et al., 2016; Yang
et al., 2016; clinicaltrials.gov). Research in recent years has
focused on improving the efficiency of AAV transduction and
expression in the retina. The development of AAV vectors
such as AAV7m8 and AAV8BP2 has improved levels of
transduction in a wide variety of retinal cell types, and enabled
consideration of intravitreal administration as a potential route
of access to many retinal cells including photoreceptors (Dalkara
et al., 2013; Cronin et al., 2014; Ramachandran et al., 2016).
Various tyrosine capsid mutations in AAV have the potential
to increase transgene expression levels by modulating capsid
phosphorylation and ubiquitin proteasome-based degradation of
viral particles during intracellular trafficking (Petrs-Silva et al.,
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FIGURE 4 | Immunocytochemistry analysis of AAV.Nefh-EGFP transduced retinas. Eyes were injected intravitreally with AAV.Nefh-EGFP (3 × 109 vg). Transduced

eyes (n = 5) were fixed and cryosectioned 12 weeks post-delivery. Immunocytochemistry was performed for Brn3a (Cy3; A–E), ChAT (Cy3; F–J) and GABA (Cy3;

K–O) in combination with EGFP labeling (FITC). DAPI was used for nuclear counterstaining. Rectangles (in B,G,L) indicate positions of the enlarged areas. A,F,K: Cy3

label; B,G,L: Cy3, FITC and DAPI overlaid. C,H,M: FITC label; D,I,N: Cy3 label; E,J,O: Cy3, FITC and DAPI labels overlaid. (C–E) Bold arrowheads: transduced

Brn3a-positive cells. Regular arrowheads: un-transduced Brn3a-negative cells. Double arrowhead: a transduced Brn3a-negative cell. (H–J) Bold arrowheads:

transduced ChAT-negative cells. Regular arrowhead: a transduced ChAT-positive cell. (M–O) Bold arrowheads: transduced GABA-negative cells. Regular arrowheads:

un-transduced GABA-positive cells. Double arrowhead: an un-transduced GABA-positive cell. ONL, outer nuclear layer; INL, inner nuclear layer, GCL, ganglion cell

layer. Scale bars: 25 µm (F,H).

2009; Mowat et al., 2014; Mao et al., 2016). Recent approaches to
intravitreal delivery, including vitrectomy and sub-inner limiting
membrane (sub-ILM) blebbing, have the potential to improve
expression levels further (Boye et al., 2010; Tshilenge et al., 2016).
However, a consequence ofmore efficient and broad transduction
profiles may be greater potential for off-target effects. Confining
expression of a gene therapy to only those cells affected by a
disease represents a rational strategy; the potential reduction in
immune responses may be an advantageous safety feature, as well
as a means of aiding long-term expression.

In the current study, we have developed an approach
to identify putative RGC promoters by analyzing retinal
transcriptomic data and referencing it against mammalian
sequence conservation datasets to infer potential function.
The expression levels of retinal genes were analyzed, with
high GCL enrichment and high absolute expression levels
prioritized. Gene expression data in RGCs from the gene

expression omnibus (GEO; ncbi.nlm.nih.gov/geo) was analyzed
in detail. Studies on expression from pre-natal or immature
retina were omitted. In addition, samples where photoreceptor
cell-specific gene expression was found to be high in RGCs
were excluded as this indicated sample impurity. In contrast
to the data from Kim et al. (2006), and taking the above
into account, no other studies in the database suitably
provided data on RGC gene expression enrichment in adult
retina.

Conservation of the upstream sequence of these genes was
evaluated in this context in order to establish lead candidate
promoter sequences. Using this approach, we identified a number
of potential promoters for use in RGCs.We proceeded to evaluate
in vivo one of these, Nefh, a putative promoter sequence that
showed significant conservation between species, high retina
expression and RGC enrichment and that was of a suitable size
for use in AAV-mediated gene delivery vectors. We established
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FIGURE 5 | Quantification of CMV and Nefh mediated EGFP expression in vivo. Retinas were injected intravitreally with AAV.CMV-EGFP (3 × 109 vg; A,D) or two

different doses of AAV.Nefh-EGFP (3 × 109 vg; B; and 9 × 109 vg; C). Transduced eyes (n = 4–5) were fixed and cryosectioned 12 weeks post-delivery.

Immunocytochemistry was performed for Brn3a, ChAT, GABA, and EGFP; DAPI was used for nuclear counterstaining. Manual quantification of labeled and co-labeled

cells was performed in the immunolabelled retinal sections. (A) Distribution of EGFP positive cells was determined in the ganglion cell (GCL) and the inner nuclear

layers (INL). Additionally, co-localization of EGFP with Brna3a (B), ChAT (C), and GABA (D) was determined in the GCL. ***p < 0.001; *p < 0.05 (ANOVA).

that the Nefh upstream sequence efficiently drives expression in
RGCs following intravitreal injection of AAV.Nefh-EGFP.

Following intravitreal delivery of either AAV.Nefh-EGFP or
AAV.CMV-EGFP, EGFP expression patterns were compared by
histology. Serotype AAV2/2 was chosen both for its efficient
transduction of mouse RGCs, as well as its use and tolerance
in the human eye, as has been observed in several clinical
trials (Zhang et al., 2009; Busskamp et al., 2010; Koilkonda
et al., 2014; MacLaren et al., 2014; Bennett et al., 2016; Ghazi
et al., 2016; Sengupta et al., 2016; Yang et al., 2016). Both
the Nefh and CMV promoters drove effective expression of
EGFP in the GCL (Figure 3). Of note, the AAV.CMV-EGFP
vector also resulted in expression in the INL, while AAV.Nefh-
EGFP expression was predominantly confined to the GCL, with
few EGFP positive cells observed in the INL (Figures 3, 5A).
Furthermore, when an increased dose of the AAV.Nefh-EGFP
vector was administered, the levels of EGFP expression in the INL
did not increase, highlighting the relative specificity of the Nefh
promoter compared to CMV.

Fifty percent of the GCL is composed of amacrine cells
(Jeon et al., 1998; Akopian et al., 2016; webvision.med.utah.edu).
Analysis of EGFP expression in Brn3a-negative cells, as well as
in GABA-positive or ChAT-positive amacrine cells, two major
types of amacrine cells in the mouse GCL, demonstrated that
AAV.Nefh-EGFP resulted in transgene expression in significantly

fewer amacrine cells compared to AAV.CMV-EGFP. While
expression from the Nefh promoter was significantly restricted
to ChAT-positive amacrine cells in the GCL compared to the
CMV promoter, expression from both promoters were similar
for GABA expressing amacrine cells in the GCL. This further
highlights the relative specificity of the Nefh promoter sequence
in targeting RGCs, and underlines its potential use for gene
delivery to RGCs and its value for future gene therapies directed
toward the retinal GCL. Of note, no significant difference was
found between the numbers of transduced RGCs between the
two doses of AAV.Nefh-EGFP. Previous studies have shown that
only 40–60% of cells in the GCL are actually RGCs (Xiang et al.,
1996; Schlamp et al., 2013); it may be that saturation of RGC
transduction is being reached even at the lower AAV.Nefh-EGFP
dose.

RGCs represent a heterogeneous population thought to
comprise in the region of 30 discrete types (Baden et al., 2016),
which together represent approximately 1% of cells in the retina.
This has made isolation of pure populations of RGCs highly
challenging within the field. Methods that have traditionally been
used to enrich for RGCs, commonly using a Thy1 antibody,
have included immunopanning (Barres et al., 1988), density
gradient centrifugation (Kornguth et al., 1981), and magnetic cell
separation (Shoge et al., 1999). More recently flow cytometry-
based methods with the Thy1.2 antibody have been used for
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RGC enrichment (Chintalapudi et al., 2016). These studies have
highlighted that while the Thy1 antibody does indeed enrich
for RGCs it does not exclusively label these cells, indicating
that RGC-isolation methodologies still require optimization. In
the current study we used Thy1.2-based flow cytometry to
support the data from immunohistochemistry. Similar to other
studies, we found that the antibody did not exclusively isolate
RGCs, based on the percentage of Thy1-positive cells. However,
in addition we confirmed at the RNA level that Thy1 was
enriched in our flow-sorted population. Using flow cytometry we
demonstrated enrichment of Thy1-positive cells within EGFP-
positive cell populations to be greater in AAV.Nefh-EGFP vs.
AAV.CMV-EGFP treated retinal cell samples. This confirms our
histological data, and indicates preferential gene expression in
RGCs with the Nefh promoter.

The purpose of this study was two-fold, involving
identification of candidate RGC promoters for potential use
in AAV-mediated gene therapies, and moreover the validation
of the utilized methodology for characterisation of putative
promoter sequences (Figures 1, 2). As sequencing costs continue
to decrease, and techniques such as RNAseq becomemore widely
adopted, access to transcriptomic datasets from a wide variety
of cell types will become more readily available. The availability
of such large datasets will be a powerful resource, which, in a
similar fashion to the present work, could be exploited to identify,
characterize and validate promoter sequences. The current study
utilized an AAV2/2 vector to facilitate the transduction of mouse
RGCs. However, it has been previously observed that, while
AAV2/2 is well tolerated in the human eye when administered
subretinally, its transduction efficiency in primate RGCs is
inferior to that of mice (Ivanova et al., 2010; Yin et al., 2011;
Tshilenge et al., 2016). The development of new capsid serotypes
such as AAV8BP2 (Ramachandran et al., 2016), or new methods
of administering AAV2/2 (as in the sub-ILM delivery of Boye
et al., 2016) should aid in addressing this. It is important to note
that the repertoire of AAV serotypes available for gene delivery
is rapidly increasing. These improved viral capsids and delivery
methods may increase the probability of detecting potential
off-target transcriptional activity from tissue-specific promoters,
including Nefh, beyond what was seen in the current study
employing AAV2.

Intravitreal injection represents a route of vector
administration that enables efficient transduction of RGCs.
RGCs are the primary target cell population for gene
therapies for many disorders including Leber Hereditary
Optic Neuropathy (LHON), dominant optic atrophy (DOA),
glaucoma and the retinal endophenotypes that are a feature of
many neurodegenerative disorders, such as multiple sclerosis
(Farrar et al., 2013). While intravitreal administration provides
access to RGCs, it may more readily result in stimulating
immune response(s) to vectors such as AAV compared to
subretinal administration (Li et al., 2008). It would therefore be
valuable to minimize the therapeutic vector dose, and to confine
transgene expression to the target cells of interest, thereby
limiting undesired side effects.

Furthermore, observations regarding patterns of cellular loss
in end stage photoreceptor degenerations have highlighted

the retention of certain retinal layers. While frequently the
photoreceptor layer degenerates, many other retinal cells remain
relatively intact, including bipolar, amacrine, horizontal and
RGCs. These observations have been elegantly juxtaposed with
the identification of light sensitive molecules from organisms
such as algae and archaebacteria. Optogenetics is the expression
of these molecules, provided as a gene therapy or protein, in
non-light sensitive neurons thereby introducing a capacity for
light detection. RGCs represent one key target cell population
for optogenetics (Farrar et al., 2014; Gaub et al., 2014), and
hence the Nefh promoter characterized in the current study, in
principle, may also be of value in the design of future optogenetic-
based gene therapies for IRDs. The above highlights the potential
utility of the Nefh promoter sequence identified in the current
study providing preferential transgene expression in RGCs in
the design of future gene therapies for many disorders involving
RGCs. The study identifies a unique sequence within the Nefh
upstream region, which should be of immense value in future
gene therapies where preferential transgene expression in RGCs
is desired.
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Figure S1 | Flow cytometry analysis of CMV and Nefh promoter mediated EGFP

expression. Eyes were injected intravitreally with either AAV.CMV-EGFP (3 × 109)

or AAV.Nefh-EGFP (9 × 109vg). Three weeks post-injection, retinas were

dissociated and processed for flow cytometry analysis, using a Thy1 antibody

conjugated to PE-Cy5. Nucleated cell populations were identified on the basis of

DRAQ5 positive labeling (data not shown) and forward (FSC) and side (SSC)

scatter (a), and singlets identified (b,c). Thy1 (x-axis) and EGFP (y-axis) gates

were created based on wildtype retinas that had not been treated with Thy1

antibody and wildtype retinas that had been treated with Thy1 antibody,

representing Thy1-negative (d) and Thy1-positive (e) control samples. Using these

pre-defined gates transduced retinal samples (n = 6 per group) were sorted

against EGFP and PE-Cy5 (Thy1; f,g). Percentage of cells in each quadrant are

indicated. Enrichment values were generated by dividing the percentage of Thy1

and EGFP double positive cells by the percentage of EGFP-positive Thy1-negative

cells. Thy1 positive cells (from n = 12 retinal samples) and non-labeled singlets

with a similar FFC/SSC profile (from n = 9 retinal samples) were collected and

pooled and Thy1 mRNA levels were established by RT-QPCR (h). Thy1 mRNA

enrichment in Thy1 antibody positive cells was calculated from the 1Ct value

divided by the ratio of Thy1-positive cells to whole retinal cells.

Table S1 | List of animal sequences used for conservation alignment. A placental

mammal species alignment (phastConsElements60wayEuarchontoGlires) was

used for the conservation alignment seen in Figure 2. Species are grouped as

Glires, Primates, and other placental mammals, with species names, sequence

assembly dates, and assembly details listed.
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