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Up to date, the functional gains obtained after robot-aided gait rehabilitation training are

limited. Error augmenting strategies have a great potential to enhance motor learning of

simple motor tasks. However, little is known about the effect of these error modulating

strategies on complex tasks, such as relearning to walk after a neurologic accident.

Additionally, neuroimaging evaluation of brain regions involved in learning processes

could provide valuable information on behavioral outcomes. We investigated the effect

of robotic training strategies that augment errors—error amplification and random force

disturbance—and training without perturbations on brain activation and motor learning

of a complex locomotor task. Thirty-four healthy subjects performed the experiment with

a robotic stepper (MARCOS) in a 1.5 T MR scanner. The task consisted in tracking a

Lissajous figure presented on a display by coordinating the legs in a gait-like movement

pattern. Behavioral results showed that training without perturbations enhanced motor

learning in initially less skilled subjects, while error amplification benefited better-skilled

subjects. Training with error amplification, however, hampered transfer of learning.

Randomly disturbing forces induced learning and promoted transfer in all subjects,

probably because the unexpected forces increased subjects’ attention. Functional MRI

revealed main effects of training strategy and skill level during training. A main effect of

training strategy was seen in brain regions typically associated with motor control and

learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus.

Especially, random disturbance and no perturbation lead to stronger brain activation in

similar brain regions than error amplification. Skill-level related effects were observed

in the IPS, in parts of the superior parietal lobe (SPL), i.e., precuneus, and temporal

cortex. These neuroimaging findings indicate that gait-like motor learning depends on

interplay between subcortical, cerebellar, and fronto-parietal brain regions. An interesting

observation was the low activation observed in the brain’s reward system after training

with error amplification compared to training without perturbations. Our results suggest

that to enhance learning of a locomotor task, errors should be augmented based on

subjects’ skill level. The impacts of these strategies on motor learning, brain activation,

and motivation in neurological patients need further investigation.
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INTRODUCTION

Robot-aided gait rehabilitation was developed to improve
rehabilitation in patients with severe gait impairments (Behrman
and Harkema, 2000; Riener et al., 2005). During robotic gait
training, patients are provided with body weight support while
a gait orthosis moves their legs into a correct kinematic gait
pattern. It is thought that by moving the limb in ways that
patients are otherwise not able to move would provide novel
somatosensory stimulation that helps induce brain plasticity
(Poon, 2004; Rossini and Dal Forno, 2004). Furthermore,
robotic guidance might motivate repetitive and intensive practice
in a safe environment (Reinkensmeyer and Housman, 2007).
However, robotic guidance also appears to decrease physical
effort during training (Israel et al., 2006), suggesting that robotic
rehabilitation could potentially decrease recovery if it encourages
patient’s slacking, i.e., a decrease in effort, energy consumption,
or attention during repeated movements when movement errors
are small (Scheidt et al., 2000; Reinkensmeyer et al., 2009).

In fact, up to date, the functional gains obtained after robotic
gait training are still limited (Dobkin and Duncan, 2012). There
have been several clinical studies that have compared robotic gait
training to conventional therapy—see (Pennycott et al., 2012)
for a review. Results from these studies suggest that robotic-
aided gait rehabilitation is especially suitable in the stroke acute
phase, when patients can benefit from the higher degree of
support from the robotic device. In general, the best results
were found when the robot was employed in combination
with conventional therapy (Husemann et al., 2007; Schwartz
et al., 2009). In fact, a recent report suggested that robotic
therapy combined with conventional therapy was more effective
than conventional therapy alone in subacute stroke patients
with greater motor impairment (Morone et al., 2011). Thereby,
current rehabilitation robots might be working with suboptimal
training strategies—only using a fraction of the rehabilitation
potential—by not considering the subjects’ individual needs.

Active subject participation is vital in order to provoke motor
plasticity (Lotze et al., 2003), and is therefore, an important
feature of gait training, especially in patients with lower motor
impairments. In order to promote higher levels of subject
participation and challenge, “challenge-based” controllers have
been proposed, i.e., controllers that, unlike guiding controllers,
make movement tasks more challenging or difficult (Marchal-
Crespo and Reinkensmeyer, 2009). Research on motor learning
has emphasized that errors are needed in order to drive
motor adaptation (Emken and Reinkensmeyer, 2005; Reisman
et al., 2013). Experimental evidence with healthy subjects has
demonstrated that adaptive processes can be accelerated when
trajectory errors are amplified using robotic forces during
walking (Emken and Reinkensmeyer, 2005). In post-stroke
patients, increasing subjects’ legs phasing error (i.e., walking
asymmetry) through a split-belt treadmill that moved each leg
at a different speed resulted in a long term increase in walking
symmetry (Reisman et al., 2013). Error amplification training
also induced more robust aftereffects after locomotion training
as compared to assistive training (Yen et al., 2012). However,
augmenting errors did not always benefit motor learning. In a

recent experiment with healthy subjects, training a golf putting
task with augmented velocity errors had no effect on task
performance and resulted in a decrease in motivation that lasted
even after the error augmentation was retired (Duarte and
Reinkensmeyer, 2015). A possible rationale for these inconsistent
results is that the motivation decrease associated with error
amplification might hamper learning.

Movement errors can also be induced using unexpected
randomly-varying robotic forces that disturb subjects’
movements during training. Recent research has stated that
motor variability exhibited before training predicts motor
learning ability (i.e., subjects with more variable movements
showed faster adaptation; Wu et al., 2014). Unexpected
randomly-varying feedforward forces might increase movement
variability, and therefore, create an excellent framework to
boost motor learning. Furthermore, error exploration is an
important element to enhance learning, especially during the
first stages of learning (Huberdeau et al., 2015). Unexpected
forces might push subjects away from their “comfort zone,”
and therefore, encourage them to explore and investigate the
new motor tasks. In a motor learning experiment with healthy
subjects, training with randomly-varying robotic forces resulted
in better tracking skills than training without robotic assistance
or training with repulsive forces proportional to errors (Lee
and Choi, 2010). Furthermore, we found that adding random
disturbing forces during training improved motor learning of
a simple locomotion task, probably because the addition of
unforeseen forces increased subjects’ effort (muscle activation)
and attention (Marchal-Crespo et al., 2014a,b).

A well-known motor learning theory, the Challenge Point
Theory states that learning is maximized when the task difficulty
is appropriate for the individual skill level of the performer
(Guadagnoli and Lee, 2004). This is line with recent studies
that found that robotic guidance seems to be especially helpful
to train subjects with initial lower skill level (Marchal-Crespo
et al., 2010, 2013), while error amplification was found to
be more beneficial to train more skilled participants (Milot
et al., 2010; Duarte and Reinkensmeyer, 2015). Additionally,
error-augmenting strategies might be more suitable to enhance
learning of especially simple tasks, i.e., tasks that can be learned
in only one training session, since it might increase subjects’
concentration (Marchal-Crespo et al., 2014b). On the other hand,
in more challenging tasks, augmenting errors might decrease
feelings of perceived satisfaction and competence and result in a
decrease in motivation that might limit the effectiveness of error
amplification on motor learning (Duarte and Reinkensmeyer,
2015).

Only few motor learning studies have compared the
effectiveness of different robotic training strategies, and their
relative benefits compared to unassisted practice, on motor
learning. Most of these studies were performed with the upper
limbs and/or using simple tasks, i.e., artificial tasks that have only
one degree of freedom and can be learned in only one training
session (Wulf and Shea, 2002). However, it has been shown that
“principles derived from the study of simple skills do not always
generalize to complex skill learning,” such as, relearning how to
walk after a neurologic accident (Wulf and Shea, 2002). The goal
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of robotic therapy is to develop robotic devices that promote
motor recovery, i.e., that provoke participant’s motor plasticity.
Currently, however, there is not a solid scientific understanding
of how this goal can best be achieved. Recent work has
highlighted the relevance of motor learning principles in stroke
recovery and neurorehabilitation (Krakauer, 2006; Shumway-
Cook and Woollacott, 2007). In fact, it has been proposed that
recovery after a brain injury is a form of motor learning or
relearning (Dietz andWard, 2015). Therefore, understanding the
underlying mechanisms of motor learning might suggest novel
training strategies to improve neurorehabilitation. Neuroimaging
evaluation of brain areas involved in learning under different
robotic training strategies can provide valuable insights on the
observed behavioral outcomes. Furthermore, evaluation of brain
areas involved in learning might also allow tailoring the best
motor training strategies to the different patterns of brain damage
(Burke and Cramer, 2013).

In this study, we present results of a motor learning
experiment performed with thirty-four healthy subjects to
evaluate the impact of three different training strategies onmotor
learning of a complex locomotor task: No perturbation, error
amplification, and random force disturbance. The experiment
was conducted while performing functional Magnetic Resonance
Imaging (fMRI) employing an MRI-compatible robotic device
(MARCOS). We hypothesized that training with the challenge-
based strategies would result in better motor learning in initially
more skilled subjects. We also expected that training with
challenge-based strategies would hamper motor learning in
initially less skilled subjects. To our knowledge, no studies have
evaluated the brain regions activated during entire gait-like
movements. Therefore, our hypothesis related to brain activation
derives from studies that investigated isolated movements of
ankle and knee joints (Luft et al., 2002) or imagination of walking
(Miyai et al., 2003; Jahn et al., 2004; la Fougère et al., 2010).
We hypothesize to find activity in somatosensory/motor related
areas (S1/M1) and supplementary and pre-supplementary motor
areas (SMA/pSMA). Hypothetically, during training with the
challenge-based strategies, we expect more activity within all
somatosensory/motor related areas, as well as in brain areas
involved in error processing, such as, the anterior cingulate cortex
(Mars et al., 2005), posterior medial frontal cortex (Hester et al.,
2008), and cerebellum (Tseng et al., 2007; Grafton et al., 2008).
Activation in the brainstem is also expected, based on animal
studies.

METHODS

MARCOS
MARCOS was employed to conduct the experiment. MARCOS
is an MRI-compatible robotic device pneumatically actuated
and with one degree-of-freedom per leg (Hollnagel et al., 2011;
Figure 1, left). MARCOS was built by the SMS-lab at ETH
Zurich with low magnetic susceptibility materials to allow the
assessment of brain activation using fMRI during gait-like
stepping movements (Jaeger et al., 2014). The robot is actuated
by two pneumatic cylinders (per leg), one attached to the subject’s
knee through a knee orthosis that can move the knee up and

down, and a second one attached to the subject’s foot sole using
a special shoe, which can render forces that mimic ground
reaction forces. The device allows hip, knee, and ankle flexion
and extension movements in the sagittal plane that resemble
on-the-spot stepping. The robot incorporates force sensors
mounted at the orthoses-human contact points to measure the
interaction forces between human and robot. The position of
each cylinder piston is measured redundantly by optical encoders
with a ceramic scale and a foil potentiometer. For more detailed
information about the robot design, the reader is referred to
(Hollnagel et al., 2011).

The Complex Locomotor Task
The experimental task consisted in tracking a white dot that
moved on top of a Lissajous figure presented on a visual display
(Figure 1, right) by coordinating the legs in a predefined gait-
like pattern. The knees vertical displacements were mapped
into the movement of a green dot on the visual display: The
green dot moved up and down when the left leg moved up
and down, and moved right and left when the right leg moved
up and down. The predefined gait-like pattern to be learned
consisted of moving the knees up and down following sinusoidal
movements of equal frequency (0.5 Hz), but different amplitudes
(left leg: 0.16 m; right leg: 0.08 m, i.e., axis ratio of 2) and
with a phase difference between legs of 60◦. This task was
selected because it was challenging enough to observe learning
in most of the subjects (Marchal-Crespo et al., 2014b). This
task is also appealing because it resembles the abnormal gait
pattern observed in stroke survivors with a paretic lower limb:
An asymmetric pattern with the paretic leg performing shorter
and faster steps.

Training Strategies
Subjects trained the gait-like task with one of three different
training strategies: (i) No perturbation (NP): no disturbances
were presented, (ii) Error amplification (EA): errors were
amplified with repulsive forces proportional to errors, and
(iii) Random force disturbance (RD): errors were induced with
unexpected randomly-varying force disturbances. The design
and evaluation of the training strategies was described in detail
in (Marchal-Crespo et al., 2014b). Here, only a brief summary is
given for completeness.

No Perturbation
When training with no perturbation, subjects are free to move
without feeling any disturbance or assistance force from the
robot. The control approach for the no perturbation strategy is
a closed-loop zero force controller that minimizes the measured
interaction forces between subjects and robot. The controller
includes the compensation of the weight of the knee orthosis
and the dependency of pressure build-up on chamber volume
(Hollnagel et al., 2013; Marchal-Crespo et al., 2014b).

Error Amplification
In order to amplify the tracking errors (i.e., the differences
between the desired and measured knee positions) created when
trying to track the Lissajous figure, a proportional controller with
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FIGURE 1 | (Left) The MRI-compatible robotic stepping actuator MARCOS in the 1.5 Tesla MR scanner (Hollnagel et al., 2011). The participant in this figure

consented to the publication of his image. (Right) The Lissajous figure visually presented to participants. Subjects were requested to track a white dot that moved on

top of a Lissajous figure by coordinating the legs in a predefined gait-like pattern. Subjects tracked the white dot with a green dot that moved up and down when the

left leg moved up and down, and moved right and left when the right leg moved up and down.

negative impedance gain was developed. Therefore, the repulsive
force applied by the knee cylinder is proportional to the tracking
error, i.e., the force is smaller as smaller is the tracking error
and increases proportional to the error. The forces from the
error amplification controller were fed into a close-loop force
controller.We saturated themagnitude of the error-amplification
forces to guarantee the subjects’ safety and to limit the difficulty
of the task (Marchal-Crespo et al., 2014b).

Random Force Disturbance
The idea behind the random force disturbance strategy is to
push subjects away from their “comfort zone,” by forcing them
to experience errors/movements that would otherwise not been
created. The controller applies unpredictable random perturbing
forces using the knee cylinder while subjects train the tracking
task. The knee cylinder applies a disturbing force that last for
0.1 s with a randommagnitude between± 100 N, every 0.5 s. The
random force disturbance controller works on top of a closed-
loop force controller, therefore, the subjects are always in charge
of the movement generation (Marchal-Crespo et al., 2014b).

Experimental Protocol
The study was approved by the local ethical committee
(Kantonale Ethikkommission Zürich, Application Number: EK-
856) and conducted in compliance with the Declaration of
Helsinki. Thirty-four healthy subjects (23 male), 26.6± 3.5 years
old, gave written consent to participate. All subjects were right
footed (evaluated with the Waterloo Handedness Questionnaire,
(Bryden, 1977). FMRI was recorded in the MR-Center of the
University of Zurich and ETH Zurich, on a Philips Achieva
(PhilipsMedical System, Best, The Netherlands) 1.5 TMR system
equipped with an 8-channel head coil.

Subjects were supine positioned with their knees fixed to
the MARCOS knee orthosis, while the feet were placed in

special shoes and fixed with Velcro fasteners (Figure 1, left).
Head motion was minimized through several solutions, such as,
custom made hip-fixations and shoulder belts, a vacuum pillow
at the participants’ back, and an inflatable headgear (Crania,
www.pearltec.ch; Hollnagel et al., 2011). The video display of the
game was projected onto a screen placed in front of the scanner
and viewed by the subjects through amirrormounted on theMRI
head coil (Figure 1, left).

A parallel design was used in order to evaluate the effects of
training with the three different training strategies (Figure 2).
The first 23 subjects were randomly assigned to one of the three
training groups: No perturbation (NP), error amplification (EA),
random disturbance (RD). After a preliminary evaluation of the
data, we found that the tracking errors created during baseline
(i.e., before training) had a significant effect on the benefits of
practicing with the different training strategies (Marchal-Crespo
et al., 2014b). Although it is expected that by randomizing
subjects into the different training groups would result in a
balanced level of tracking error across groups, it is still possible—
especially in relative small sampling sizes—to end up with
imbalanced groups that could bias our results. Therefore, we
decided to allocate the remainder 11 subjects to one of the
three training groups using adaptive randomization methods.
The idea was to yield training groups whose subjects’ initial errors
followed normal distributions with similar means and standard
distributions. To accomplish this goal, we assigned new subjects
to one of the three training groups based in the visualization of
the histograms of the errors created by the subjects evaluated
till the moment and the error performed by the new subjects
during baseline. Eleven subjects ended in the no-perturbation
group, eleven in the error-amplification group, and twelve in the
random-disturbance group.

In order to instruct subjects about the task to be performed,
they were presented with a video, outside the scanner room,
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FIGURE 2 | Experimental protocol. Haptic guidance was employed to help subjects to understand the locomotor task. Three trials of 30 s with the robot passively

moving the subjects’ legs were employed to present the locomotor task. During baseline, subjects actively tracked the Lissajous figure during 70 s in no perturbation

mode. Subjects performed a second baseline test (baseline-transfer), where they tracked a similar figure but with the left leg with the smallest amplitude. During

training, subjects played with no perturbation, error amplification or random force disturbance, depending on their training group. Each training session consisted of

eight trials of 30 s of movement with 10 s rest between trials. The short-term retention and transfer tests followed the same structure and order as baseline and

baseline-transfer tests. Subjects were scanned by the fMRI during all phases.

that showed a subject in MARCOS moving alternatively his
legs up and down and how these knee movements controlled
the movement of a green dot on a screen. They were not
informed about the training group they were assigned to, but
were informed that during practice the robot could disturb them.
The experiment started with a haptic demonstration phase, where
the robot passively guided the subjects’ legs in the desired gait-like
pattern during three trials of 30 s, with 10 s of rest between trials
in order to help subjects to understand the task to be performed
(Hollnagel et al., 2013). During the haptic-guidance condition,
subjects were instructed to relax and keep both legs passive while
they observed the white and green dot moving on top of the
Lissajous figure on the screen. After the haptic demonstration of
the locomotor task, subjects performed the baseline test during
70 s. They were instructed to coordinate their legs in order to
track the white dot that moved on top of the Lissajous figure in no
perturbationmode. Transfer of learning, i.e., the capacity to apply
an acquired skill on a task to another very similar task (Schmidt
and Lee, 2010) is a crucial aspect of motor learning. Therefore,
after baseline, subjects performed a second baseline test during
70 s (baseline-transfer), where they followed a similar Lissajous
figure but with the left leg moving with the smallest amplitude
(left leg: 0.08 m; right leg: 0.16 m). During training, subjects
played without perturbation, error amplification or random force
disturbance, depending on their training strategy group. Each
training session consisted of eight trials of 30 s of movement with
10 s rest between trials. The challenge-based training strategies
were applied to the left leg only, while the right leg was controlled
in no perturbation mode in order to limit the task difficulty. The
short-term retention and short-term retention transfer tests were
70 s long each and were performed in no perturbation mode.
Overall, the experiment was <1 h. Subjects were actively scanned
by the fMRI through the duration of the experiment.

Data Processing and Statistical Analysis
Behavioral Data
For each protocol test and training trial, we calculated the mean
tracking error for each leg as the mean of the absolute value of the
difference between the measured and target knee positions. We
evaluated whether the challenge-based training strategies worked
as expected (i.e., they increased the error during training): We

compared the error of the left leg in the first training trial to
the error during baseline using a repeated measures ANOVA
with training strategy as a between subjects factor. To determine
whether subjects increased the left leg error when training
started, a paired t-test between baseline and the first training trial
was performed per each training group.We further compared the
tracking error during the eight training trials between training
groups using ANOVAs. In order to determine whether subjects
adapted to the challenged-based strategies during training—
i.e., they reduced the error of the left leg during training—we
performed a paired t-test between the left leg tracking error
created at the first and last (eighth) training trials.

The absolute tracking error during baseline was employed
as a qualitative measure of initial skill level (i.e. the larger the
error during baseline, the initially less skilled a subject was).
We used K-means cluster analysis to divide subjects into two
skill-based groups, based on the tracking error created during
baseline. Thirteen subjects who performed systematically worse
during baseline (cluster center= 0.065 m) were assigned into the
novice group (5 NP, 4 RD, 4 EA), and the remainder 21 subjects
were classified (cluster center = 0.041 m) as skilled (6 NP, 8
RD, 7 EA). An ANOVA was used to evaluate whether the skill
groups performed differently during baseline. We used repeated
measures ANOVA to test the effect that training strategies [no
perturbation (NP), error amplification (EA), and random force
disturbance (RD) as fixed effect], initial skill level (novice and
skilled as fixed effects) and their interaction had on the tracking
error reduction from baseline to retention. In order to determine
whether subjects learned the complex locomotor task, a paired t-
test between baseline and retention was performed. To determine
whether subjects in each training strategy group and skill level
subgroup learned the task, a Wilcoxon test between the tracking
error at baseline and retention was performed. We compared
the error reduction between training groups in each skill level
subgroup using Kruskal-Wallis tests. Four subjects in the skilled
group (2 RD, 2 EA) who performed remarkably well during
baseline (error< 0.032m)were not considered in theseWilcoxon
tests in order to avoid the negative effect of learning ceiling. To
test the correlation between error reduction after the different
training strategies and initial skill level, Pearson’s correlation tests
were performed.
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We used a second performance variable in order to evaluate
whether subjects learned the desired phase between legs. The
period between legs at each step was calculated as the difference
between the time at which the left leg is at its maximum high and
the time when the right leg reaches its highest position during
a step. The phase was calculated as 360◦ over this period. For
each protocol test, the absolute mean phase error (calculated as
the difference between the calculated phase and the desired one
of 60◦) across all steps was calculated. Data from one subject in
the no-perturbation group during baseline was removed from
statistical analysis, since the error reached its maximum. In order
to test whether subjects learned the desired phase, a paired t-test
between baseline and retention was performed.We used repeated
measures ANOVA to test the effect that the training strategies,
initial skill level and their interaction had on the phase error
reduction from baseline to retention.

Transfer could not be evaluated in four subjects (1 NP, 2 RD,
1 EA), because data was not correctly recorded during baseline-
transfer. Transfer was evaluated using repeated measures
ANOVA to test the effect of the training strategy (NP, EA, and
RD as fixed effects), initial skill level (novice and skilled) and
their interaction on the tracking error reduction from baseline—
transfer to retention-transfer. Paired t-tests between the tracking
error created during baseline-transfer and retention-transfer
were performed in order to evaluate whether subjects in each
training group transferred the learned motor skills.

Normal distribution was checked visually using Q–Q plots.
Post-hoc comparisons were performed with Tukey correction.
The significance value was set to α = 0.05. Statistical analyses
were performed using IBM R© SPSS R© Software (version 23,
Chicago, IL).

Functional MR Data
FMRI of the brain was acquired using a T2∗-weighted, single-
shot, echo planar imaging sequence (echo time = 50 ms,
repetition time = 3.025 s, flip angle = 90◦, SENSE factor = 1.6).
A total of 35 interleaved, angulated, transversal slices covering
the whole brain were acquired in each volume (FOV = 220 ×

220 mm, acquisition voxel size: 2.75 × 2.8 × 3.8 mm, resliced to
1.72× 1.72× 3.8 mm).

FMRI data were analyzed using SPM8 (WellcomeDepartment
of Cognitive Neurology, London, UK). Images were realigned
to the mean image and normalized to standard MNI space
using the EPI template provided by the Montreal Neurological
Institute (MNI brain) and smoothed using an 8 mm full-width
at half-maximum Gaussian kernel. The estimated realignment
parameter data were filtered using the discrete cosine transform
matrix filter incorporated in SPM8, to remove any linear drift.
In order to avoid movement artifacts, FMRI data sets that after
filtering showed a total head displacement above half voxel size
in each dimension were excluded from the 1st-level statistical
analysis. Contrast images of themotor task performed at different
time points in the MR scanner (period: baseline, training, and
retention) vs. an implicit rest (no movements) condition were
calculated. FMRI data sets from 10 subjects during training, and
data from one subject during the retention test were excluded
from further analysis because the measured head motions were

above the threshold. FMRI data from a total of 24 subjects (9
NP, 7 EA, and 8 RD) during training, and 33 (10 NP, 11 EA,
12 RD) during baseline and retention were employed at 2nd-
level analysis. The 1st-level contrast images were then subject to a
2nd-level full factorial group analysis (2-way ANOVA). Here we
computed main effects of initial skill level and training strategy
for the contrasts: Training—rest, and retention—baseline. In case
of significant main effect of strategy, we compared by post-hoc
t-tests the following contrasts:

1. Error amplification vs. no perturbation (and vice versa)
2. Error amplification vs. random force disturbance (and vice

versa)
3. No perturbation vs. random force disturbance (and vice versa)

In case of a significant main effect of skill level, we compared
by unpaired t-tests skilled vs. novice participants (across all
training strategies). We also computed strategy × initial skill-
level interaction effects. However, we did not perform post-hoc
tests on the interaction, as we had not enough subjects (n < 10)
and, thus, lacking statistical power.

All statistical tests were thresholded at p≤ 0.001 (uncorrected)
and were cluster-corrected (kE = 27 voxels) to achieve p < 0.05
corrected. This cluster threshold was based on a Monte-Carlo
simulation approach using a script to estimate the average size of
the random clusters that can occur in our data given a p ≤ 0.001
(Slotnick et al., 2003).

RESULTS

Behavioral Data
Performance during Training
The different training groups responded differently when
training started, as suggested by a significant difference between
training groups in the tracking error change from baseline to
the first training trial [Figure 3, F(2, 31) = 9.84, p < 0.001].
Subjects trained with error amplification significantly increased
the error from baseline to the first training trial (p = 0.002),
while subjects trained without perturbations and with random-
disturbance did not changed the errors significantly. Subjects
in the error-amplification group performed systematically worse
than subjects in the random-disturbance and no-perturbation
groups during the first training trials, as observed in a significant
greater tracking error during the first, second and fourth training
trials [Figure 3, Trial 2, F(2, 31) = 6.62, p = 0.004; Trial 3,
F(2, 31) = 4.17, p = 0.025; Trial 4, F(2, 31) = 2.40, p = 0.107; Trial
5, F(2, 31) = 4.17, p = 0.025]. The differences between groups
were non-significant during the last training trials. This is due to
the fact that subjects in the error-amplification group adapted to
the error amplification disturbance, suggested by the significant
error reduction from the first to the last (eighth) training trials
(paired t-test, p = 0.004). This adaptation was not observed
in the no-perturbation and random-disturbance groups. Both
groups reduced the error from the first to the last training trials,
although not significantly. The random-disturbance and no-
perturbation groups performed similarly through the duration of
the training.
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Effect of Training Strategies and Skill Level on

Learning
The performance during baseline was significantly different
between skill groups. They showed significant differences in the

FIGURE 3 | Performance during training. Mean absolute tracking error created

with the left leg during baseline (trial 1), training with the different strategies

(trials 2–9, shaded area), and retention (trial 10). Error bars show ± 1 CI.

*p < 0.05, •p < 0.1.

tracking error during baseline [F(1, 32) = 52.14, p < 0.001]. We
examined the effect of the subjects’ skill level (i.e., the tracking
error during baseline) on the effectiveness of the different
training strategies. We found a non-significant linear correlation
between initial skill level and the error reduction from baseline
to retention after training without perturbations (Figure 4 left,
Pearson’s correlation, R = 0.544, p = 0.083). We also found a
quadratic relationship between the initial skill level and the error
reduction from baseline to retention after training with error
amplification (Figure 4 left, R= 0.716, p= 0.057).

We used repeated measures ANOVA to test the effect
that different training strategies [no perturbation (NP), error
amplification (EA), random disturbance (RD)], initial skill level
(novice, skilled), and their interaction had on the tracking
error reduction from baseline to retention. We found that all
subjects reduced the tracking error after training [F(1, 28) = 27.30,
p < 0.001]. Subjects in all training strategies learned the
task (NP: p = 0.011; RD: p = 0.016; EA: p = 0.022). The
main effect of initial skill level on the error reduction was
non-significant. The main effect of training strategy was also
non-significant. However, we found an interaction between the
initial skill level and the training strategy that approached
statistical significance [F(2, 28) = 3.22, p = 0.055]. Novices
only reduced the error significantly when trained without
perturbation (Figure 4 right, Wilcoxon, p = 0.043). In fact,
novices tended to reduce the errors to a greater amount when
trained without perturbation in comparison with the other
training strategies (Kruskal-Wallis p = 0.063). The skilled group
only reduced significantly the error after training with challenge-
based strategies (Figure 4 right, Wilcoxon, EA: p = 0.043, RD:
p= 0.075).

FIGURE 4 | (Left) Effect of initial skill level (i.e., tracking error during baseline) on the error reduction from baseline to retention with the different training strategies.

(Right) Error reduction after training with the different training strategies, in the skilled and novice groups. Error bars show ± 1 CI. *p < 0.05, •p < 0.1.
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In general, all subjects reduced the absolute phase error
from baseline to retention [F(1, 28) = 7.50, p = 0.011]. The
effect of the training strategy on the phase error reduction was
one-sided significant [F(2, 28) = 2.82, p = 0.076]. In particular,
the EA group reduced the error in a smaller amount than
the NP group (Figure 5, p = 0.077). We did not find a

FIGURE 5 | Absolute phase error for the different training groups during

baseline and retention. Error bars show ± 1 CI. *p < 0.05.

significant effect of skill level in the error reduction, neither an
interaction effect of the training strategy and the initial skill
level.

Effect of Training Strategy on Transfer
Subjects generalized the learning to the untrained task, i.e.,
they significantly reduced the errors from baseline-transfer to
retention-transfer [F(1, 24) = 9.59, p = 0.005]. In particular,
subjects trained without perturbation reduced significantly the
tracking error (Figure 6 left, p = 0.016). Subjects trained
with random disturbance also reduced the tracking errors
significantly (Figure 6 left, p = 0.007). However, subjects
trained with error amplification did not reduce the error
from baseline-transfer to retention-transfer. The main effect of
training strategy was, however, non-significant [F(2, 24) = 1.58,
p = 0.228]. The main effect of initial skill level was also
non-significant. The interaction effect of the skill level and
training strategy did not reach significance [F(2, 24) = 2.64,
p= 0.092].

Subjects did not significantly reduce the phase error from
baseline-transfer to retention-transfer (Figure 6 right). The
effect of the training strategy on the phase error reduction in
the transfer task did not reach significance [F(2, 24) = 2.97,
p = 0.070]. As observed in Figure 6 right, subjects trained
without perturbation and with random disturbance reduced
the errors (although not significantly), while subjects in
the error-amplification group tended to increase the errors
after training. The main effect of initial skill level was
non-significant. The interaction effect of the skill level and
training strategy almost reached significance [F(2, 24) = 3.25,
p= 0.055].

FIGURE 6 | Tracking error (Left) and phase error (Right) created by the different training groups during baseline-transfer and retention-transfer tests. Error bars

show ± 1 CI. *p < 0.05.
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Functional MRI Data
Training Period
We first visualized the general activation for the three different
strategies (NP, EA, and RD) during the training period. As it can
be observed in Figure 7, all strategies lead to significant bilateral
activation (p < 0.001, uncorrected) in the area 4a (leg area). The
activation map was most widespread for NP and activation for
this strategy lead also to activation in other brain regions (results
not reported).

Strategy-related main effects were seen in the basal ganglia
(putamen, caudate nucleus, and pallidum), thalamus as well as in
different parts of the cerebellum (Table 1A). In addition, fMRI
signal responses were seen in the parietal cortex such as, the
intraparietal sulcus (IPS)—which represented largest cluster in
the activation map—the posterior cingulate cortex (PCC) and in
different regions of the visual and frontal cortex.

We then asked which training strategies differed in brain
activation strength (Table 2). Error amplification did not lead
to stronger fMRI signal responses relative to no perturbation
or random disturbance. On the contrary, the contrast “no
perturbations vs. error amplification” revealed numerous brain
activations, which are—for simplicity—reported on p < 0.05
(FWE-corrected, t > 7.1; Table 2A). In a similar vein, the
comparison “no perturbations vs. random disturbance” showed
several activated clusters (p < 0.001, t > 3.6, Table 2B).
The contrast “random disturbance vs. error amplification”
demonstrated few significant clusters (p < 0.001, t > 3.6,
Table 2C).

Main effects of initial skill level were seen dominantly in right
temporal and parietal regions, including the IPS (Table 1B). Post-
hoc t-test analysis revealed that skilled subjects showed stronger
activation compared to novices in the right IPS, SPL (precuneus),
medial temporal lobe, and inferior temporal gyrus (Table 3). At
the same threshold but with lower cluster-size cut-off (kE > 15
voxels) we additionally observed activation in the brainstem and
left cerebellum.

Similar to themain effect of training strategy, strategy× initial
skill-level interaction effects were most pronounced (i.e., largest
activation cluster) in the IPS (Table 1C). Apart from activation in
frontal and visual brain regions, we noticed further activation of
the basal ganglia, primary motor cortex (M1) and somatosensory
regions (e.g., SMA) as well as the cerebellum.

Retention—Baseline Period
As summarized in Table 4, a main effect of strategy was seen
in the subgenual and anterior cingulate cortex and in M1. No
main effect of initial skill level was seen (also not when bi-
directionally comparing skilled vs. non-skilled subjects by t-tests)
nor a strategy × initial skill-level interaction. Post-hoc analysis
on the main effect of strategy revealed significant differences
for the contrasts “no perturbation vs. error amplification” and
“random disturbance vs. error amplification” (see Table 5). The
first contrast demonstrated primarily activation in the frontal
cortex. Both contrasts revealed activation in orbitofrontal regions
(Figure 8).

DISCUSSION

We evaluated the impact of three error-modulation robotic
training strategies on brain activation and motor learning of a
complex locomotor task: No perturbation, error amplification,
and random force disturbance. The experimental task consisted
in learning a complex locomotor task: Coordinating the legs
in a particular gait–like pattern in order to track a Lissajous
figure presented on a visual display. The MRI-compatible
one degree-of-freedom steeper robot (MARCOS) developed
in our institution was employed to conduct the experiment,
while performing fMRI in a 1.5 Tesla MR scanner. Even
though none of fMRI results survives a voxel threshold of
p < 0.05 using familywise error correction, all fMRI results
are presented at a widely accepted cluster-corrected p-value of
p < 0.05.

FIGURE 7 | General fMRI activation for the three training strategies: NP, RD, and EA. All results are displayed at p < 0.001 (uncorrected, t > 3.6) with a cluster-extend

threshold of kE > 27 voxels. The activation overlaps for all three training strategies at the somatosensory cortex (at the leg area).
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TABLE 1 | Summary of brain activation during training for the main effect of

training strategy, initial skill level, and its interaction in the training model.

Region Hemisphere MNI Cluster-size

(A) MAIN EFFECT OF TRAINING STRATEGY

Putamen Left −22 13 0 122

Middle orbital Left −35 47 0 225

Pallidum Right 22 −4 0 82

Thalamus Left −13 −24 0 33

Right 12 −6 12 28

Cerebellum (lobule VI) Right 35 −41 −30 27

Left −20 −55 −8 52

Intraparietal sulcus (IPS) Right 45 −55 38 934

Left −42 −57 39 153

Posterior cingulate cortex (PCC) Right 1 −38 35 283

Inferior frontal gyrus (BA 44/45) Left −48 −13 34 326

Right 48 23 28 45

Middle frontal gyrus Left −28 31 34 139

Cuneus Right 18 −70 27 90

Amygdala Left −30 0 −19 61

Hippocampus Right 40 −16 −14 59

Fusiform gyrus Right 25 −61 5 55

(B) MAIN EFFECT OF INITIAL SKILL

Medial temporal gyrus Left −40 14 −32 75

SPL (precuneus) Right −2 −66 60 56

IPS Right 42 −49 36 64

Inferior temporal gyrus Right 64 −38 −12 20

Rolandic operculum Right 50 −1 13 16

(C) INTERACTION STRATEGY × INITIAL SKILL

IPS Right 42 −48 36 1595

Left −40 −57 39 320

Lingual/fusiform Left −20 −62 −6 226

Fusiform gyrus Left −37 −78 −12 28

Supplemtary motor area (SMA) Right 2 −15 56 173

PCC Right 4 −48 40 133

Primary motor cortex (area 4a/4p) Right 28 −28 58 118

Middle frontal gyrus Right 36 18 56 116

Postcental gyrus (area 1/2) Right 24 −48 66 49

Right 50 −40 58 109

Caudate nucleus Right 18 12 10 108

Cerebellum (lobule VI) Right 28 −36 −26 80

hOC3v Left −14 −92 2 70

Insula Left −26 19 0 56

Medial temporal gyrus Right 56 −48 0 53

Superior orbital gyrus Right 14 38 −14 47

Temporal pole Left −24 2 −28 44

Thalamus Right 8 −2 12 41

Putamen Right 16 8 4 107

All results are reported at p < 0.001 (uncorrected, t > 3.6), F-contrast, kE > 27.

Effects of Training Strategies on
Performance during Training
The error amplification training strategy worked as expected,
i.e., it significantly increased the tracking error when firstly

TABLE 2 | Summary of post-hoc t-tests on the main effect of training strategy

during training.

Region Hemisphere MNI Cluster-size

(A) NP—EA*

IPS Right 43 −50 37 72

Inferior parietal lobe Right 42 −68 39 32

Inferior frontal gyrus Left −57 8 31 15

Middle orbital gyrus Left −36 48 0 4

(B) NP—RD**

Angular gyrus Right 42 −60 30 1262

Fusiform gyrus Left −22 −52 −8 217

Left −27 −77 −5 136

Thalamus Left −31 −27 1 161

Right 15 −6 12 33

Superior frontal gyrus Left −21 18 38 92

Ant.insula/ant. putamen Left −28 16 1 73

Cerebellum (lobule VI) Left −26 −30 −26 72

Cerebellum (dentate nucleus) Left −22 −52 −32 32

PCC Right 12 −50 32 68

Lingual gyrus Right 26 −63 4 62

Pallidum Right 17 1 6 59

Inferior frontal gyrus Right 47 21 27 54

Caudate nucleus Left −14 6 9 50

Hippocampus Right 37 −16 −14 40

Precentral gyrus Right 64 −3 28 36

(C) RD—EA**

IPS Right 47 −56 39 587

Inferior frontal gyrus (BA 44/45) Left −54 10 34 111

Superior orbital gyrus Left −37 52 1 37

Calcarine gyrus (V1/V2) Right 1 −99 9 35

Superior frontal gyrus Left −13 53 40 34

*p < 0.05 (FWE corrected, t > 7.1).

**p < 0.001 (uncorrected, t > 3.6).

The following training strategies were compared: NP—EA, NP—RD, RD—EA. For

readability, results for NP—EA are shown at p < 0.05 (family-wise error corrected). All

other contrasts are reported at p < 0.001 (uncorrected, t > 3.6), kE > 27.

TABLE 3 | Brain activation differences for “skilled vs. non-skilled” participants

averaged across all learning strategies during training.

Region Hemisphere MNI Cluster-size

SKILLED vs. NON-SKILLED

SPL (precuneus) Midline 0 −68 57 94

Medial temporal pole Left −40 14 −32 114

IPS Right 42 −48 36 96

Inferior temporal gyrus Right 64 −38 −12 35

All results are reported at p < 0.001 (uncorrected, t > 3.6), F-contrast, kE > 27.

introduced. Training with error amplification resulted in larger
tracking errors during the firsts training trials compared to
training with random force disturbance and no perturbation,
suggesting that error amplification was the most difficult training
strategy. We did not find significant differences in subjects’

Frontiers in Neuroscience | www.frontiersin.org 10 September 2017 | Volume 11 | Article 526

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Marchal-Crespo et al. Skill Influences Robotic Training Effectiveness

TABLE 4 | Summary of brain activation for the main effect of learning strategy for

the contrast “retention—baseline”.

Region Hemisphere MNI Cluster-size

MAIN EFFECT OF STRATEGY

Subgenual cingulate (BA 25) Right 2 0 13 101

Left −8 −2 −12 88

Anterior cingulate cortex

(BA 24/32)

Left −13 16 −8 42

Primary motor cortex (area 4p) Right 37 −16 38 29

Results are displayed at p < 0.001 (uncorrected, t > 3.6) with a cluster-extend threshold

of kE > 27 voxels. There was no significant main effect of initial skill level or an interaction

effect (learning strategy × initial skill level) visible.

performance when training with random disturbance and no
perturbation. The forces applied during random disturbance
created short and fast change in the trajectory smoothness
(Marchal-Crespo et al., 2011) and thereby, maybe the overall
mean tracking error was not significantly affected. This is in line
with a previous study we conducted using MARCOS to train
a simple locomotor task with random force disturbance: The
introduction of force disturbances did not increase the mean
tracking error, but increased the muscle activation, suggesting
that training with random disturbances was more physically
demanding (Marchal-Crespo et al., 2014b). In fact, this higher
muscular activity may explain why the tracking error during
training with force disturbances did not differ from the mean
error created when training without perturbations: Maybe
subjects were able to cancel the tracking errors using muscular
effort.

Subjects adapted to the error-amplification strategy during
training. This is in line with previous research on motor learning
that suggested that training with error-amplification promote
the formation of an internal model (Emken and Reinkensmeyer,
2005). Subjects did not significantly reduce the tracking error
when training with random disturbances, probably because the
disturbing forces were unpredictably applied and the formation
of an internal model was not possible.

The Training Strategy that Enhances
Learning Depends on Subjects’ Skill Level
We expected better motor learning when training with the
challenge-based strategies in initially more skilled subjects. We
also hypothesized that training with challenge-based strategies
would hamper motor learning in initially less skilled subjects.
Behavioral results confirmed our hypothesis: The training
strategy that enhances learning depended on subjects’ initial
skill level. Training without perturbations benefited learning
in novices, while amplifying tracking errors during training
enhanced learning in initially more skilled subjects. This is in line
with previous experiments that showed that error amplification
seemed to be specifically beneficial for skilled subjects (Milot
et al., 2010; Duarte and Reinkensmeyer, 2015). This can be
explained by the Challenge Point Theory, which states that
learning is maximized when the task difficulty is appropriate
for the individual subject’s level of expertise (Guadagnoli and
Lee, 2004). Error amplification, on the other hand, hampered

TABLE 5 | Summary of post-hoc t-tests on the main effect of learning strategy for

the contrast “retention—baseline”.

Region Hemisphere MNI Cluster-size

(A) NP—EA

Inferior temporal gyrus Right 62 −42 −10 41

Frontal operculum Right 6 0 −12 617

Superior orbital gyrus Left −12 16 −8

Right 14 2 −14

Primary motor cortex (area

3a/4p)

Right 36 −16 38 95

Right 48 −14 38

Anterior temporal lobe Left −48 10 −16 147

Left −54 2 −16

Left −48 −6 −16

Middle orbital gyrus Right 22 34 −4 34

Right 32 36 −4

Inferior frontal gyurs/Middle

orbital gyrus

Right 34 26 −16 98

Right 44 48 −14

Right 32 40 −8

Precentral gyrus (BA 44/45) Right 56 4 36 31

Frontal operculum (fo1) Right 4 44 −14 29

Frontal operculum (fo3) Left −26 36 −2 27

(B) RD—EA

Superior orbital gyrus Left −8 −2 −12 53

Superior orbital gyrus/BA 24

and BA 25

Right 6 −2 −12 33

Middle occipital gyrus (area

hOC4lp)

Right 36 −86 16 34

Inferior temporal gyrus Left −40 −28 18 69

Supramarginal gyrus

(IPL/IPS)

Left −48 −42 34 64

OP2 Right 30 −24 22 39

OP1 (S2) Left −56 −30 24 58

IPL (PFm/PGa) Left −52 −64 42 39

Left −52 −54 44

Thalamus Right 4 −20 20 27

Left −4 −22 18

Results are displayed at p < 0.001 (uncorrected t > 3.6) with a cluster-extend threshold

of kE > 27 voxels. NP and RD showed stronger fMRI signal changes compared to EA.

learning in initially less skilled subjects, maybe because it made
the task to be learned too difficult and frustrating (Duarte
and Reinkensmeyer, 2015). Indeed, our fMRI data showed
an involvement of the brain reward system in the error-
amplification group for the contrast NP—EA, which could
support this theory.

In a previous experiment performed with MARCOS
and similar error-challenging robotic strategies, we found
contradictory results (Marchal-Crespo et al., 2014b). Training
with error amplification was most suitable for initially less skilled
subjects. This contradictionmight be explained by the differences
in the motor task to be learned. In the previous experiment,
the task consisted in trying to synchronize the non-dominant
leg with the dominant leg, passively moved by the robot.
Therefore, it was a simple one degree-of-freedom locomotor
task, compared to the complex two degree-of-freedom bipedal
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FIGURE 8 | Brain activation difference between “retention—baseline” for the

contrast no perturbation—error amplification. FMRI signal changes were most

pronounced in the frontal cortex including the orbitofrontal cortex (for a full list

of activation see Table 5).

locomotor task employed in the current experiment. This is in
line with previous research that found that “principles derived
from the study of simple skills do not always generalize to complex
skill learning” (Wulf and Shea, 2002). For less skilled subjects,
error augmenting strategies might be more suitable to enhance
learning of especially simple tasks, but might hamper learning of
more complex tasks. Therefore, matching the training strategy
to the relative trainee’s skill level to perform a specific task, may
provide the greatest opportunity for learning (Marchal-Crespo
et al., 2015).

Interestingly, we found that for the error-amplification group,
the relationship between error reduction after training and
initial skill level was quadratic. Initially proficient subjects—i.e.,
subjects who performed particularly well during baseline—did
not benefit from error amplification. This can be explained by
the behavior of the controller. The perturbations of the error-
amplification strategy depend on the subjects’ performance—i.e.,
only existing errors are amplified, with higher amplification for
larger errors. Thereby, proficient subjects may not have been
sufficiently challenged during training, since they were making
systematically small errors and thereby, error amplification failed
to have a significant impact on their performance during training.

Random force disturbances seemed to benefit motor learning
in all subjects, independently of their initial skill level. It is
interesting to note that the random force disturbance did not
increase the mean tracking error during training. The goal of
the random force disturbance strategy is to push subjects away
from their “comfort zone,” so they are encouraged to examine and
investigate new solutions to fulfill the motor tasks by themselves.
Therefore, maybe the lack of anticipation of the random
disturbing forces motivated subjects to be more concentrated
and attentive during training. The random-disturbance strategy
was independent of the subjects’ performance, thus it might

increase subjects’ attention during training, even if proficient
subjects created very small errors. Our fMRI data support
this idea, since we found stronger activation in brain areas
associated with attentional control (Shulman et al., 2003; Luks
et al., 2007; such as, SPL and IPS) when training with random
disturbance, compared to training with error amplification.
However, we did not observe differences in brain activation
between training with random force disturbances and without
perturbations. This might be due to some overlapping activity
in the frontal cortex (see Tables 2A,B) when we compare to
error amplification. Alternatively, maybe the difference in the
behavioral results was due to a change in the limbs’ stiffness.
Training in unstable environments tend to alter the effective
stiffness of the limbs through co-contraction ofmuscles (Franklin
et al., 2007; Marchal-Crespo et al., 2014b). However, this stiffness
difference did not lead do detectable brain activation differences,
maybe because the muscle co-contraction was not strong enough
(Marchal-Crespo et al., 2014b).

Error Amplification Hampered Transfer of
Learning
We confirmed our hypothesis that the training strategy that
enhances learning of a complex locomotor task depends on
subjects’ initial skill level. However, we also found that training
with error amplification limited transfer of learning, while
training with no perturbation and random disturbance seemed
to transfer the learning gains to a similar task. Although there
was no statistical proof that the transfer was greater after
training without perturbation and random noise relative to error
amplification, our results suggest evidence for transfer in these
conditions only. The lack of transfer observed in the error-
amplification group contradicts motor learning research that
found a positive effect of error amplification on transfer (Milot
et al., 2010).

A possible rationale for the differences observed in transfer
between the challenge-based training strategies is that subjects
trained with error amplification focused mainly in reducing
the tracking errors to reduce the perturbing forces, and failed
to interiorized or consciously understand the desired gait-
like pattern. This idea is supported by the fact that subjects
trained with error amplification failed to learn the correct
phase difference between legs also in the trained task, while
subjects trained without perturbation and random disturbance
did learn the correct diphase. Therefore, the good performance
of subjects after training with error amplification might have
resulted from implicit learning, i.e., subjects learned without
awareness of what has been learned. On the other hand,
subjects trained with random force disturbance (and without
perturbation) might have experienced explicit learning, i.e. they
actively searched for the gait-like pattern to correctly track
the presented figure. Several studies have shown that implicit
learning shows negative transfer of the acquired motor skills,
whereas explicit learning showed strong positive transfer (Lee
and Vakoch, 1996). Therefore, based on the transfer and phase
error results, we hypothesized that for the specific complex
locomotion task presented in this paper, error amplification
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might have promoted implicit motor learning, while random
force disturbance promoted explicit motor learning. Results
from fMRI data support this hypothesis, since training with
random disturbance revealed stronger activation in brain areas
associated with explicit learning (such as, precuneus) when
compared to training with error amplification (Yang and Li,
2012).

Effects of Training Strategies and Initial
Skill Level on Brain Activation during
Training
During the training period, strategy and skill-level dependent
effects were observed in the IPS. Human fMRI studies support
a decrease in activation in pre-SMA and dorsolateral prefrontal
cortex (DLPFC), but an increase in activation in the parietal
lobe (especially in the IPS) as visuomotor sequence learning
progresses (Hikosaka et al., 1998; Sakai et al., 1998). Grafton et al.
(1998) reported that activation in the parietal lobe progressively
increased with learning, whereas other groups (Seitz et al., 1990;
Jenkins et al., 1994; van Mier et al., 1998) demonstrated stronger
parietal activation during learning of a novel motor sequence
compared to performance on a pre-learned sequence.

Our study revealed stronger activation of the SPL (precuneus)
and the IPS in skilled subjects (across all training strategies)
during a motor task using leg movements. Less skilled subjects
did not show any significant (p < 0.001) activation at the
pre-selected voxel-threshold relative to skilled participants. In
fact, the no-perturbation and random-disturbance strategies lead
stronger activation in these (but also other frontal, visual, and
temporal) regions than error amplification. This could suggest
that attentional control is an important factor for motor learning
but in different ways. During an easy condition such as no
perturbation, a high level of attention is required to maintain
subjects focused on the task. In contrast, during random
disturbance, subjects are disturbed in an unexpected manner (in
contrast to error amplification) to perform the task and hence
attentional control is required tominimize tracking errors during
training.

We found main effects of strategy as well as strategy ×

initial skill interaction effects in different parts of the cerebellum.
Some authors demonstrated a particular link between cerebellum
activation and skill level (Jenkins et al., 1994; Seitz et al.,
1994). For example, Toni and colleagues (Toni et al., 1998)
showed a decrease in left cerebellar activation (but also in
other brain regions) during a prolonged period of trial and
error motor sequence learning. The right anterior cerebellum,
however, showed greater activation during later learning than
during initial learning. In addition, in our experiment, skilled
participants showed stronger activation of the cerebellum (and
brainstem) compared to novices but this was only seen at
p < 0.001 with kE > 15 voxels instead of kE > 27 voxels,
indicating an association between the strength of the activation
in the cerebellum and the success of learning. The only region—
again at p < 0.001 and kE > 15 voxels—showing greater
activation in untrained participants was the right rolandic
operculum.

The basal ganglia are involved in the regulation of non-
motor as well as motor sequences, and motor sequence learning
(Vakil et al., 2000; Exner et al., 2002; Tzvi et al., 2014, 2015,
2016; Fermin et al., 2016). Although the activation of the
basal ganglia for the training period in our study might reflect
on-line learning processes, we cannot distinguish activation
linked to attentional demands and on-line error correction
(adaptation). The activation of the basal ganglia was evident for
the contrast “no perturbation (NP)—random disturbance (RD).”
This was a bit surprising, as we did not expect a particular
involvement of the basal ganglia in a very simple task such as
no perturbation compared to random disturbance and error-
amplification strategies.We conclude that basal ganglia are rather
involved in the learning of non-challenging task, in which the
sequence of motor movements is not disturbed by noise or by
any error amplification.

Effects of Training Strategies on Brain
Activation during Learning
The contrast “retention—baseline” revealed activation within the
frontal cortex but also in sensorimotor regions (e.g., M1, parietal
opercular regions, i.e., OP1 and OP2, Young et al., 2004). This
activation could reflect learning (as the error rates drop during
retention relative to baseline) but it is difficult to differentiate
between mechanisms related to attention and error correction.
One interesting observation was the involvement of orbitofrontal
regions during no perturbation relative to error amplification
(Table 5, Figure 8). In fact, practicing with error amplification
is related to a persistent lower self-reported level of enjoyment
(Duarte and Reinkensmeyer, 2015). The systematic large errors
experienced during training with error amplification, which
made the task more challenging, resulted in unconventionally
low activation of the reward system. We computed several
contrasts in order to further evaluate the effect of the skill
level as we found differences comparing NP—EA in the reward
system: (NP—EA skilled) > (NP—EA non-skilled) and vice
versa,. We also performed the contrasts “EA skilled vs. EA
non-skilled” and “NP skilled vs. NP non-skilled.” Yet, we did
not observe any activation differences for these contrasts (at
p < 0.001, uncorrected), suggesting that the reward system
was not differently activated between skill groups. However,
when we used an unconventionally low threshold of p < 0.01
(uncorrected), we found some differences in the reward system
between skilled and non-skilled subjects comparing conditions.
Of course, this needs to be examined in future studies on the role
of affective components during motor learning. However, it is
evident from other studies that affective control (resulting in high
motivation) is an important factor during complicated motor
learning tasks (McAuley et al., 1989; Duarte and Reinkensmeyer,
2015).

Implications for Robot-Aided Gait
Rehabilitation
Recovery after a brain injury has been proposed to be a form of
motor learning or relearning (Dietz and Ward, 2015). However,
we cannot guarantee that the impact on motor learning of the
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training strategies here investigated do not differ in neurological
patients. Patients probably have a lower initial skill level and
therefore, their optimal challenge point (i.e., where subjects
show the best motor learning) may be at a different level.
Hypothetically, the haptic guidance mode may be especially
suitable for more disabled patients, as suggested in Klamroth-
Marganska et al. (2014).

Based on the results presented in this paper, we are developing
new training strategies to improve rehabilitation outcomes using
the Lokomat (Hocoma, Switzerland)—a commercially available
robotic gait trainer that comprises two actuated leg orthoses
(Riener et al., 2005). We developed a novel error-modulating
robotic strategy that limits large errors that can be dangerous
and frustrating with haptic guidance, while amplifies task
relevant small errors. We also developed a random disturbance
controller that can work together with the error-modulating
controller (Rüdt et al., 2016). We hypothesize that an optimal
framework for motor learning and neurorehabilitation would
consist on a combination of all these strategies: Random
force disturbance would increase subjects’ concentration on
the task, error amplification would increase subjects’ active
participation and awareness of small task relevant errors, and
haptic guidance would limit dangerous and/or discouraging
errors.

We plan to perform motor learning experiments with
neurological patients employing the different controllers
presented here, and the novel controllers derived from the
actual findings. Results from the motor learning experiments
performed with neurological patients will provide an insight
into motor learning in the impaired motor system and may
suggest new neurorehabilitation therapies and novel ways to use
robots in rehabilitation. It has been hypothesized that in order to
enhance recovery after a neurologic insult it is crucial to increase
the dose and intensity of therapy (Dietz and Ward, 2015). We
believe that employing a training strategy that optimizes learning
based on patients’ specific impairments and specific motor task
to be performed would be a more effective approach than just
increasing dose and intensity of raw therapy.

CONCLUSIONS

We investigated the effect of robotic training strategies
that augment errors–error amplification and random force
disturbance—on brain activation and learning of a complex
locomotor task. We found that the most effective training
strategy depends on subjects’ initial skill level. Training without
perturbations was especially suitable to enhance motor learning

in initially less skilled subjects, while more skilled subjects
benefited from error amplification. However, training with error
amplification limited transfer of learning. Random disturbing
forces induced learning and promoted transfer in all subjects,
probably because they increased subjects’ attention. A possible
rationale for the differences in transfer between the challenge-
based strategies is that for the specific complex locomotion task
presented in this paper, error amplification might have promoted
implicit motor learning, while random force disturbance
promoted explicit motor learning.

FMRI analysis revealed main effects of strategy and skill
level during training. These neuroimaging findings indicate
that gait-like motor learning depends on interplay between
subcortical, cerebellar, and fronto-parietal brain regions. An
interesting observation was the low activation seen in the brain
reward system after training with error amplification compared
to training without perturbations.

Our results suggest that learning a complex locomotor task
can be enhanced when errors are augmented based on subjects’
initial skill level. The impacts of these strategies on motor
learning, brain activation andmotivation in neurological patients
need further investigation.
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