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The resting-state fMRI (rs-fMRI) signal is affected by a variety of low-frequency

physiological phenomena, including variations in cardiac-rate (CRV), respiratory-volume

(RVT), and end-tidal CO2 (PETCO2). While these effects have become better understood

in recent years, the impact that their correction has on the quality of rs-fMRI

measurements has yet to be clarified. The objective of this paper is to investigate

the effect of correcting for CRV, RVT and PETCO2 on the rs-fMRI measurements.

Nine healthy subjects underwent a test-retest rs-fMRI acquisition using repetition times

(TRs) of 2 s (long-TR) and 0.323 s (short-TR), and the data were processed using

eight different physiological correction strategies. Subsequently, regional homogeneity

(ReHo), amplitude of low-frequency fluctuation (ALFF), and resting-state connectivity of

the motor and default-mode networks are calculated for each strategy. Reproducibility

is calculated using intra-class correlation and the Dice Coefficient, while the accuracy

of functional-connectivity measures is assessed through network separability, sensitivity

and specificity. We found that: (1) the reproducibility of the rs-fMRI measures improved

significantly after correction for PETCO2; (2) separability of functional networks increased

after PETCO2 correction but was not affected by RVT and CRV correction; (3) the effect

of physiological correction does not depend on the data sampling-rate; (4) the effect

of physiological processes and correction strategies is network-specific. Our findings

highlight limitations in our understanding of rs-fMRI quality measures, and underscore

the importance of using multiple quality measures to determine the optimal physiological

correction strategy.
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INTRODUCTION

Resting-state fMRI is typically measured through blood
oxygenation level dependent (BOLD) contrast, which indirectly
measures brain function through blood oxygenation changes
following neuronal activity. The typical BOLD-measurement
technique is gradient-echo echo-planar-imaging (GE-EPI).
However, the BOLD signal contains not only neuronal
contributions, but also several physiological contributions,
which can either generate BOLD-related hemodynamics or
introduce artifacts through interactions with the magnetic field.
For instance, respiration and heartbeat generate bulk motion
as well as local movement that is most pronounced in the
cerebrospinal fluid (CSF), brain stem, and in the vicinity of large
blood vessels (Dagli et al., 1999). In addition, respiration causes
susceptibility changes in the lungs that interfere with the static
magnetic field and induce shifts in the MR image, mainly in
the phase-encoding direction (Hu et al., 1995; Raj et al., 2001;
Pfeuffer et al., 2002; Murphy et al., 2013)—a major concern for
GE-EPI.

Typically, the rs-fMRI sampling rate is ∼0.5Hz, which is
only appropriate for representing signal changes up to 0.25Hz.
This is much lower than the Nyquist sampling rate required for
the fundamental cardiac and respiratory frequencies (∼1 and
∼0.3Hz, respectively), raising the possibility that physiological
contributions to rs-fMRI measures depend on signal sampling
rate. Moreover, neuronally-relevant information in rs-fMRI data
is commonly identified with the low-frequency range (below
0.1Hz; Cordes et al., 2001), which is shared with low-frequency
physiological fluctuations. The most common examples of these
include cardiac rate variation (CRV), respiratory volume per
unit time (RVT) and pressure of end-tidal CO2 fluctuations
(PETCO2). RVT ismainly localized in the graymatter, specifically
in regions with high vascular density, including the occipital
region and the default mode network (DMN; Birn et al., 2006).
On the other hand, the effect of CRV is strongest in brain regions
close to arteries and CSF (Chang et al., 2009). Finally, fluctuations
in arterial pressure of CO2, which can be indirectly measured
through PETCO2, alter the BOLD signal through vasodilatory
and constrictive action. Like the RVT effect, the PETCO2 effect is
dominant in the graymatter (Wise et al., 2004; Chang andGlover,
2009; Golestani et al., 2015).

In the context of rs-fMRI, these physiological effects have
generally been considered as artifacts from non-neuronal sources
that can mimic BOLD signal fluctuations and connectivity,
potentially reducing the reliability and neuronal-specificity of rs-
fMRI measures. Some excellent works in recent years established
the theoretical foundation for investigating and removing these
physiological effects from the rs-fMRI signal (Birn et al., 2006;
Chang et al., 2009). Specifically, the typical procedure is to record
the corresponding physiological signals during the rs-fMRI
data acquisition, model their effects on the BOLD signal and
eliminate them using regression (Birn et al., 2006; Chang et al.,
2009; Golestani et al., 2015). However, little is known about
the effect of the correction on the quality of rs-fMRI measures,
and indeed, the consequences of different physiological
corrections.

In the rs-fMRI literature, the accuracy of rs-fMRI measures
is typically assessed based on their test-retest reproducibility,
commonly quantified through the intra-class correlation
coefficient (ICC; Anderson et al., 2011b; Chou et al., 2012; Faria
et al., 2012; Zuo and Xing, 2014). ICC is defined as the ratio of
inter-subject variance to total variance (inter-subject + inter-
session variance). If within-subject inter-session variance were
considerably smaller than inter-subject variance, ICC would be
close to one, which is inferred as high reproducibility. Previous
studies of various rs-fMRI measures have shown moderate to
high reproducibility, depending on the measure (Zuo and Xing,
2014). That is, measures such as amplitude of low frequency
fluctuations (ALFF; Zuo et al., 2010a) and regional homogeneity
(ReHo; Zuo et al., 2013) are highly reproducible across sessions,
whereas connectivity metrics derived from graph-theoretical
network analysis are considered not very reproducible (Wang
et al., 2011). Moreover, the reproducibility of connectivity maps
is sensitive to acquisition length, the number of time points
included (Birn et al., 2013; Liao et al., 2013), the sampling rate
(Liao et al., 2013) and of course the processing steps (Franco
et al., 2013; Zuo et al., 2013). The ICC, however, only assesses the
reproducibility of the connectivity values but not that of network
extent. The latter has previously been assessed using the Dice
Similarity Coefficient (Amemiya et al., 2014; Ganger et al., 2015;
Jann et al., 2015). The Dice Coefficient compares the spatial
extent of different connectivity maps, and a Dice Coefficient
close to unity reflects high overlap between two maps, hence
high spatial reproducibility.

Notwithstanding the current emphasis on reproducibility as
the chief quality measure, high reproducibility does not equal to
high measurement quality. For instance, we should also like to be
able to distinguish between the areas that are part of a network
from those outside of it (i.e., high sensitivity and specificity).
Yet, sensitivity and specificity has been largely overlooked in
the literature, as they are more difficult to assess. In that
respect, while the true individual resting-state connectivity map
is unknown, a number of resting-state functional networks have
been consistently found in various populations (Damoiseaux
et al., 2006; Yeo et al., 2011). The resulting group-based network
atlases, which are arguably less affected by physiological artifacts
compared to the individual subject-level maps, are presumably
more robust and representative of true functional networks.
Thus, we may now have a means to quantify the sensitivity and
specificity of rs-fMRI connectivity maps.

To the authors’ best knowledge, there exists only one prior
study addressing the effect of various physiological corrections
on rs-fMRI measurement quality, despite the importance
of the topic (Birn et al., 2014). Interestingly, the findings
suggest that physiological correction may have little or even a
negative effect on the reproducibility of the fMRI connectivity
patterns. To explain this surprising finding, the authors skilfully
demonstrated that physiological correction reduces both within-
and between-subject variance, resulting in an overall ICC
reduction. Despite this observation, the authors recommend
removing the physiological effects from the BOLD signal, as the
physiological correction would potentially increase the validity
of the rs-fMRI connectivity studies. Moreover, the authors

Frontiers in Neuroscience | www.frontiersin.org 2 October 2017 | Volume 11 | Article 546

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Golestani et al. Effect of Physiological Correction on rs-fMRI

correctly admitted in the paper that the accuracy of using
a global physiological regressor for physiological correction
is questionable, given the evident inter-subject and regional
variability in the BOLD physiological response (Falahpour et al.,
2013; Cordes et al., 2014; Golestani et al., 2015). Nevertheless,
this work leaves unanswered a number of important questions.
First, it only addressed the effects of CRV and RVT. Given
recent evidence of the unique effects of PETCO2 fluctuations
on rs-fMRI (Golestani et al., 2015), the effect of PETCO2

correction should also be addressed. Second, the study relied
solely on reproducibility as a metric of merit, and used ICC
as the only measure of reproducibility, neglecting other aspects
of rs-fMRI data quality. In addition, the study focused on
functional connectivitymeasurements and did not consider other
commonly used rs-fMRI measures such as ReHo and ALFF.

In this paper, we investigate the effect of a number of
correction strategies involving three low-frequency physiological
signal sources (CRV, RVT, and PETCO2) on the rs-fMRI
measurements. The novelties of this study are: (1) we study
the effect of PETCO2 correction in addition to CRV and
RVT correction; (2) we estimate and eliminate the effect of
physiological modulations using a voxel-wise instead of a global
approach, accounting for potential inter-subject and inter-
regional variability; (3) in assessing reproducibility, we use not
only the ICC, but also the Dice Coefficient; (4) in addition
to reproducibility, we measure the sensitivity and specificity of
the resting-state connectivity maps with the help of a resting-
state connectivity template (Yeo et al., 2011); (5) we also assess
the separability of the connectivity maps by calculating relative-
connectivity of within-network connectivity to between-network
connectivity; (6) we include ReHo and ALFF in addition to
resting-state connectivity in our assessments; (7) we investigate
the effect of fMRI acquisition sampling rate on the efficacy of
physiological corrections.

METHODS

Participants and Data Acquisition
Nine healthy subjects participated in this study (3 male; mean age
= 26± 5.8 years). Participants were recruited from Baycrest and
local communities through the Baycrest Participants Database.
The study was approved by the research ethics board (REB) of
Baycrest, and the consent obtained from all participants was both
written and informed, in accordance with the Declaration of
Helsinki.

All images were acquired using a Siemens TIM Trio 3
Tesla System (Siemens, Erlangen, Germany), with a 32-channel
phased-array head coil for reception and body-coil transmission.
We acquired rs-fMRI data using multiple repetition times (TR)
to investigate the effect of sampling rate. Each TR was used in
two sessions to allow assessment of test-retest reproducibility.
Specifically, the “long-TR” protocol involved conventional single-
shot gradient-echo echo-planar imaging (GRE-EPI; TR = 2,000
ms, TE = 30 ms, flip angle = 90◦, 26 slices, 0.6mm between-
slice gap, 3.44 × 3.44 × 4.6 mm3 voxels, matrix size: 64 ×

64 × 26, 240 frames), while the “short-TR” protocol involved
slice-accelerated (Feinberg et al., 2010; Setsompop et al., 2012)

single-shot GRE-EPI [TR= 323ms, TE= 30ms, flip angle= 40◦,
15 slices, 1mm between-slice gap, 3.44 × 3.44 × 6 mm3, matrix
size= 64× 64× 15, 1,850 frames, acceleration factor= 3, phase
encoding shift factor = 2, with “leak block” (Cauley et al., 2014)
and a GRAPPA reconstruction kernel of 3 × 3]. Participants
were instructed to close their eyes but remain awake during the
functional scans. Furthermore, T1-weighted anatomical images
were collected for cross-subject registration (MPRAGE, TR =

2,400 ms, TE= 2.43 ms, FOV= 256mm, TI= 1,000 ms, readout
bandwidth= 180 Hz/px, voxel size= 1× 1× 1 mm3).

Image Processing
To achieve consistency in data lengths, the initial 2min of the
short-TR data is discarded, yielding 8min per run for both
long- and short-TR datasets. Furthermore, as short-TR and long-
TR data acquisitions differed in more than TR, we created
a downsampled version of the short-TR data to specifically
target the effect of sampling rate. This was done by temporally
decimating the original short-TR data to (2,000 ms/323 ms)
times the original sample rate, so as to match the sampling
interval of the “long-TR” data. Resting-state fMRI processing was
carried out using FMRIB software library (FSL, publicly available
at www.fmrib.ox.ac.uk/fsl). The preprocessing pipeline included
motion correction (Jenkinson et al., 2002), brain extraction
(Smith, 2002), spatial smoothing (10mm FWHM), frequency
filtering (see section Resting-State fMRI Measures for details)
and regression of six motion parameters. Time-locked cardiac
and respiratory effects were also removed using RETROICOR
(Glover et al., 2000) implemented in AFNI (AFNI: http://afni.
nimh.nih.gov/afni).

Physiological Monitoring and Correction
The details on measuring, modeling, and correcting for the
physiological signals are explained in our previous paper
(Golestani et al., 2015). In short, we accounted for the effects of
the following three physiological signals:

• Cardiac-rate variation (CRV): The cardiac signal was recorded
using the scanner’s built-in pulse oximeter, connected to the
subject’s index finger. CRV is defined as the time interval
between consecutive R peaks, averaged in a 4-s window
(Chang et al., 2009).

• Respiration volume per unit time (RVT): The respiratory-depth
correlated signal was recorded using an elastic belt connected
to a BioPac system (BioPac, Goleta, USA), placed just below
the subject’s ribcage (Birn et al., 2006; Chang and Glover,
2009; Golestani et al., 2015). A piezoelectric sensor within
the belt measured the extent of extension and contraction
in the belt caused by exhales and inhales. It is assumed that
the respiration volume is linearly related to the amplitude of
the belt signal. RVT was calculated as the ratio of breathing
depth (estimated from the local maxima and minima of the
respiratory waveform) over a given time period (Birn et al.,
2006).

• End-tidal CO2 (PETCO2): CO2 level in the subject’s breathing
was measured using a BioPac system. A mask covering the
mouth and nose of the subject was connected via plastic tubing
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to the BioPac’s CO2 sensor. PETCO2 signal was computed as
the breath-by-breath maxima of the CO2 tracing.

At each TR, these three physiological signals were re-
sampled to correspond to the sampling rate of the rs-fMRI
data. Subsequently, BOLD response functions to the three
physiological signals were estimated for each voxel in the brain
volume, as explained in our previous work (Golestani et al.,
2015). In short, the voxel-wise BOLD responses to the three
physiological signals were simultaneously estimated using a
Gaussian model. The estimated responses were then used to
correct the effect of these physiological signals. The physiological
correction involved the convolution of the physiological signals
with the corresponding estimated responses, the inclusion of
the convolved response into a voxel-wise linear regression and
regressing out a given physiological effect of interest from the
BOLD signal. In total, eight different physiological correction
combinations were applied:

• “Base”: no correction;
• “PETCO2,” “CRV,” and “RVT”: each of these three settings

involved correcting for only one of the three physiological
effects;

• “PETCO2+CRV,” “PETCO2+RVT,” and “CRV+RVT”: each
of these three settings involved correcting for a set of two
physiological effects;

• “All”: whereby all of the three physiological signals were
corrected for.

We did not orthogonalize the physiological signals with respect
to one another as we did in our previous work (Golestani et al.,
2015), as the goal is to maximally remove noise instead of
estimate their response functions.

Resting-State fMRI Measures
Amplitude of Low-frequency Fluctuation (ALFF)
ALFF is defined as the sum of amplitudes of each voxel’s signal
frequency spectrum within the low-frequency range (Zang et al.,
2007) and reflects the amplitude of spontaneous low-frequency
fluctuations in the BOLD signal. To eliminate possible effects of
low-pass filtering on the rs-fMRI frequency spectrum, datasets
with no temporal filtering were used to estimate ALFF. The
unfiltered rs-fMRI signal is transformed into the frequency
domain using the Fourier transform, and the spectrum in the
frequency range of 0.01–0.1Hz is averaged to calculate ALFF. The
Resting-state fMRI Data Analysis Toolkit (REST V1.8, publicly
available at http://restfmri.net; Song et al., 2011) was used to
calculate the ALFF maps. To allow direct comparison of ALFF
values generated using long- and short-TR data, each ALFF map
was normalized (subtracting the global mean then dividing by
the global standard deviation; Xi et al., 2012). This normalization
eliminates biases from inter-subject ALFF variability caused by
differences in imaging parameters (such as sampling-rate and flip
angle) between long- and short-TR acquisitions.

Regional Homogeneity (ReHo)
ReHo is defined as the Kendall’s coefficient of concordance
between a given voxel and its 27 neighboring voxels (Zang

et al., 2004) and represents the synchronization between the time
series of a given voxel and its neighbors. This measure was also
calculated using the REST toolkit. The long-TR data is spatially
resampled to the same resolution as the short-TR data prior
to ReHo calculations. The rs-fMRI time series was high-pass
filtered (to>0.01Hz) and low-pass filtered (<0.1Hz) prior to the
computations.

Functional Connectivity: Motor Network
The motor network was the first to be demonstrated using rs-
fMRI, as found in the seminal work by Biswal et al. (1995).
It can easily be validated based on anatomical landmarks, and
the BOLD signal in this region has been shown more affected
by respiratory modulations (Birn et al., 2008) than in many
other brain regions, including the default-mode network. To
simplify the delineation of the motor network, we used seed-
based analysis. That is, an ROI with radius of 4mmwas generated
over the left motor cortex based on documented coordinates (Van
Dijk et al., 2010). The average signal from this motor seed was
used to generate correlation-based motor network connectivity
maps. These connectivity scores were then corrected using the
mixture-model method (Woolrich et al., 2005) as implemented in
FSL. Themixturemodel estimates the distribution of the statistics
as a mixture of a null distribution (with zero mean and unity
standard deviation) and an alternative distribution. Mixture
modeling is typically used when some assumptions in the
statistical analysis might not be valid. Specifically, conventional
assumptions about the temporal autocorrelation and noise level
of the BOLD signal may not be valid in short TR images,
leading to inflated z-values. Thus, we used mixture model to
overcome this problem and effectively compare long- and short-
TR results.

Functional Connectivity: Default-Mode Network

(DMN)
To investigate whether the effect of physiological correction
is network-dependent, we also assessed the effect of the
physiological correction on the connectivity of the DMN. The
DMN is amongst the most widely studied networks in healthy
controls (Raichle and Snyder, 2007; Buckner, 2012), and DMN
connectivity has been found disrupted in several brain diseases
(Buckner et al., 2008; Broyd et al., 2009; Anticevic et al., 2012;
Whitfield-Gabrieli and Ford, 2012). Of particular interest to this
study is the fact that the spatial pattern of the DMN overlaps
with brain regions most affected by low-frequency physiological
modulations, particularly RVT and PETCO2 (Birn et al., 2006;
Golestani et al., 2015). Therefore, we used the DMN as a test case
to study the effect of the correction for physiological modulations
on rs-fMRI functional connectivity (rs-fcMRI). Again, an ROI
with a 4mm radius was generated over the posterior cingulate
cortex (PCC) using well-documented coordinates (Van Dijk
et al., 2010). The regional average signal from this seed was
correlated with all other voxels to generate connectivity maps,
as described earlier. As before, each statistical connectivity map
was then corrected using FSL’s mixture modeling (Woolrich et al.,
2005).

Frontiers in Neuroscience | www.frontiersin.org 4 October 2017 | Volume 11 | Article 546

http://restfmri.net
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Golestani et al. Effect of Physiological Correction on rs-fMRI

Test-Retest Reproducibility
The maps of all rs-fMRI measures were transformed into the
MNI standard space (MNI152, Montreal Neurological Institute).
For ALFF and ReHo, ICC was calculated using the maps
generated from the two runs of each subject. We assessed the
ICC in seven distinct brain networks as defined in the work of
Yeo et al. (2011). One realization of the atlas is loosely organized
into the visual, somato-motor, dorsal attention, ventral attention,
limbic, frontoparietal, and default-mode networks. As this rs-
fcMRI atlas was generated from 1,000 subjects based on the most
consistent functional connectivity patterns observed across all
subjects, it is henceforth referred to as the “1,000-brain atlas.” For
rs-fMRI functional connectivity, we chose the motor and default-
mode networks only. The following two indices were computed
to provide complementary reproducibility quantification.

Intra-class Correlation Coefficient (ICC)
The ICC is the most common reliability index in fMRI studies
(Shehzad et al., 2009; Zuo et al., 2010a,b, 2012, 2013; Anderson
et al., 2011b; Wang et al., 2011; Braun et al., 2012; Chou et al.,
2012; Faria et al., 2012; Guo et al., 2012; Song et al., 2012; Birn
et al., 2013, 2014; Bright and Murphy, 2013; Franco et al., 2013;
Liao et al., 2013; Patriat et al., 2013; Wisner et al., 2013; Zhu et al.,
2014). It is given by:

ICC =
MSb −MSw

MSb + (k− 1)MSw
(1)

where MSb is the inter-subject mean-squared variability, MSw is
the within-subject inter-session mean-squared variability and k
is the number of runs (k = 2 in our case). As the ICC is sensitive
to both inter-subject and within-subject inter-session variability,
changes in either of the two would alter the ICC value, which
is generally categorized into five reproducibility levels: poor (0–
0.2), fair (0.2–0.4), moderate (0.4–0.6), substantial (0.6–0.8), and
excellent (0.8–1; Guo et al., 2012; Zuo and Xing, 2014).

Dice Coefficient
As shown earlier, the ICC reflects the consistency of connectivity
values between runs, not necessarily that of the network spatial
extent, which is also an important consideration. Thus, we
include the Dice Coefficient, which has been commonly used
in fMRI studies to evaluate the similarity of two spatial maps
(Gorgolewski et al., 2013; Wisner et al., 2013; Zhu et al., 2013;
Gross and Binder, 2014). It is defined as:

Dice =
2× |A ∩ B|

|A| + |B|
(2)

where A and B are the two spatial maps, A∩B is the intersection
of the two maps, and |A| is the size (i.e., the number of voxels) of
map A. We computed the Dice Coefficient between two runs of
each subject, with each connectivity map defined as being above
a mixture model-corrected z scores of 0.5.

Separability Index
Regarding rs-fMRI functional connectivity, maps can be
evaluated based on not only reproducibility, but also on

separability. That is, if the rs-fMRI connectivity map were
predominantly sensitive to brain function instead of global
physiological processes, we would expect it to demonstrate strong
distinction between within-network connectivity and global
(between-network) connectivity. To embody these two attributes
in a single metric, using the “1,000-brain” functional-network
atlas framework, the separability index is defined as:

SI =
WNC − BNC

WNC + BNC
(3)

where WNC is the within-network connectivity (average
connectivity, e.g., z-scores, inside the network of interest) and
BNC is between-network connectivity (average connectivity
between the network of interest and the remaining six networks).
Separability indices for the motor network and DMN were
calculated for each physiological-correction strategy and then
averaged across the two runs of each subject.

Sensitivity and Specificity
Using the 1,000-brain connectivity atlas as the pseudo ground-
truth, sensitivity and specificity of the connectivity maps for
each physiological correction strategy was calculated. Each
connectivity map was defined with a mixture-model corrected
threshold of 0.5. Sensitivity was calculated as the ratio of the
number of voxels inside the network of interest that is correctly
identified (true positives) over the total number of voxels in
the network (true positives + false negatives). Specificity was
calculated as the ratio of the number of gray-matter voxels
outside the network of interest that correctly identified as non-
connected (true negatives) over the total number of gray-matter
voxels outside of the network (true negatives+ false positives).

Statistical Analysis
No statistical test was carried out on the ICC values, as the entire
subject group would yield a single ICC value. Thus, the ICC
values were simply compared among physiological correction
methods and sampling rates. For functional connectivity, other
measures (Dice Coefficient, separability index, sensitivity, and
specificity) were compared within DMN and MN separately
using two-factor within-subject ANOVA with physiological
correction strategy (“Method”) and sampling-rate (TR) as
factors. In case a significant effect was observed, we also assessed
the observed effect by performing follow-up t-tests.

RESULTS

One of the subjects exhibited considerable head motion during
one of the rs-fMRI scans, and was thus excluded from the study,
yielding total group size of 8 subjects (3 male, age 26± 6.2 years).

Resting-State fMRI Measures
Group-averaged maps (averaged across all subjects and both
sessions) of the rs-fMRI measures are shown in Figures 1–3.
In Figure 1, group-averaged normalized ALFF and ReHo are
shown for long-TR, short-TR, and short-TR-down-sampled
datasets. Consistent with previous studies (Zang et al., 2007; Zou
et al., 2008; Zuo et al., 2010a), ALFF values are higher in the
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FIGURE 1 | Group-averaged maps of normalized amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo). Physiological correction does not

have noticeable effect on the ALFF and ReHo maps, as shown by the small difference between maps generated with no physiological correction (“Base”) and with all

three physiological corrections (“All”). This was the case for long-TR (TR = 2 s), short-TR (TR = 0.323 s), and down-sampled short-TR data. Gray matter is associated

with considerably higher ALFF and ReHo values, specifically in the default-mode network as well as frontal and occipital regions. Sampling-rate (TR) does not

considerably alters the ALFF and ReHo maps.

gray matter, specifically in the DMN as well as occipital and
frontal regions. Likewise, ReHo is considerably stronger in the
gray matter than in the white matter and CSF, compatible with
the previous study by Long et al. (2008). For the purposes of rs-
fMRI, we found ALFF and ReHo maps to be insensitive to the
choice of physiological correction method, as ALFF and ReHo
maps for different physiological corrections are nearly identical.
To demonstrate this point, we contrast the maps derived using
no physiological correction (“Base”) with those resulting from
correcting for all three physiological signals (“All”). The only
noticeable effect of physiological correction is a reduction in
white-matter ReHo.

Group-average motor network and DMN connectivity maps
corresponding to different physiological correction strategies are
shown in Figures 2, 3, respectively. Correcting for PETCO2

and RVT do not appear to have a considerable effect on
the connectivity maps. In contrast, for both networks, the
involvement of CRV correction was found to have a stronger
effect, substantially reducing the size of the connected clusters,
specifically outside the network of interest. The effect of

CRV correction on rs-connectivity is more evident in short-
TR images. Regardless of the physiological correction method,
functional networks are consistently revealed, indicating that our
physiological corrections do not significantly compromise the
functional information in the BOLD signal. Lastly, sampling-rate
does not have considerable effect on the connectivity maps.

Test-Retest Reproducibility
ALFF
ICC values associated with the ALFF are shown in Figure 4A,
generated from long-TR, short-TR, and down-sampled short-TR
datasets. Results show ALFF values to be highly reproducible in
all cases, with ICC values consistently in the range of 0.65–0.85.
For the most part, physiological correction does not considerably
alter the reproducibility of ALFF values. Nonetheless, ICC values
are higher for the short-TR data. However, the fact that ICC
values for down-sampled short-TR data is also higher than the
long-TR, shows that the sampling-rate is not the main reason for
the higher ALFF reproducibility associated with short-TR data.
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FIGURE 2 | Group-averaged motor network (MN) connectivity maps generated with different physiological correction strategies, using long-TR, short-TR, and

down-sampled short-TR data. A motor network template from the atlas generated by Yeo et al. (2011) is shown at the bottom for reference. CRV correction alters

connectivity maps more than correction for PETCO2 (labeled as CO2) and RVT by reducing the extent of connected clusters outside the motor cortex. Sampling-rate

does not seem to have a considerable effect on the connectivity maps.

ReHo
ICC values associated with ReHo are shown in Figure 4B. The
ICC values (0.5–0.8) demonstrate relatively high reproducibility
across different physiological correction methods and sampling-
rates. Nonetheless, different trends were observed, specifically in
that PETCO2 and RVT correction increases the ICC whereas
CRV correction decreases the ICC. Short-TR down-sampled data
are consistently associated with the highest ICC values.

Functional Connectivity: Reproducibility
Reproducibility measures for motor network (MN) and
default-mode network (DMN) connectivity are shown in

Figure 5. ICC values are between 0.25 and 0.75 for the DMN,
which is substantially higher than the ICC values for the MN
(0.10–0.50). Further, short-TR data is associated with lower ICC
values, specifically in the DMN, suggesting that data with lower
sampling-rates tend to generate connectivity values with higher
reproducibility. Broadly speaking, physiological correction does
not appear to alter the reproducibility of the connectivity values,
except in the DMN, where correction for PETCO2 and CRV
increase the ICC.

Spatial reproducibility of the connectivity maps is shown
as Dice Coefficient plots in Figure 5. The Dice Coefficient is
relatively high (0.7–0.8) showing that the DMN and MN are
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FIGURE 3 | Group-averaged default mode network (DMN) connectivity maps generated with different physiological correction strategies, using long-TR, short-TR,

and down-sampled short-TR data. A default mode network template from the atlas generated by Yeo et al. (2011) is shown at the bottom for reference. Physiological

correction does not noticeably alter connectivity maps. As in the motor network case, connectivity maps generated from data with different sampling rates are

comparable.

highly reproducible spatially. The spatial pattern of the MN is
slightly more reproducible than that of the DMN. However,
statistical analysis (Table 1) demonstrated no difference between
physiological correction strategies, as well as different sampling-
rates.

Separability Index
Separability indices are summarized in Figure 6 for the MN
and the DMN, generated from long-TR, short-TR, and down-
sampled short-TR datasets. The MN exhibited significantly
higher separability indices than the DMN, for both long-
and short-TR cases (0.37 ± 0.043 for the MN vs. 0.31 ±

0.038 for the DMN, p = 0.037). The ANOVA (Table 2)
showed that the sampling-rate does not significantly influence
the separability index in the two networks. With respect
to the choice of physiological-correction method, two-way
ANOVA within the MN does not reveal any significant effects,
but this is not the case for the DMN. Follow-up t-tests
reveal that correcting for PETCO2 significantly increases the
separability index of the DMN. As indicated by high ICC values
(ICC > 0.6), the separability indices are highly reproducible.
Also, higher sampling rate (short TR) is associated with
higher reproducibility of the separability indices, specifically in
the MN.
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FIGURE 4 | Reproducibility measures (ICC) for the normalized amplitude of low-frequency fluctuations (ALFF) (A) and regional homogeneity (ReHo) (B) for different

physiological correction strategies, based on long-TR (black), short-TR (dark gray), and down-sampled short-TR (light gray) data. Both ALFF and ReHo values are

highly reproducible. Physiological correction does not have a consistent effect on the reproducibility of ALFF values. PETCO2 (labeled as CO2) and RVT correction

increased, and CRV correction decreased the ICC values for ReHo. Short-TR data is associated with higher reproducibility for ALFF.

Sensitivity and Specificity
Sensitivity and specificity of the DMN and MN are shown
in Figure 7. The MN is associated with significantly higher
detection sensitivity than the DMN (0.89± 0.054 for MN vs. 0.59
± 0.082 for DMN, p < 0.001). Specificity of the DMN is higher
than for the MN, although the difference is not significant (0.66
± 0.035 for DMN and 0.63± 0.047 for MN, p= 0.23).

In Table 3 we summarize the statistical test results showing
that the MN maps generated from long-TR data are associated
with significantly higher sensitivity than those generated from
short-TR or down-sampled short-TR data. In contrast, sampling-
rate does not affect sensitivity or specificity of mapping the
DMN. With respect to the choice of physiological correction
method, CRV correction significantly improves the sensitivity of
the DMN connectivity maps, but the sensitivity of the MN is not
significantly associated with any form of physiological correction.

Statistical results on the specificity of the connectivity maps
are shown in Table 4. Sampling-rate does not affect on the
specificity of the DMN and MN connectivity maps. However,
CRV correction tends to reduce the specificity of the connectivity
maps in both the DMN and MN, although the effect is not
consistently significant.

DISCUSSION

Low-frequency physiological effects can contribute significantly
to the BOLD fMRI signal and undermine the accuracy and
reliability of fMRI measures, especially in the resting state.
However, as mentioned earlier, despite considerable research
devoted to studying the reliability of resting-state fMRI measures

(Shehzad et al., 2009; Zuo et al., 2010a,b, 2012, 2013; Anderson
et al., 2011b; Wang et al., 2011; Braun et al., 2012; Chou et al.,
2012; Faria et al., 2012; Guo et al., 2012; Song et al., 2012;
Birn et al., 2013; Bright and Murphy, 2013; Franco et al., 2013;
Liao et al., 2013; Patriat et al., 2013; Wisner et al., 2013; Zhu
et al., 2014), studies that investigate the effect of physiological
correction on the accuracy and reproducibility of rs-fMRI
measures are extremely limited.

In this study, we determine the effect of various low-frequency
physiological correction strategies on the reproducibility,
sensitivity and specificity of rs-fMRI measures. The main
findings are: (1) PETCO2 correction has the most consistent
positive effect on the reproducibility of rs-fMRI metrics; (2)
PETCO2 correction has the most significant positive effect
on the separability of functional connectivity maps; (3) the
effect of physiological correction is not influenced by fMRI
data sampling rate; (4) there is substantial variability between
different brain regions and networks in terms of the impact
of physiological correction. Specifically: (1) Physiological
correction has a stronger effect on the DMN compare to the MN;
(2) CRV correction increases the reproducibility but decreases
the specificity of the DMN connectivity maps; moreover, it
decreases the reproducibility of the ReHo values. These findings
are summarized in Table 5. Our findings highlight limitations in
our understanding of rs-fMRI quality measures, and underscore
the importance of using multiple quality measures to determine
the optimal physiological correction strategy. In particular, we
argue against the simplification of rs-fMRI data quality based
on reproducibility alone. We discuss these findings in detail as
follows.
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FIGURE 5 | Reproducibility measures [ICC represents reproducibility of values (top) and Dice coefficient represents reproducibility of spatial maps (bottom)] for the

default-mode network (DMN) (left) and motor network (MN) (right). DMN had higher reproducibility of the connectivity values in lower reproducibility of the connectivity

maps compared to MN. PETCO2 and CRV correction increased ICC values in DMN, whereas RVT correction had no considerable effect. Physiological correction did

not have a consistent effect on the ICC values in the MN. No significant difference was observed between physiological correction strategies for the reproducibility of

the spatial maps. In MN, reproducibility values tended to be higher in the long-TR case. This pattern was not extensible to the DMN reproducibility.

TABLE 1 | Results of the statistical analysis on between-run Dice coefficient of the

connectivity maps for DMN and MN.

Factor DMN MN

F p F p

TR F (2, 14) = 0.23 0.802 F (2, 14) = 0.34 0.718

Method F (7, 49) = 1.44 0.211 F (7, 49) = 0.78 0.601

Two-factor, within-subject ANOVA test showed no significant effect of sampling rate (TR)

or physiological correction strategy (Method).

Data Analysis Quality without Physiological
Correction
Reproducibility
We found the reproducibility of rs-fMRI measures to be highly
dependent on the type of rs-fMRImeasure in question. The ALFF

shows substantial reproducibility in the gray matter independent
of physiological correction method and sampling rate, supported
by other studies (Zuo et al., 2010a; Li et al., 2012). As the ALFF
measures the power of low-frequency BOLD signal fluctuations,
which presumably reflects the magnitude of neural activity (Yang
et al., 2007; Zou et al., 2008; Yan and Zang, 2010), we expect
to observe higher ALFF values and reproducibility in the gray
matter. Likewise, as expected, ReHo values are higher in the gray
matter compared to in the white matter and CSF, as ReHo is a
measure of local homogeneity in brain activity, which is most
meaningfully measured in the gray matter (Li et al., 2012). ReHo
is also the most reproducible when based on the down-sampled
short-TR data, judging from the ICC values. In fact, this could
be related to the fact that the down-sampled data was associated
with fewer time points and hence higher ReHo values.

Unlike for ALFF and ReHo, the reproducibility indices of
which were measured in all of the seven functional networks,
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FIGURE 6 | Separability index values for default-mode network (DMN) (left) and motor network (MN) (right) as a result of various physiological correction strategies.

Separability index was higher in the MN compared to the DMN. Physiological corrections had a small effect on the separability index in the MN. PETCO2 correction

increased the separability index in the DMN. Sampling rate did not significantly change the separability index in neither DMN nor MN. The ICC of the separability on

the other hand, was considerably higher for separability indices generated from short-TR images.

the reproducibility of rs-fMRI functional connectivity was
considered within two networks of interest, namely the motor
and default-mode networks, which differ vastly in terms of
their cytoarchitectonic and functional traits. These networks
were chosen to present a snapshot of the network-dependence
of functional connectivity measures in our investigation. The
moderate ICC values echo findings from previous studies (Braun
et al., 2012; Franco et al., 2013; Wisner et al., 2013). Our
finding of higher ICC values for the DMN compared to the
MN also supports previous findings (Shehzad et al., 2009; Zuo
et al., 2010b). Moreover, reproducibility of the connectivity maps
measured by the Dice Coefficient is higher for the MN than for
the DMN, in agreement with previous studies (Zhu et al., 2013).
This suggests that although overall the connectivity values in the
DMN are relatively stable, the spatial pattern changes is not as
stable. Indeed, it has been reported that DMN connectivity map
is more sensitive to the level of vigilance and to uncontrolled
brain activations (Kucyi and Davis, 2014; Zalesky et al., 2014).
As a case in point, it has been shown that (Demertzi et al.,

2011) hypnosis increases connectivity between middle frontal
and angular gyri and decreases connectivity between posterior
and parahippocampal structures, which are encompassed in the
DMN. Moreover, sleep deprivation may cause disconnection
between posterior cingulate and other nodes of the DMN (Wang
et al., 2015). MN connectivity maps on the other hand are not
known to be affected by factors of this nature.

Network Separability
The motor network is more spatially separable than the DMN,
as represented in Figures 2, 3. This point is supported by our
quantitative comparison of the separability indices between the
motor network and the DMN (Figure 6). This may be due
to the simpler nature of the motor network, which makes
it a good test case for methodological development. Thus,
the motor-network results allowed us to establish the effect
of physiological correction on the spatial pattern of rs-fcMRI
measurements. Nonetheless, with regards to more complex
networks such as the DMN, the interpretation of separability
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TABLE 2 | Results of the statistical analysis on the separability index for DMN

and MN.

(A)

DMN MN

Factor F p F p

TR F (2, 14) = 0.36 0.706 F (2, 14) = 0.99 0.398

Method F (7, 49) = 4.02 <0.001 F (7, 49) = 0.07 0.999

(B)

Method CO2 CRV RVT CO2CRV CO2RVT CRVRVT All

Base 0.011 0.149 0.245 0.012 0.015 0.113 0.043

CO2 0.778 0.275 0.071 0.337 0.661 0.165

CRV 0.324 0.001 0.635 0.753 0.109

RVT 0.025 0.025 0.175 0.052

CO2CRV 0.117 0.014 0.824

CO2RVT 0.667 0.118

CRVRVT 0.042

(A) Two-factor, within-subject ANOVA test showed the physiological correction method

had significant effect on the separability index in the DMN. (B) Follow-up t-test revealed

that PETCO2 correction significantly increased the separability index in the DMN (green

shows the cases in which the method in the column gives significantly higher values

compared to the method in the row, red shows the cases in which the method in the

column gives significantly smaller values compared to the method in the row).

index is less straightforward, and higher separability may not
be related to higher accuracy. In fact, there exists episodic
connectivity between the DMN and other networks (Smith et al.,
2012; Bray et al., 2015), which may increase the correlation-
based, overall global connectivity with the DMN. In such
cases, the interpretation of functional connectivitymeasurements
themselves becomes less well-defined, prompting us to refer to
findings in the motor network for methodological clarifications.
The separability index is highly reproducible in both the MN
and DMN (Figure 6). This could be due to the normalization
factor in the definition of the separability index. That is, relative
connectivity is less sensitive to the parameters that might vary
between different data acquisition sessions, including signal-to-
noise ration (SNR) and contrast-to-noise ration (CNR; Golestani
and Goodyear, 2011).

Sensitivity and Specificity
The motor network (MN) is associated with high detection
sensitivity but only moderate specificity (moderate false
positives). In comparison, the detection sensitivity of the DMN
is considerably lower (more false negatives). DMN connectivity
maps in Figure 3 also confirm presence of false negatives in the
DMN connectivity maps. This finding mirrors the DMN’s low
separability index and is consistent with more variable nature
of the DMN (Damoiseaux et al., 2006; Kucyi and Davis, 2014;
Zalesky et al., 2014). As mentioned before, the spatial pattern of
the DMN maps is dynamic, and some nodes of the DMN might
lose their connection to the network sporadically (Demertzi et al.,
2011; Kucyi and Davis, 2014; Zalesky et al., 2014; Wang et al.,

2015). In such cases the disconnected nodes would represent as
false-negatives, resulting in reduced sensitivity.

The Effect of PETCO2 Correction
Notwithstanding inter-subject and regional differences, up
to 15% of the resting-state BOLD signal is explained by
PETCO2 variations (Golestani et al., 2015). While this is a
sizeable contribution, we do not expect that correcting for
PETCO2 fluctuations would dramatically change the fMRI signal.
Indeed, ALFF and ReHo (Figure 1) as well as connectivity
maps (Figures 2, 3) show that PETCO2 correction does not
qualitatively alter the spatial pattern associated with these
metrics. On other hand, the fact that connectivity maps can
be consistently generated using data corrected for PETCO2

demonstrates that correction for PETCO2 does not jeopardize the
bulk of the neuronal information contained in the BOLD signal.

Quantitatively, we found PETCO2 correction to slightly
improve the quality of the rs-fMRI measures, although in
a manner that depends on the metric and the network in
question. Specifically, PETCO2 correction distinctly improved
the reproducibility of ReHo and DMN functional connectivity
values, as well as improving the separability of the DMN. This
could be taken as evidence for the successful suppression of
reproducible but spurious correlation between non-connected
brain regions. On the other hand, the sensitivity and specificity of
the resting-state connectivity maps was relatively independent of
PETCO2 correction (Figure 7, Tables 3, 4). We only considered
the gray-matter regions in our sensitivity and specificity
calculations, as the PETCO2 effect on the BOLD signal is
dominant in the graymatter (Wise et al., 2004; Chang andGlover,
2009; Golestani et al., 2015). Our finding indicates that PETCO2

correctionmay have amore global affect that does not distinguish
between networks.

We note that in this study, we assume that resting-state
PETCO2 fluctuations are independent of neuronal activity.
Indeed, elimination of the PETCO2 effect did not change
resting-state connectivity maps in any major way, but such an
assumption may not always hold. In fact, previous studies have
shown that the level of arousal is associated with both neural
activity level and PETCO2 level (Dahan and Teppema, 2003;
Kotajima et al., 2005). Even a subtle difference in the resting state,
such as between eyes-open and eyes-closed states, can alter the
vascular reactivity to PETCO2 (Peng et al., 2013). Nevertheless,
the fact that PETCO2 correction does not considerably alter the
rs-fMRI maps shows the possible interaction between PETCO2

signal and brain activation is not considerable, at least in our
experiment. On the other hand, while the improvements in
reproducibility brought about by PETCO2 correction are fairly
consistent, one must bear in mind that reproducibility may not
always be the best aim, given the natural neural variabilities that
were discussed earlier.

Effects of CRV and RVT Correction
CRV correction appears to improve the quality of resting-
state connectivity maps, specifically in the DMN. Many of the
brain regions affected by CRV located in the realm of the
DMN (Chang et al., 2009; Golestani et al., 2015), e.g., the
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FIGURE 7 | Sensitivity (top) and specificity (bottom) measures of the default-mode network (DMN) (left) and motor network (MN) (right) for different physiological

correction strategies, based on long-TR (black), short-TR (dark gray), and down-sampled short-TR (light gray) data. DMN demonstrated lower sensitivity and higher

specificity compared to MN. CRV correction increased sensitivity and decrease specificity of DMN connectivity maps. Physiological correction did not considerably

alter the sensitivity of MN connectivity maps and tended to reduce their specificity. For the MN, long-TR data was associated with higher sensitivity and lower

specificity.

PCC, medial frontal cortex, and the angular gyrus. The effect
of CRV correction on the resting-state connectivity is more
pronounced for the short-TR images. Other studies (Faraji-Dana
et al., accepted) have also reported stronger CRV contribution
to multiband EPI data, as compared to conventional EPI data,
the mechanism however is not clear. The reproducibility of
the ReHo decreased after CRV correction. On the other hand,
the reproducibility of DMN connectivity improved after CRV
correction, which is apparently contrary to previous findings by
Birn et al. (2014). Themost likely explanation for this discrepancy
is the fact that we performed voxel-wise estimation of the CRV
and RVT response and correction for its effect, whereas Birn
et al. (2014) used either no convolution with a response function
or in some cases a single global response function averaged
across several subjects. As shown in a number of recent works
(Falahpour et al., 2013; Cordes et al., 2014; Golestani et al., 2015),
inter-subject and inter-regional variance in the CRV and RVT
response function is significant, and should be accounted for in
physiological corrections. Accurately estimating and eliminating

CRV effect removes a source of signal modulation irrelevant to
brain connectivity and generates more reproducible connectivity
values.

Despite its positive effect on the reproducibility of DMN
connectivity values, CRV correction reduces the specificity of the
DMN connectivity maps (Figure 7, Table 4). A potential reason
is that the CRV effects may have been over-corrected in regions
exhibiting lower CRV dependence, resulting in additional
artificial correlations. Therefore, we posit that although
correcting for CRV improves measurement reproducibility,
it can lead to lower specificity, potentially compromising the
accuracy of DMN maps. On the other hand, the 1,000-brain
atlas, which served as reference, was generated without CRV
correction, and therefore potentially contains CRV-related
biases. Nonetheless, CRV correction does not significantly affect
motor network connectivity.

In the case of RVT correction, no consistent or significant
effect on the rs-fMRI reproducibility is found in our study. This
is also in contrast to what has been reported by Birn et al. (2014),
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TABLE 3 | Results of the statistical analysis on the sensitivity of DMN and MN

connectivity maps.

(A)

DMN MN

Factor F p F p

TR F (2, 14) = 0.22 0.802 F (2, 14) = 5.38 0.018

Method F (7, 49) = 6.13 <0.001 F (7, 49) = 1.77 0.114

(B)

Method CO2 CRV RVT CO2CRV CO2RVT CRVRVT All

Base 0.785 0.010 0.505 0.009 0.212 0.040 0.050

CO2 0.434 0.045 0.023 0.181 0.606 0.081

CRV 0.006 0.042 0.272 0.509 0.381

RVT 0.005 0.104 0.013 0.027

CO2CRV 0.015 0.010 0.315

CO2RVT 0.384 0.037

CRVRVT 0.216

(C)

TR Short TR Resampled

Long TR 0.038 0.048

Short TR 0.519

(A) Two-factor, within-subject ANOVA test showed the physiological correction method

had significant effect on the sensitivity of the DMN. In addition, sampling rate had

significant effect on the sensitivity of the MN. (B) Follow-up t-test on the effect of

physiological correction method showed that CRV correction significantly increased the

sensitivity of DMN connectivity maps, (C) t-tests on the effect of the sampling-rate

demonstrated that long-TR data generated MN connectivity maps with higher sensitivity

compared to short-TR and down-sampled short-TR data. (Green shows the cases in

which the method in the column gives significantly higher values compared to the method

in the row, red shows the cases in which the method in the column gives significantly

smaller values compared to the method in the row).

whereby RVT correction decreased ICC values. Apart from
potential between-subject and between-region differences in the
RVT responses that explained before, differences in the resting-
state paradigm may also be the cause of this discrepancy.
We used eyes-closed resting-state, whereas Birn et al. (2014)
used an eyes-open resting-state paradigm. Indeed, recent studies
have demonstrated that the RVT signal and hence its effect
on the BOLD signal differ between eyes-open and eyes-closed
conditions (Yuan et al., 2013). On the other hand, RVT correction
does not have a considerable impact on the separability,
sensitivity, or specificity of connectivity maps. This is likely due
to the rather global nature of RVT effects on the BOLD signal.
RVT correction likely eliminates a synchronously oscillating
part of the BOLD signal not only from voxels inside DMN
but also from elsewhere in the gray matter. Consequently,
RVT correction reduces both within- and between-network
correlations.

The Effect of rs-fMRI Sampling Rate
We also targeted the effect of sampling rate using long- and
short-TR data. To achieve higher temporal signal to noise ration

TABLE 4 | Results of the statistical analysis on the specificity of the DMN and MN

connectivity maps.

(A)

DMN MN

Factor F p F p

TR F (2, 14) = 0.24 0.794 F (2, 14) = 1.13 0.349

Method F (7, 49) = 2.61 0.022 F (7, 49) = 2.99 0.011

(B)

Method CO2 CRV RVT CO2CRV CO2RVT CRVRVT All

Base 0.431 0.088 0.490 0.090 0.359 0.153 0.099

CO2 0.248 0.886 0.090 0.666 0.238 0.135

CRV 0.157 0.279 0.346 0.633 0.351

RVT 0.059 0.462 0.096 0.040

CO2CRV 0.095 0.349 0.902

CO2RVT 0.240 0.078

CRVRVT 0.251

(C)

Method CO2 CRV RVT CO2CRV CO2RVT CRVRVT All

Base 0.182 0.268 0.447 0.068 0.126 0.037 0.048

CO2 0.537 0.351 0.024 0.251 0.741 0.022

CRV 0.727 0.152 0.341 0.244 0.110

RVT 0.106 0.165 0.027 0.057

CO2CRV 0.096 0.405 0.274

CO2RVT 0.858 0.011

CRVRVT 0.193

(A) Two-factor, within-subject ANOVA test showed the physiological correction method

had significant effect on the specificity of DMN andMN. (B) Follow-up t-test on the effect of

physiological correction on the DMN specificity. Although not significant, CRV correction

tends to deteriorate the DMN specificity. The only observed significant difference was

between correction for all three physiological signals and correction for RVT, where

correction for all of the physiological signals decreased the specificity of the DMN.

(C) Follow-up t-test on the effect of physiological correction on the MN specificity

demonstrated that in general, correction for the CRV effect decreased the specificity of the

MN. (Red shows the cases in which the method in the column gives significantly smaller

values compared to the method in the row).

(tSNR), we used lower flip angle (FA) for short-TR data. A lower
FA however not only increases tSNR, but also reduces the effect of
physiological noise on the BOLD signal (Gonzalez-Castillo et al.,
2011). Moreover, to achieve whole-brain coverage with short-TR
acquisitions, we used slightly thicker slice thickness, which might
change the through-plane smoothness of images. Furthermore,
SMS has also been known to introduce “leakage effects” that
may introduce false correlations across slices (Todd et al., 2016),
which may bias our findings and are unrelated to sampling rate
per-se, as we have shown in our previous work (Faraji-Dana et al.,
accepted). Thus, to determine if any observed difference between
the results from short- and long-TR is due to sampling rate and
not to other imaging parameters, we created downsampled short-
TR data and investigated the effect of sampling rate by comparing
the results between the short-TR and downsampled short-TR
data.
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TABLE 5 | Summary of the effects of different physiological corrections on rs-fMRI

measures: (A) Reproducibility of ALFF and ReHo, (B) rs-connectivity measures in

the default mode network, (C) rs-connectivity measures in the motor network.

(A)

ICC ALFF ReHo

CO2 ↔

CRV ↔

RVT ↔

(B)

DMN ICC Dice Separability Sensitivity Specificity

CO2 ↔ ↔ ↔

CRV ↔ ↔

RVT ↔ ↔ ↔ ↔ ↔

(C)

MN ICC Dice Separability Sensitivity Specificity

CO2 ↔ ↔ ↔ ↔ ↔

CRV ↔ ↔ ↔ ↔

RVT ↔ ↔ ↔ ↔ ↔

(Green arrow shows the cases in which the rs-fMRI measure is increased due to the

correction method, red arrow shows cases in which the rs-fMRI measure is decreased

due to the correction method).

While RETROICOR correction, which targets the time-locked
high-frequency noise components, has demonstrated little effect
on the ICC values of functional connectivity measures (Birn
et al., 2014), we hypothesized that the effect of correction for
time-locked respiration and cardiac effects may be different
for long- and for short-TR data. That is, the fundamental
frequency peaks of the time-locked effects are captured in
the short-TR data and can be directly filtered out, whereas
in the long-TR data the effects alias into lower frequencies
and become irremovable. Moreover, RETROICOR does not
completely remove the time-locked physiological effects even in
the absence of aliasing (Golestani et al., 2015). Therefore, it is
plausible that long-TR data are more affected by time-locked
cardiac and respiratory signals than short-TR data. Alternatively,
one may argue that the short-TR data contains more time points,
resulting in statistically stronger rs-fMRI maps and potentially
higher reproducibility. To our surprise, the effect of sampling
rate on rs-fMRI measures and the effectiveness of physiological
correction was not as strong as hypothesized. A higher sampling-
rate however, appears to improve the reproducibility of some
fMRI measures. More specifically, images with higher sampling-
rate have more reproducible separability index, specifically in the
motor network. Moreover, consistent with the previous study
by Zuo et al. (2013), ReHo maps generated from short-TR data
is substantially more reproducible than those generated from
long-TR data.

Interestingly, the sensitivity of the MN connectivity maps
generated from long-TR data is significantly higher than that

associated with short-TR data (Table 3). However, this cannot be
directly attributed to sampling-rate, as the sensitivity of the MN
connectivity map generated from down-sampled short-TR data
is comparable to that of the maps generated from short-TR data
(Figure 7). Therefore, other imaging parameter differencesmight
have contributed to the observed phenomenon. For instance, the
short-TR data (and by extension in the down-sampled short-
TR data) were acquired using a lower flip angle, which is likely
to have reduced the fMRI signal to noise ratio (SNR; Gonzalez-
Castillo et al., 2011), reducing BOLD signal sensitivity.

We note that existing reproducibility studies assume that the
true resting-state connectivity should be stable within subjects
and therefore reproducible, whereas noise and artifacts should
be more random in nature and hence their elimination would
improve reproducibility. However, recent studies have shown
that resting-state connectivity is dynamic and variable with time
(Chang and Glover, 2010; Schaefer et al., 2014). Moreover, as
physiological components in the fMRI data are in fact associated
with moderate within-session ICC (Zuo et al., 2010b; Birn et al.,
2014), their elimination from the fMRI signal may reduce both
intra- and inter-subject variance and hence will affect the ICC
in an unpredictable manner. For instance, an ICC reduction
could be interpret as either increased within-subject variance or
decreased between-subject variance (Birn et al., 2014). Moreover,
the ICC is known to be sensitive to the data range (Muller and
Buttner, 1994; Lee et al., 2012), and a larger dynamic range is
associated with a higher ICC value. This is in fact a limitation of
the general practice of using ICC alone to assess reproducibility,
and supports our argument that higher reproducibility of rs-
fMRI measures does not necessarily translate to higher rs-fMRI
measurement accuracy.

In our analyses, we excluded one participant with excessive
head motion. The fMRI images from the remaining participants
underwent typical motion correction steps (affine motion
correction and regression of 6 motion parameters). Recent
studies have shown that even a small head motion can create
spurious local correlation in resting-state fMRI data (Power et al.,
2012). Even-though we did not explicitly correct for such minute
motion, we believe our findings are not influenced by head
motion or the choice of motion-correction strategy, as the study
design uses each data set as its own reference. That is, we assess
the impact of physiological corrections only, and do not compare
across data sets that may have had different motion contributions
or motion correction.

Limitations
We recognize a number of limitations of this study, many of
which are limitations in the field in general.

In the effort to better characterize fcMRI data quality, we
additionally measured the sensitivity, specificity and separability
of the connectivity maps using the 1,000-brain functional-
connectivity atlas as pseudo-ground-truth. In doing so, however,
we assumed negligible between-subject variability in the spatial
pattern of the rs-fMRI connectivity maps. Moreover, we assumed
that physiological effects that are more global in nature do not
closely reflect neuronal signaling. However, this assumption may
only be appropriate in specific networks, such as those related
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to lower-level brain function (Anderson et al., 2011a; Manoliu
et al., 2013), such as the motor network. Another concern
is that when estimating network spatial extent, the necessary
z-score thresholdingmay have affected the outcome (Bennett and
Miller, 2010), particularly for the Dice Coefficient, sensitivity, and
specificity measures. Here too, we hope that by interpreting our
findings based on multiple quality-assessment metrics, we are
providing amore complete and less biased picture. To further this
line of research, we feel that experimental designs that involve
alternative measures of neuronal communication are the most
promising avenue.

Under the heading “The Effect of PETCO2,” we discussed
possible interaction between the neuronal activity and PETCO2

fluctuations. Similar interactions may apply to CRV and RVT,
as suggested by a number of previous studies (Shea, 1996;
Birn et al., 2009; Macefield, 2009). While these studies and our
own have recommended the removal of global physiological
signals to improve the reliability of rs-fMRI measures, the
relationship between these signals and rs-fMRI signal is still
actively investigated.

Moreover, in this study, we used eyes-closed resting-state
paradigm. Resting-state connectivity is shown to be more reliable
during eyes-open condition (Patriat et al., 2013). Further studies
are required to investigate if physiological correction would
have different effects on eyes-open vs. eyes-closed fMRI data.
As we were not able to gauge the participants’ wakefulness,
we are unable to comment on the effect of the vigilance
variability in our findings. Notwithstanding, investigating the
influence of resting-state condition and arousal level on
the physiological artifact correction is part of our future
work.

While we used a relatively small sample size (N = 8), such
sizes are not uncommon amongst fMRI reproducibility studies.
For instance, relevant previous studies have used sample sizes of
8 (Chou et al., 2012), 10 (Caceres et al., 2009), 18 (Meindl et al.,
2010), 20 (Faria et al., 2012), 22 (Li et al., 2012), and 25 (Birn et al.,
2014), respectively, for assessing reproducibility.

Finally, in this work we only investigated functional
connectivity within the motor network and the DMN. We chose
the DMN because it is strongly affected by physiological signals,
specifically by RVT (Birn et al., 2006), and we chose the motor
network in part due to its robustness and simplicity (Biswal et al.,
1995; Yousry et al., 1995). As stated earlier, these two networks
have been better studied and arguably better understood than
most of the others in our 7-network template, and our choice is

meant to provide a snapshot of the network-dependence in our
measures. However, we recognize that further work is required

to thoroughly investigate the effect of physiological correction on
resting-state networks in general. This goal would require a better
understand of the neuronal significance of the physiological
processes.

CONCLUSION

In this paper, we investigated the influence of correction for
three low-frequency physiological modulations (i.e., PETCO2,
CRV, RVT) on resting-state fMRI measurements, namely
the amplitude of low-frequency fluctuations (ALFF), regional
homogeneity (ReHo), and functional connectivity. To that end,
we assessed metrics of test-retest reliability, network separability,
measurement sensitivity, and specificity. We found that the effect
of physiological correction on rs-fMRI measures is network-
dependent. First, PETCO2 correction improved reproducibility
and separability of DMN connectivity, with negligible effect on
the motor network. Secondly, CRV correction improved the
reproducibility but reduced the specificity of DMN connectivity
maps. Overall, the motor networks appears to be less sensitive to
the choice of physiological correction that the DMN. Based on
these general findings, we conclude that the interaction between
the rs-fMRI signal and physiological signals is complex and
not easily demonstrated. Furthermore, to evaluate the extent of
improvement resulting from physiological measures, multiple
and complementary metrics should be employed. While further
research is necessary to clarify the mechanisms of interactions
between BOLD and physiological signals, we suggest correcting
for the physiological effects in rs-fMRI studies when possible.
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