
METHODS
published: 18 October 2017

doi: 10.3389/fnins.2017.00579

Frontiers in Neuroscience | www.frontiersin.org 1 October 2017 | Volume 11 | Article 579

Edited by:

Mikhail Lebedev,

Duke University, United States

Reviewed by:

Dirk Schubert,

Donders Institute for Brain Cognition

and Behaviour, University Medical

Centre Nijmegen, Netherlands

Xiaoli Li,

Beijing Normal University, China

Fabio Boi,

Fondazione Istituto Italiano di

Technologia, Italy

*Correspondence:

Hananel Hazan

hananel@hazan.org.il

Specialty section:

This article was submitted to

Neural Technology,

a section of the journal

Frontiers in Neuroscience

Received: 26 June 2017

Accepted: 03 October 2017

Published: 18 October 2017

Citation:

Hazan H and Ziv NE (2017) Closed

Loop Experiment Manager

(CLEM)—An Open and Inexpensive

Solution for Multichannel

Electrophysiological Recordings and

Closed Loop Experiments.

Front. Neurosci. 11:579.

doi: 10.3389/fnins.2017.00579

Closed Loop Experiment Manager
(CLEM)—An Open and Inexpensive
Solution for Multichannel
Electrophysiological Recordings and
Closed Loop Experiments
Hananel Hazan 1, 2* and Noam E. Ziv 1, 2

1 Faculty of Medicine, Technion, Haifa, Israel, 2Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences

and Engineering, Technion, Haifa, Israel

There is growing need for multichannel electrophysiological systems that record from

and interact with neuronal systems in near real-time. Such systems are needed, for

example, for closed loop, multichannel electrophysiological/optogenetic experimentation

in vivo and in a variety of other neuronal preparations, or for developing and testing

neuro-prosthetic devices, to name a few. Furthermore, there is a need for such systems to

be inexpensive, reliable, user friendly, easy to set-up, open and expandable, and possess

long life cycles in face of rapidly changing computing environments. Finally, they should

provide powerful, yet reasonably easy to implement facilities for developing closed-loop

protocols for interacting with neuronal systems. Here, we survey commercial and open

source systems that address these needs to varying degrees. We then present our own

solution, which we refer to as Closed Loop Experiments Manager (CLEM). CLEM is

an open source, soft real-time, Microsoft Windows desktop application that is based

on a single generic personal computer (PC) and an inexpensive, general-purpose data

acquisition board. CLEM provides a fully functional, user-friendly graphical interface,

possesses facilities for recording, presenting and logging electrophysiological data

from up to 64 analog channels, and facilities for controlling external devices, such as

stimulators, through digital and analog interfaces. Importantly, it includes facilities for

running closed-loop protocols written in any programming language that can generate

dynamic link libraries (DLLs). We describe the application, its architecture and facilities.

We then demonstrate, using networks of cortical neurons growing on multielectrode

arrays (MEA) that despite its reliance on generic hardware, its performance is appropriate

for flexible, closed-loop experimentation at the neuronal network level.

Keywords: closed-loop system, electrophysiology, multielectrode array, software, network dynamics

INTRODUCTION

A common manner for studying complex dynamic systems is to use closed-loop systems that fix
or control one or more interdependent variables; by uncoupling interdependent variables, such
closed-loop systems allow these interdependencies to be resolved. The best-known example in
the Neurosciences is the Voltage Clamp system, in which the control of membrane potential

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2017.00579
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2017.00579&domain=pdf&date_stamp=2017-10-18
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hananel@hazan.org.il
https://doi.org/10.3389/fnins.2017.00579
https://www.frontiersin.org/articles/10.3389/fnins.2017.00579/full
http://loop.frontiersin.org/people/21086/overview
http://loop.frontiersin.org/people/4093/overview

Hazan and Ziv Closed Loop Experiment Manager (CLEM)

provides the means for resolving the dependence of ion-
channel conductance on membrane potential. The use of
closed-loop control systems, however, has expanded far beyond
this purpose (reviewed in Wallach, 2013; Krook-Magnuson
et al., 2015; Wright et al., 2016; see also Potter et al., 2014
and references therein). The advent of new stimulation and
manipulation modalities (e.g., optogenetics) opens new and
exciting possibilities for studying neuronal network functions
or controlling network activity (e.g., Fong et al., 2015; Newman
et al., 2015), increasing the need for fast, multichannel closed-
loop control systems. Indeed, quite a few systems, based on
different platforms, have been developed for this purpose.
Preferably, such systems would be inexpensive, expandable, and
customizable, easy to use, and provide user-friendly interfaces
and development environments. Unfortunately, this is not always
the case, and many of such systems represent tradeoffs between
performance, complexity, ease of development, ease of use,
expandability, dependence on specialized vs. common platforms,
and of course, cost.

Given this state of things, we sought to develop a closed-
loop system, which addresses some of the shortcomings
mentioned above. Specifically, we developed an application for
the widely used Microsoft Windows operating system, based
on an inexpensive general purpose, 64-channel data acquisition
board and a single, generic personal computer (PC). This
application, which we refer to as Closed Loop Experiments
Manager (CLEM), provides a full-featured graphics user interface
(GUI) and possesses facilities for recording, displaying, logging,
and playing back continuous electrophysiological data and/or
individual action potentials from up to 64 analog channels, as
well as facilities for reading from and activating external devices
such as stimulators. Importantly, CLEM includes facilities for
running closed-loop protocols that can be written in any
programming language that can generate Microsoft Windows-
compatible dynamic link libraries (DLLs), which are thereafter
treated as “plugins.” The application which also includes several
useful tools (such as an ability to run automated experiment
sequences), does not depend on propriety libraries, is based on
generic Microsoft Windows application programming interfaces
(APIs), and is written in C and C++, with all source code
available online.

We first survey current approaches and existing solutions,
based on propriety platforms or open source code. We then
describe our own solution and examine its performance using
networks of cortical neurons growing on multielectrode array
(MEA) dishes.

Existing Approaches and Solutions
In general, closed-loop control systems face several rather
challenging demands: Such systems are required to obtain data,
process it, and generate output rapidly within short, well-defined
durations. In addition, they are to store incoming data and
control values to some permanent storage device. Preferably, they
should also provide user feedback (render the data and display
it) and remain responsive to user input. Several approaches have
been taken to meet these requirements: (1) Systems built around
real-time hardware; (2) hybrid systems composed of real-time

hardware (which runs dedicated software) and non-real-time
hardware, typically a general-purpose PC running mainstream
software, or (3) systems built around a PC running real-time or
soft real-time software.

Ultimately, the approach chosen depends on the particular
requirements of such a system. Most important in this respect
is the duration of each sample-analyze-output loop. Just as
important is the ability to guarantee that these durations will be
repeatable and that the system will not suffer from occasional,
unacceptably long latencies. Clearly, the requirement for loop
duration depends on the phenomena one wishes to study. For
single channel biophysics, these durations must be on the order
of microseconds; for network activity phenomena, however,
which is the realm addressed here, sample-analyze-output loop
durations matched to the duration of single action potentials
(∼1–2ms) are probably acceptable. In any case, jitter in loop
durations must be kept to a minimum and occasional longer
latencies are to be avoided entirely.

Each one of the three approaches mentioned above is
described next with the following considerations in mind: (1)
real-time performance; (2) system complexity; (3) flexibility; (4)
ease of software development (coding and debugging), and (5)
cost and long-term maintenance. A summary covering some
existing solutions is provided in Table 1.

Real-Time Hardware
Fast, real-time hardware controllers are usually based on system
on a chip (SOC), field-programmable gate array (FPGA) devices,
or custom hardware. In these approaches, sampling, output
and computation, including digital signal processing (DSP),
patternmatching or user defined control algorithms, are executed
directly on the hardware controller. While such approaches
often guarantee fast, and reliable performance, they suffer from
several shortcomings. First, both SOC and FPGA units often
lack resources (e.g., processing power, memory, access to user
interface devices) which are readily available on current day
PCs, limiting the amount of data available at any given time
to closed-loop algorithms and calling for careful, resource-
conscious programming. Second, programming these units is
often based on specialized languages and/or environments, which
can have limited expressive power and take time to master
(but see Müller et al., 2013 for one attempt to mitigate FPGA
programming challenges). This is particularly true for FPGA
units whose programming involves special languages (such
as Verilog and associated languages) and compilers used to
translate programs into logic gate instructions. In many cases,
the translated logic gate map is larger than FPGA capacity,
requiring division into smaller pieces, a non-trivial process, in
particular in programming environments that lack the modern
debugging features of contemporary integrated development
environments (IDEs). Third, while SOC units have sufficient
computational power to perform the tasks they were designed
for (e.g., DSP), they are often insufficiently powerful to perform
general purpose tasks. In theory, multiple SOC boards can
be used, but task division and coordination poses significant
challenges, in particular to non-experts. Finally, when particular
SOCs and FPGAs become obsolete, porting the code to newer

Frontiers in Neuroscience | www.frontiersin.org 2 October 2017 | Volume 11 | Article 579

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hazan and Ziv Closed Loop Experiment Manager (CLEM)

T
A
B
L
E
1
|
A
c
o
m
p
a
ris
o
n
o
f
se

ve
ra
lc
lo
se

d
lo
o
p
so

lu
tio

n
s
(t
h
e
lis
t
is
n
o
t
e
xh

a
u
st
iv
e
).

P
ro
g
ra
m

n
a
m
e

O
p
e
ra
ti
n
g

s
y
s
te
m

N
u
m
b
e
r
o
f
d
a
ta

a
c
q
u
is
it
io
n

c
a
rd
s

A
n
a
lo
g
I/
O

c
h
a
n
n
e
ls

D
ig
it
a
l
IO

li
n
e
s

P
ro
g
ra
m
m
in
g

la
n
g
u
a
g
e
(I
D
E
)

G
ra
p
h
ic

u
s
e
r

in
te
rf
a
c
e

M
a
x
s
a
m
p
li
n
g

ra
te

S
o
ft
w
a
re

e
x
te
n
s
io
n
s

M
in
.
s
a
m
p
le
-

a
n
a
ly
z
e
-o

u
tp
u
t

lo
o
p
d
u
ra
ti
o
n

R
e
a
l
ti
m
e

ty
p
e

T
y
p
e

R
T
X
Ia

L
in
u
x
+

X
e
n
o
m
a
i

e
xt
e
n
si
o
n

1 S
u
p
p
o
rt
e
d
b
y
A
n
a
lo
g
y

2
/2

N
o
n
e

C
+
+

(G
D
B
)

Y
e
s

4
0
kH

z
C
+
+

P
lu
g
in
s

5
0

µ
s
±

1
.5

µ
s

H
a
rd

G
e
n
e
ric

P
C

L
C
G
b

L
in
u
x
+

C
o
m
e
d
i

e
xt
e
n
si
o
n

1 S
u
p
p
o
rt
e
d
b
y
C
o
m
e
d
i

2
/2

N
o
n
e

C
+
+
,
P
yt
h
o
n
(G
D
B
)
N
o

P
yt
h
o
n
p
lu
g
in
s

H
a
rd

G
e
n
e
ric

P
C

H
yN

N
e
tc

W
in
d
o
w
s
X
P

M
u
lti
p
le
sp

e
c
ia
liz
e
d
c
a
rd
s
(3
2
fo
r

a
fu
ll
sy
st
e
m
)

4
–6

0
/4
–3

0
6
4

C
,
C
+
+

Y
e
s

4
0
kH

z
N
o

4
6

µ
s

H
a
rd

H
yb

rid

C
M
O
S
-M

E
A
,

N
e
u
ro
ta
lk
e
rd

L
in
u
x

M
E
A
-A

S
IC

+
F
P
G
A

1
2
8
/1
2
8

V
H
D
L
,
C
+
+

2
0
kH

z
N
o

1
.2

m
s

S
o
ft

H
yb

rid

N
e
u
ro
-R

ig
h
te
re

W
in
d
o
w
s

2 N
a
tio

n
a
lI
n
st
ru
m
e
n
ts

6
4
/4

3
2

C
#

(V
S
)

Y
e
s

2
5
kH

z
C
#
P
lu
g
in
s

S
tim

S
rv

4
6
.9

±

3
.1

m
s

N
e
w
D
a
ta

7
.1

±
1
.5

m
s

S
o
ft

G
e
n
e
ric

P
C

M
a
tla
b
+

S
im

u
lin
kf

W
in
d
o
w
s
(h
o
st
)

Q
N
X

(t
a
rg
e
t)

1 N
a
tio

n
a
lI
n
st
ru
m
e
n
ts

3
2
/

M
a
tla
b
+

S
im

u
lin
k

+
R
T-
L
a
b

Y
e
s

1
0
kH

z
M
a
tla
b
+

S
im

u
lin
k

1
m
s

H
a
rd

H
yb

rid

M
a
tla
b
+

S
im

u
lin
kg

W
in
d
o
w
s
(h
o
st
)

xP
C

(t
a
rg
e
t)

1 U
E
I

6
4
/2

1
6

M
a
tla
b
+

S
im

u
lin
k

(M
a
tla
b
)

Y
e
s

4
6
kH

z
M
a
tla
b
+

S
im

u
lin
k

1
.5

m
s
±

2
.5

µ
s

H
a
rd

H
yb

rid

M
a
tla
b
+

S
im

u
lin
kh

W
in
d
o
w
s
(h
o
st
)

xP
C

(t
a
rg
e
t)

1 N
a
tio

n
a
lI
n
st
ru
m
e
n
ts

3
2
/4

4
8

M
a
tla
b
+

S
im

u
lin
k

(M
a
tla
b
)

M
in
im

a
l

1
5
kH

z
M
a
tla
b
+

S
im

u
lin
k

H
a
rd

H
yb

rid

F
P
G
A
b
a
se

d

sy
st
e
m
i

L
in
u
x

1 V
irt
e
x
II
p
ro

1
2
6
/2

V
H
D
L

N
o

2
0
kH

z
N
o

F
P
G
A
:

4
0
0
±

5
0

µ
s

L
A
N
:

8
3
m
s
±

2
1
m
s

H
a
rd

S
O
C

L
a
b
V
IE
W

R
e
a
lT

im
e
j
W
in
d
o
w
s

4 N
a
tio

n
a
lI
n
st
ru
m
e
n
ts

6
4
/2

1
6

L
a
b
V
IE
W

M
o
d
e
ls

(L
a
b
vi
e
w
)

Y
e
s

1
0
0
kH

z
L
a
b
V
IE
W

M
o
d
e
ls

1
m
s

H
a
rd

H
yb

rid

(C
o
n
ti
n
u
e
d
)

Frontiers in Neuroscience | www.frontiersin.org 3 October 2017 | Volume 11 | Article 579

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hazan and Ziv Closed Loop Experiment Manager (CLEM)

T
A
B
L
E
1
|
C
o
n
tin

u
e
d

P
ro
g
ra
m

n
a
m
e

O
p
e
ra
ti
n
g

s
y
s
te
m

N
u
m
b
e
r
o
f
d
a
ta

a
c
q
u
is
it
io
n

c
a
rd
s

A
n
a
lo
g
I/
O

c
h
a
n
n
e
ls

D
ig
it
a
l
IO

li
n
e
s

P
ro
g
ra
m
m
in
g

la
n
g
u
a
g
e
(I
D
E
)

G
ra
p
h
ic

u
s
e
r

in
te
rf
a
c
e

M
a
x
s
a
m
p
li
n
g

ra
te

S
o
ft
w
a
re

e
x
te
n
s
io
n
s

M
in
.
s
a
m
p
le
-

a
n
a
ly
z
e
-o

u
tp
u
t

lo
o
p
d
u
ra
ti
o
n

R
e
a
l
ti
m
e

ty
p
e

T
y
p
e

M
u
lti
-C

h
a
n
n
e
l

S
ys
te
m
sk

W
in
d
o
w
s

P
ro
p
rie

ty
e
le
c
tr
o
n
ic
s
a
n
d
o
n
b
o
a
rd

D
S
P

U
p
to

2
5
6
+

8
/0

1
6

V
is
u
a
ld

a
ta
flo

w

p
ro
g
ra
m
m
in
g

(E
xp

e
rim

e
n
te
r)

Y
e
s

5
0
kH

z
.n
e
t

M
c
sU

sb
N
e
t

1
m
s

H
a
rd

H
yb

rid

Tu
c
ke

r-
D
a
vi
s

Te
c
h
n
o
lo
g
ie
sl

W
in
d
o
w
s

D
S
P
-b
a
se

d
la
rg
e
sc

a
le
d
a
ta

a
c
q
u
is
iti
o
n
sy
st
e
m
s

U
p
to

1
2
8
/

U
p
to

1
2
8

2
4

V
is
u
a
lD

S
P

p
ro
g
ra
m
m
in
g

(R
P
vd

sE
x)

V
is
u
a
ld

a
ta
flo

w

p
ro
g
ra
m
m
in
g

(S
yn

a
p
se

)

Y
e
s

5
0
kH

z
R
P
vd

sE
x

(o
n
D
S
P
)

A
c
tiv
e
X

(o
n
h
o
st
)

<
1
m
s

(o
n
D
S
P
)

5
–5

0
m
s

(T
D
e
vA

c
c
X
)

2
–3

0
se

c
(T
Ta
n
kX

)

H
a
rd
/S
o
ft

H
yb

rid

C
L
E
M

W
in
d
o
w
s

1 U
E
I

6
4
/2

1
6

C
,
C
+
+

Y
e
s

4
6
kH

z
D
L
L
P
lu
g
in
s

(C
,
C
+
+
,
e
tc
.)

1
.4

±
0
.0
1
m
s

S
o
ft

G
e
n
e
ric

P
C

a
L
in
e
t
a
l.,
2
0
1
0
;
O
rt
e
g
a
e
t
a
l.,
2
0
1
4
;
P
a
te
le
t
a
l.,
2
0
1
7
.

b
L
in
a
ro

e
t
a
l.,
2
0
1
4
.

c
B
o
n
to
ri
n
e
t
a
l.,
2
0
0
7
.

d
H
a
fiz
o
vi
c
e
t
a
l.,
2
0
0
7
.

e
N
e
w
m
a
n
e
t
a
l.,
2
0
1
3
.
S
ti
m
S
rv
is
a
d
o
u
b
le
b
u
ff
e
ri
n
g
s
ys
te
m
,
w
h
ic
h
re
q
u
ir
e
s
re
la
ti
ve
ly
lo
n
g
ti
m
e
s
b
e
tw
e
e
n
u
p
d
a
te
s
to
N
I
D
/A

o
u
tp
u
t
b
u
ff
e
r.
W
h
ile

S
ti
m
S
rv
is
s
lo
w
in
c
o
m
p
a
ri
s
o
n
to
th
e
N
e
w
D
a
ta
a
n
d
m
ic
ro
c
o
n
tr
o
lle
r
o
p
ti
o
n
s
,
it
p
ro
vi
d
e
s

a
n
in
te
rf
a
c
e
th
a
t
is
e
a
s
ie
r
to
u
s
e
a
n
d
a
llo
w
s
u
n
in
te
rr
u
p
te
d
d
e
liv
e
ry
o
f
a
rb
it
ra
ry
c
o
m
p
le
x
s
ig
n
a
lo
u
tp
u
ts
.
N
e
w
D
a
ta
is
a
n
u
n
b
u
ff
e
re
d
m
e
th
o
d
th
a
t
c
a
n
o
n
ly
re
s
p
o
n
d
b
y
g
e
n
e
ra
ti
n
g
fin
it
e
s
a
m
p
le
s
o
r
p
e
ri
o
d
ic
c
o
n
tr
o
ls
ig
n
a
ls
.

f N
o
ve
lli
n
o
e
t
a
l.,
2
0
0
7
.

g
Z
re
n
n
e
r
e
t
a
l.,
2
0
1
0
.

h
B
ir
ó
a
n
d
G
iu
g
lia
n
o
,
2
0
1
5
.

i M
ü
lle
r
e
t
a
l.,
2
0
1
3
.

j B
ry
a
n
t
a
n
d
G
a
n
d
h
i,
2
0
0
5
.
C
h
a
n
n
e
lc
o
u
n
ts
a
n
d
s
a
m
p
lin
g
fr
e
q
u
e
n
c
ie
s
re
la
te
to
h
a
rd
w
a
re
u
s
e
d
,
n
o
t
im
p
le
m
e
n
ta
ti
o
n
.
M
o
s
t
o
f
th
e
h
a
rd
w
a
re
m
e
n
ti
o
n
e
d
is
n
o
lo
n
g
e
r
a
va
ila
b
le
fo
r
p
u
rc
h
a
s
e
,
b
u
t
c
o
m
p
a
ra
b
le
it
e
m
s
fr
o
m
th
e
s
a
m
e
ve
n
d
o
r
a
re

a
va
ila
b
le
(P
X
I-
1
0
3
1
+
P
X
I-
6
2
2
4
+
P
X
Ie
-6
5
3
5
+
P
X
I-
6
6
0
2
+
P
X
Ie
-8
1
0
0
).

k
M
E
A
2
1
0
0
+
M
u
lt
iC

h
a
n
n
e
lE
xp
e
ri
m
e
n
te
r,
u
s
e
r
m
a
n
u
a
l;
A
P
I
fo
r
c
o
d
e
e
xt
e
n
s
io
n
s
(M
c
s
U
s
b
N
e
t.
d
ll)
c
o
m
p
a
ti
b
le
w
it
h
M
C
R
a
c
k.

l R
Z
/R
X
s
e
ri
e
s
+
S
yn
a
p
s
e
s
o
ft
w
a
re
.
R
P
vd
s
E
x
is
a
vi
s
u
a
l
s
tu
d
io
fo
r
re
a
l-
ti
m
e
p
ro
c
e
s
s
o
r
p
ro
g
ra
m
m
in
g
.
T
D
e
vA
c
c
X
a
n
d
T
Ta
n
kX

a
re
A
c
ti
ve
X
in
te
rf
a
c
e
s
fo
r
c
lo
s
e
d
lo
o
p
in
te
ra
c
ti
o
n
a
t
d
iff
e
re
n
t
h
a
rd
w
a
re
le
ve
ls
.
L
a
te
n
c
ie
s
c
a
n
b
e
re
d
u
c
e
d
b
y

im
p
le
m
e
n
ti
n
g
a
d
d
it
io
n
a
lh
a
rd
w
a
re
(E
th
e
rn
e
t
c
o
n
n
e
c
ti
o
n
,
a
P
O
8
e
in
te
rf
a
c
e
).
U
n
p
ro
te
c
te
d
a
c
c
e
s
s
vi
a
T
D
e
vA
c
c
X
m
u
s
t
b
e
u
s
e
d
c
a
re
fu
lly
,
a
s
in
a
p
p
ro
p
ri
a
te
u
s
e
c
a
n
c
ra
s
h
th
e
e
n
ti
re
a
p
p
lic
a
ti
o
n
.

C
lo
s
e
d
lo
o
p
la
te
n
c
ie
s
w
e
re
te
s
te
d
in
o
u
r
h
a
n
d
s
o
n
R
T
X
I
a
n
d
C
L
E
M
;
th
e
re
s
t
o
f
th
e
in
fo
rm
a
ti
o
n
is
b
a
s
e
d
o
n
p
u
b
lis
h
e
d
p
a
p
e
rs
a
n
d
w
e
b
s
it
e
s
.
G
D
B
=
G
N
U
P
ro
je
c
t
d
e
b
u
g
g
e
r,
u
s
u
a
lly
u
s
e
d
th
ro
u
g
h
th
e
c
o
m
m
a
n
d
lin
e
.
V
S
=
M
ic
ro
s
o
ft
V
is
u
a
l

S
tu
d
io
.

Frontiers in Neuroscience | www.frontiersin.org 4 October 2017 | Volume 11 | Article 579

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hazan and Ziv Closed Loop Experiment Manager (CLEM)

units can prove to be a very laborious task. Given the enormous
growth of PC computational capacities, the justification for this
class of solutions is diminishing rapidly.

Hybrid Real-Time and General-Purpose
Systems
Given the limitations of dedicated hardware systems, hybrid
solutions are commonly preferred. Here, tasks are divided
between two subsystems: (1) A real time subsystem that handles
time-sensitive, computationally-intensive tasks; this subsystem
(often referred to as the “Target”) is typically a SOC, a FPGA
or a dedicated stripped-down PC, which runs a (minimal)
real-time operating system (OS) and contains data acquisition
hardware. (2) A host system (typically a general purpose
PC) that handles tasks that are less time-sensitive such as
display, user interface, and data logging. The two subsystems
are connected internally through standard buses (e.g., PCI) or
externally through communication interfaces such as USB or
Ethernet. During execution, binary files, created on the host,
are downloaded to the real-time system and executed, with the
aforementioned channels serving to transfer data, commands,
and alerts between the two subsystems.

As the hybrid approach combines the advantages of each
subsystem while overcoming many of their limitations, it is
generally viewed as attractive solution. In the neuroscience
community, this hybrid approach has gained popularity due to
the availability of a Matlab compatible solution, namely Simulink
Real-Time, in which the target is a dedicated stripped-down PC
(xPC Target). Such hybrid systems were used successfully to
“embody” in-vitro networks in physical “robots” (Cozzi et al.,
2005; Novellino et al., 2007), to study and clamp neuronal
response probabilities to electrical stimuli and synaptic input
(Wallach et al., 2011; Wallach and Marom, 2012; Reinartz
et al., 2014) and to clamp network synchrony levels through
timed neuromodulator delivery (Kaufman et al., 2014). In
these studies, the host computer ran Matlab scripts within the
Matlab environment whereas the software running on the target
was programmed using Simulink, a graphical programming
environment based on blocks and connections. This architecture
highlights the fact that hybrid systems typically call for the
development of two separate applications, one that runs on the
host, and one that runs on the target. In practice, development
of these applications often differs substantially, requiring the
experimenter or developer to master two different programming
languages and their respective development environments.

Another useful commercial solution is LabVIEW Real Time
(e.g., Bryant and Gandhi, 2005). Software development within
this framework is based on an elegant and powerful graphical
programming interface which, from the developer/user’s
standpoint, does not differ substantially for applications running
on real time targets or the host. This unified “point and click”
interface greatly simplifies development, integration, and testing
of closed loop systems, while hiding many tedious low level
implementation details. A large number of SOC, FPGA, and DSP
targets are compatible with this framework, providing modular
and extendable architectures. It should be noted, however that
these systems tend to be quite costly. It should also be mentioned

that using the elegant graphical programming interface still
requires a good grasp of signal processing, timing, and closed-
loop programming concepts. Consequently considerable time
investment is still needed, in particular for experimentalists
without suitable backgrounds.

Commercial solutions exist from additional vendors such as
Multichannel Systems (MCS) and Tucker-Davis Technologies.
These vendors offer comprehensive hardware and software suites
suitable for a wide range of experimental needs, which include
powerful graphical programming interfaces for controlling
data acquisition, processing, display, logging, and analysis. In
addition, these suites provide close-loop functionality based
on dedicated hardware and standardized sets of conditions,
For example, the Real Time Feedback option in the “Multi
Channel Experimenter” application (MCS) allows for closed-
loop stimuli generation based on detection of spikes (or
predetermined numbers of spikes) in certain recording channels
within predefined time windows. Such conditions are typically
tested on the real-time subsystem, resulting in very short latencies
(a few ms).

Although hybrid systems are both advantageous and useful,
they too have certain shortcomings. First, they require two
separate subsystems (e.g., a generic PC and a target) increasing
costs and overall complexity. Even when the target is an
inexpensive, stripped down PC (a common choice), its
configuration (e.g., BIOS settings) needs to be fine-tuned to
assure good performance and avoid sporadic latencies. Other
targets for Simulink and LabVIEW Real Time exist, but these
are usually much more costly. Second, the use of two subsystems
implies two separate applications as discussed above, with the
development complexities this entails. While such complexities
can be hidden from the experimenter through user-friendly
graphical programming environments, these do not cater to
every scheme, creating difficulties when the loop is to be closed
on complex features of incoming data, for which no boilerplate
function or graphical object exists. For such non-standard
schemes, some commercial systems provide APIs that allow
experimenters to write their own code using general purpose
programming languages (e.g., C, C++). For instance, Tucker-
Davis Technologies offers APIs that allow programs written in
a variety of languages (including Matlab) to access their core
modules and data repositories through ActiveX interfaces. It
should be noted, however, that this complex software layer
can introduce significant delays and impair robustness (see
Table 1 for further details). Thus, for demanding experiments,
the complexities of hybrid systems are difficult to evade, and
the use of flexible and expressive general purpose programming
languages becomes unavoidable.

Real-Time or Soft Real-Time Software
Controllers
The dramatic increases in computational power and the
prevalence of multicore processors have led to an emergence
of new and inexpensive solutions based on generic PCs. Here,
good to excellent hard or soft real-time performance can be
attained, depending on the OS installed and closed-loop timing

Frontiers in Neuroscience | www.frontiersin.org 5 October 2017 | Volume 11 | Article 579

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hazan and Ziv Closed Loop Experiment Manager (CLEM)

requirements. The advantage of this approach is found in its
low cost and simplicity. Furthermore, a huge variety of excellent,
powerful and user-friendly programming environments is
available for these platforms, facilitating system and protocol
development. The main disadvantage of this approach concerns
the fact that mainstream OSs are not optimized for real time
performance. This matter deserves some elaboration.

OSs provide high-level interfaces through which running
applications access computer resources (memory, file system,
network, display, user interface devices, etc.). Among others,
OSs time-share application execution through a scheduling
mechanism, providing the illusion that multiple applications
and background services run concurrently, even though at any
given time only a small number of tasks is actually executed.
General-purpose OSs such as Microsoft Windows, MacOS,
and Linux employ dynamic scheduling systems that prioritize
tasks, dividing execution time between applications according to
their priority, providing the user with a responsive experience.
Inessential programs and high priority tasks, however, can slow
system responsiveness and introduce delays. Thus, scheduler
behavior in such OSs limits their ability to serve as real-time
systems.

Contrary to general-purpose OSs, real-time OSs aim to
guarantee soft or hard execution deadlines, at the expense
of general performance. The schedulers’ behavior determines
if the OS is a hard real-time or soft real-time system: If
deadlines are usually met, the system is considered a soft real-
time OS; if deadlines are met deterministically, the system
is considered a hard real-time OS. Thus, execution will be
most precise (i.e., execution loop durations will show least
jitter) on hard real-time OSs, slightly less precise on soft real-
time systems and least precise on general-purpose OSs. Some
examples of real time OSs include Xenomai (https://xenomai.
org/) and RTXI (http://rtxi.org/)—open source, real-time Linux
frameworks and RTX/RTX64—a propriety, real-time Windows
framework (https://www.intervalzero.com/).

Another consideration is minimal execution time slice
duration. Thus, for example, Microsoft Windows typically
achieves a granularity of about 1ms. By contrast, Xenomai
provides a minimum granularity of 59 µs (Brown and Martin,
2010) whereas RTXI provides a granularity as low as 50 µs (Patel
et al., 2017). Along these lines, Linux has been quite widely
adopted by the scientific community and has growing user and
support bases, due to its open source and free of charge policy,
and, importantly, the freedom to change any part of its operation.
Yet, Linux has rightfully earned a reputation of having a steep
learning curve, and its development environments are not as
user friendly or diverse as those available for mainstream OSs.
Moreover, Xenomai is not compatible with all Linux distributions
and versions, and requires significant knowledge to set up and
maintain. This situation is generally true for other Linux based
solutions, such as RTXI (Lin et al., 2010; Ortega et al., 2014; Patel
et al., 2017) and LCG (Linaro et al., 2014). Commercial real-time
systems have better and more centralized support and migration
paths, but these systems can be expensive and rely on code that
is hidden from the experimenter. Therefore, it would be desirable
that single PC systems would run over mainstream OSs, which

typically have streamlined migration paths and offer significant
backward compatibility.

Selected Solution-Overview
Our aim was to develop a simple and reliable system that would
allow for closed-loop experiments with networks of spiking
neurons. Placing the pros and cons of the three approaches
listed above against this aim led us to favor the third approach.
Furthermore, as we aimed for a user-friendly system with a
reasonably long life cycle, we elected to develop our system
over Microsoft Windows, minimizing dependence on unique
products with uncertain futures, such as niche OSs and third-
party software libraries. Given that the duration of a single
action potential is ∼1–2ms, the minimal granularity of 1ms of
this OSs’ scheduler was deemed sufficient. The system was thus
built around a single generic PC running Microsoft Windows
and a single general purpose, PCI data acquisition board (PD2-
MF-64-3M/12, United Electronics Industries; Table 2). A similar
approach - the NeuroRighter Electrophysiology Platform -
has been recently described (Rolston et al., 2010; Newman
et al., 2013; Laxpati et al., 2015). This platform has been used
successfully to control firing in neuronal populations using
optical methods (Newman et al., 2015) and derive the roles
of spiking and neurotransmission in driving upward scaling of
synaptic strengths (Fong et al., 2015). In this platform, however,
closed loop latencies, were slightly excessive (∼7 or 49ms;
depending on the closed-loop mode). Furthermore, two, 32
channel data acquisition boards were used, increasing system
cost and complexity. In contrast, the system described here
is based on a single data acquisition board that can amplify
and sample analog data from 64 input channels at sufficiently
high rates (>45 kSsamples/s), provide concomitant analog (2
channels) and digital output (32 channels) without requirements
for additional external devices (e.g., multiplexers, amplifiers etc.).
Consequently, the cost of the entire system (data acquisition
board, PC, monitor, software) is <$3,000.

As described above, Microsoft Windows is not a real-time OS;
most contemporary data acquisition boards, however, provide
asynchronous acquisition modes in which the board transfers

TABLE 2 | CLEM components and costs.

Item Rig 1 Rig 2 Cost ($US)

Brand Dell optiplex 9010 Generic 600

Motherboard Dell Intel DB75EN

CPU i7-3770 @ 3.4 Ghz i7-3770 @ 3.4 Ghz

RAM 8 Gbyte (DDR3) 4 Gbyte (DDR3)

Data acquisition

card

UEI Power DAQ

PD2-MF-64-3

M/12H

UEI powerDAQ

PD2-MF-64-3 M/12 L

2,200

Operating system Windows 7 enterprise Windows 7 enterprise Free for

academic use*

Programming

environment

Visual studio 2013 (C

and C++)

Visual studio 2013 (C

and C++)

Two slightly different rigs were built and are currently in routine use. *Within Microsoft’s

restrictions.

Frontiers in Neuroscience | www.frontiersin.org 6 October 2017 | Volume 11 | Article 579

https://xenomai.org/
https://xenomai.org/
http://rtxi.org/
https://www.intervalzero.com/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hazan and Ziv Closed Loop Experiment Manager (CLEM)

incoming data into PC memory autonomously. Typically,
interrupts are generated each time the transfer of predetermined
numbers of samples is completed. These events can be used to
clock sample-analyze-output loops. We found that this mode
is sufficiently reliable to support closed loop performance with
latencies under 2ms with practically no jitter (see below).
In addition to this hardware-timed mode, we implemented a
slower mode, detached from hardware timing mechanisms, in
which sample-analyze-output loop duration is user defined, for
(concomitant, if so desired) use with tasks that are less time
sensitive and/or require lengthy computations.

In addition to closed loop tasks, the system stores and displays
incoming and outgoing data, detects and displays spikes, displays
spike rasters and histograms, activity statistics for spatially
rendered channels, digital and analog output and data generated
by closed loop routines (user data). Furthermore, the system
displays and stores (to the desktop, by default) a text-based log
of all activities including comments entered by the experimenter
or generated by closed-loop procedures. Finally the system
has facilities for performing timed experiment sequences, has
provisions for playing back stored data, and several additional
tools. An overview of the graphical user interface is provided in
Figures 1, 2.

Software Architecture
The entire application was written as a Windows desktop
application in C and C++, and is based on generic APIs,
with practically no dependence on external software libraries
beyond those provided by the data acquisition board vendor
(Table 2). The overall architecture of the system is illustrated
in Figure 3. The application has two main thread groups: (1)
the GUI thread, and (2) the Core Functions threads. Threads
run in parallel, with communication between threads realized
through shared memory. To take advantage of performance
improvements provided by contemporary multicore processors,
Core function tasks are divided between multiple threads.

Data collected is stored in memory repositories, which are
shared by and accessible to all running threads. These include
raw voltage traces of all 64 analog channels; Action potential
(spike) events; Digital In events; Digital Out events; Analog Out
events, and User data events (i.e., data generated by closed loop
routines as explained later). These repositories contain the most
recent data, with predefined history durations. As the main aim
was to interface with spiking networks, data repositories were
designed to store the histories of several hundreds of thousands
of action potentials (time, channel/electrode, waveform). Apart
from raw voltage data, which is stored as a continuous stream
of numerical values, all other data forms are stored as time-
stamped events, i.e., an entry containing a time stamp (in sample
units) and data specific to each event type. For spikes, each event
contains, in addition to the time stamp, the particular channel
on which it was detected and a waveform of the voltage trace
of the particular spike. Spikes are detected as threshold crossing
events and the waveform contains data within a user defined time
window covering the period just before and after the threshold-
crossing event. Unlike other systems, multiple spikes occurring

within one such time window are not lumped into a single event
but are stored as separate (overlapping) events.

User defined closed-loop programs are treated as “plugins”
that can be written in any programming language that can
produce a standard Window dynamic link library (DLL). These
DLLs must conform to certain specifications as described below.
DLLs are loaded, activated, stopped and unloaded dynamically
by the user. When running, plugin routines have full access to all
data stored in central repositories, can use these data to calculate
actions (or lack thereof) and then generate output requests,
which are thereafter handled by suitable core function threads.
User-defined closed-loop routines are developed independently
from the main application, allowing the experimenter to write,
load, debug, and test these without leaving the main application.
These plugins can also generate and store, if so desired, two
streams of analog values (User data events) which are displayed
on the GUI, representing, for example, control values related
to closed-loop procedures (e.g., stimulation intensity) or values
calculated on the fly (e.g., spike rates, measures of synchrony,
etc.).

All source code, as well as installation files for an executable
version are available at https://github.com/Hananel-Hazan/
CLEM

As mentioned above, execution is carried out in multiple
threads that run concurrently. Below is a brief description of
these threads.

Graphic User Interface Thread
The graphic user interface thread handles all user interface using
standard Windows controls and menus [Figure 3 (A)]. It then
notifies core function threads [Figure 3 (B–J)] of user driven
events such as requests to begin or stop acquisition, data logging,
closed loop execution, playback, etc. The graphic user interface
also displays the most recent data residing in data repositories,
basic information on activity statistics and spatial sources
(using user-defined source layouts) as illustrated in Figure 1. It
also provides facilities for loading, engaging, disengaging and
unloading closed-loop plugins. Finally, it provides facilities to
carry out predefined, timed experiment protocols as illustrated
Figure 2. Here, the user can create or edit a list of tasks (up to
200). Each task is selected from a predefined list that includes,
among others, data logging, loading plugins and executing the
functions they contain. The duration of each task is defined
and arguments can be provided as needed. Task sequences
can be stored to files and thereafter loaded and reused. When
the experiment sequence is initiated through the user interface
(Figure 1A, region 1) CLEM steps through the actions and
executes them sequentially (Figure 2B), until the sequence is
completed or terminated manually.

Core Function Threads
The Core function creates eight separate threads that run
concurrently as described schematically in Figure 3 (letters in
parenthesis refer to annotations in Figure 3). These include:
(1) the preprocessing thread (D)—handles blocks of incoming
samples digitized by the data acquisition board, preprocesses
the data, detects action potentials, and stores the data to central

Frontiers in Neuroscience | www.frontiersin.org 7 October 2017 | Volume 11 | Article 579

https://github.com/Hananel-Hazan/CLEM
https://github.com/Hananel-Hazan/CLEM
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hazan and Ziv Closed Loop Experiment Manager (CLEM)

FIGURE 1 | CLEM’s Graphical user interface. (A) A screenshot of CLEMs main window (Continuous mode). The left top region contains readily accessible controls,

whereas all other regions display incoming data and data statistics. (1) Controls for starting and stopping data acquisition, data logging, playback, and timed

experiments. (2) Controls for loading and engaging closed loop “plugins.” (3) Controls for changing display modes and settings. (4) Text messages generated by

CLEM and closed-loop functions. Double clicking on this window allows manual entry of ad-hoc comments. (5) Channel physical layout. Custom layouts can be

created using any text editor and thereafter loaded from the Options menu. Cumulative spike rates are color coded according to color bar below. (6) Continuous

voltage recordings from all channels. The time window and vertical scale are defined in region 3. (7) Magnified view of one channel. The particular channel is selected

(Continued)

Frontiers in Neuroscience | www.frontiersin.org 8 October 2017 | Volume 11 | Article 579

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hazan and Ziv Closed Loop Experiment Manager (CLEM)

FIGURE 1 | Continued

by double clicking on one of the traces or channels in regions 5 or 6. The threshold used for spike detection (black horizontal line) can be moved up and down

interactively. (8) User data display—two channels of data generated by plugin functions can be displayed here. (9) Digital input and output, one line for each plot. IO

lines to be displayed can be selected from the menu. (10) Histograms of spikes detected in all channels. (11) Rasters of spikes detected in all channels. The time

window of regions 8–11 is defined using the controls in region 3. (B) A screenshot of the main window in Level mode. Here (6,7) waveforms of the most recent spikes

detected in each channel (up to 10 most recent spikes) are displayed instead of continuous voltage values. Note also that region 5 shows momentary, rather than

cumulative spike numbers (display mode controlled in region 3).

FIGURE 2 | Timed experiments. (A) Automated execution of arbitrary experiment sequences can be carried out programmatically using this dialog box and adding

particular actions and their respective durations (up to 200 actions). Actions are selected out of a predefined list that includes, among others, loading plugins, and

executing the functions they contain. Arguments can be provided as needed. Experiment sequences can be stored to file and thereafter reused. (B) When the

experiment sequence is initiated (Figure 1A, region 1) CLEM steps through the actions and executes them sequentially. The software highlights the action being

executed with a red rectangle.

repositories; (2) the real-time closed-loop thread (F)—executes
user defined, closed-loop procedures. Called each time the
preprocessing thread completes the handling of a new data block;
(3) The slow periodic closed-loop thread (G)—executes closed
loop procedures at user defined time intervals; (4) The Analog
Out thread (J)—outputs user-program-defined analog signals via
data acquisition board digital to analog channels; (5) The Digital
Out thread (I)—outputs user-program-defined digital signals via
data acquisition board digital IO ports; (6) the Playback thread
(C)—loads prerecorded data from storage devices and “injects” it
into the incoming data pipeline (emulating the data acquisition
process); (7) Data logging thread (H)—stores data to permanent
storage devices.

The core function queue (Figure 4) operates in a pipeline
fashion. The queue is initiated by either one of two interrupts:
(1) a hardware interrupt [Figure 4(A)] initiated by the data

acquisition board every time it completes the acquisition and
transfer of a block of data samples to PC memory. (2) An
emulated interrupt [Figure 4 (B)] initiated periodically during
data playback. In the latter case, the playback procedure loads
an equivalent block of samples from a storage device into
PC memory, and then activates the preprocessing thread as
would happen during data acquisition. Either interrupt starts
the preprocessing thread, which processes incoming data, detects
and stores spikes and places all new data in the main data
repository [Figure 3 (E)]. It then notifies the real-time closed-
loop thread that new data has arrived, and goes dormant, until
evoked by the next interrupt.

When the real-time closed-loop thread is cued, it calls
the user-defined closed loop procedure. It then checks if this
procedure created output to be sent to the hardware output
channels. If it did, the thread transfers the output to memory

Frontiers in Neuroscience | www.frontiersin.org 9 October 2017 | Volume 11 | Article 579

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hazan and Ziv Closed Loop Experiment Manager (CLEM)

FIGURE 3 | Block diagram of CLEM showing the different threads and central memory repositories. The GUI thread is shown in green, all core function threads are

shown in blue. Data paths are shown as thick arrows. Control lines are shown as red dashed lines.

blocks it shares with the analog or digital output threads
[Figure 3 (I,J)], notifies them that data is ready for output and
then goes dormant.

When the analog and/or digital output threads are cued,
they copy the data from the shared memory block to their
internal memory and send it to appropriate channels on the data
acquisition board; they then go dormant until cued again.

In addition to the hardware-clocked, real-time closed-loop
thread, the system also runs a slow periodic closed-loop thread
[Figure 4 (C)] which is called at user-defined time intervals. The
use of these threads is not mutually exclusive, and both can be
used concurrently, if so desired. Here too, after the user-defined
closed loop procedure is completed, the thread checks if the
procedure created output; if so, the thread transfers the output to

Frontiers in Neuroscience | www.frontiersin.org 10 October 2017 | Volume 11 | Article 579

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hazan and Ziv Closed Loop Experiment Manager (CLEM)

FIGURE 4 | The closed loop pipelines. Note that the execution of each stage

is timed by the previous stage in the pipeline, but each of these tasks runs in

its own thread. The exception is the slow periodic closed loop pipeline that

times itself based on a user-defined time interval.

sharedmemory blocks [Figure 3 (I,J)], notifies the output threads
that data is ready and goes dormant. To avoid the possibility that
both the real-time and slow periodic closed-loop threads write to
the shared output buffer simultaneously, the buffer is protected
(with a semaphore); note that as a result, attempts to write to this
buffer from the slow periodic thread while the buffer is in use by
the real-time thread might lead to loss of output from the slow
periodic thread.

The data logging thread [Figure 3 (H)] runs every several of
hundreds of milliseconds, and stores all data collected since its
last iteration to a permanent storage device (e.g., hard disk). Data
is stored to a series of files opened and closed sequentially and
automatically such that files do not exceed a user-defined size.
Data streams are stored separately for each data type: Analog
(raw) input, spike events, digital IO events, analog out events,
user-defined data events, and text messages generated by the
system or entered by the user. Any or all data streams can be
stored, according to user preferences. Data is stored using CLEM
file formats, but a tool for converting Analog (raw) input and
spike events to textual formats (for import into data analysis
applications, for example) is included and accessible from the
GUI menu. Conversion is carried out in a separate thread and
thus can be performed concurrently with experiments.

User-Defined Closed Loop Procedures
As explained above, user written closed-loop procedures can
be called in one of two fashions—as part of the real-time

pipeline or using the slow periodic closed-loop thread. Both
are called from a single DLL (note that it is not mandatory
to implement both procedures). Regardless of how they are
run, user written closed-loop procedures have the same format.
Both functions receive pointers to central data repository items
as well as additional variables. It is up to the user to avoid
corrupting data in global repositories. The typical structure of a
DLL source file, with placeholders and templates for the two types
of close-loop procedures is illustrated in Figure 5. To maximize
interoperability with DLLs written in other languages, arguments
passed to the functions are based on generic data types. Source
and header files, as well as detailed explanations for creating such
DLLs in both C and C++ are provided as Supplementary Data,
demonstrating the relative simplicity of implementing closed-
loop routines using CLEM. Source files can also be found at
https://github.com/Hananel-Hazan/CLEM-Plugin-Template.

When the user selects and loads such a DLL file, the core
function loads the closed loop procedures into memory and
incorporates them into the closed-loop pipelines (Figure 4).
Thus, no explicit user-written actions are needed to call these
procedures. The user, however, cannot change the names or
signatures of these functions.

As mentioned above, the closed loop procedures can generate
output for hardware lines (namely Analog and Digital output
lines). In addition, they can display two continuous values
they compute or output (for example, spike rate or stimulus
amplitude), by sending data to the User data streams. These data
streams are thereafter displayed as User data graphs [Figure 1
(8)] and can be streamed to a storage device if so desired. Finally,
the procedures can generate text messages that are sent to the
appropriate text message window in the GUI [Figure 1 (4)].

Demonstration of Closed-Loop Execution
As a demonstration of closed-loop procedure execution, we
wrote a DLL which carries out two concomitant tasks. The first,
carried out by the real-time closed-loop procedure, scans recent
spikes for a predefined motif (see below); upon its detection, it
triggers an external device through one of the digital-out lines.
The second, carried out by the slow periodic procedure (called
once a second), counts the number of spikes detected during the
last 60 s and updates the User data graph accordingly.

To this end, CLEM was connected to a 60-channel MEA
amplifier as described in section Materials and Methods.
Networks of cortical neurons (∼3 weeks in culture) growing
on thin glass MEA dishes were mounted in the amplifier and
recording was carried out to identify active electrodes. Motifs
were then defined as sequences of action potentials recorded from
five different active electrodes within inter-spike intervals that did
not exceed 10ms. The task assigned to the real-time closed loop
procedure was to (1) scan the spike history repository in search
of the predefined motif; (2) upon identifying one, set a digital out
line to high; (3) set the digital line back to low after 5ms, and
(4) impose a refractory period such that no triggers will be issued
within 1 sec of the prior signaled event, even if motif recurrences
are detected. The task assigned to the slow periodic closed loop
procedure was to (1) scan the spike history repository and count
all spikes recorded within the last 1min; (2) scale the value; and

Frontiers in Neuroscience | www.frontiersin.org 11 October 2017 | Volume 11 | Article 579

https://github.com/Hananel-Hazan/CLEM-Plugin-Template
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hazan and Ziv Closed Loop Experiment Manager (CLEM)

FIGURE 5 | General organization of a plugin source file. The file should contain five functions with the exact signatures (i.e., arguments and data types) shown here

(using C/C++ notation). These functions are loaded into memory when the plugin is loaded and called as explained in the comments (green text). The functions to do

not return values and all data is passed back to CLEM through pointers. Strings are passed as pointers to NULL terminated arrays of 8 bit characters. The definition of

the data structure “CoreFunc_Global_var” is provided in a separate header file (GlobalVar.h). For further details please see Supplementary Data.

(3) send the value to the first user data graph. All code was written
in C, compiled and tested by loading (and unloading) the DLL
into CLEM without leaving CLEM.

A 2 h session is shown in Figure 6. In this session, 78 motifs
as defined above were identified (Figures 6B–E) with a delay of

9.8±1.1ms (range 7.9–11.7; Figure 6G). Most of this delay stems
from the fact that spikes are placed into the data repository only
after their full waveforms are captured [Figure 1B (7, 8)] which
in these runs was set to 8ms (waveform length can be reduced if
so desired), suggesting that reaction time stood consistently at a

Frontiers in Neuroscience | www.frontiersin.org 12 October 2017 | Volume 11 | Article 579

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hazan and Ziv Closed Loop Experiment Manager (CLEM)

FIGURE 6 | Demonstration of closed-loop plugin execution. CLEM was connected to a MEA amplifier recording from a network of cortical neurons plated on a 59

electrode MEA dish. A plugin containing both real-time and slow periodic closed-loop procedures was loaded, and run for 124min. Sampling was carried out at

16 kHz per channel. (A) Spike rate, expressed in spikes per minute, calculated and logged on the fly by the slow-periodic closed loop procedure. This procedure was

programmed to scan the spike history repository, count all spikes recorded from all electrodes within the last 1min, and send the result to the display (User Channel 1

in (E). (B–F) Identification of predefined motifs by the real-time closed loop procedure. In this example, the motif was defined as five spikes recorded sequentially from

electrodes 37,26,25,34, and 41, at time intervals of at most 10ms. Motif identification was followed by the generation of a trigger signal on digital out line 1 and by

enforcing a refractory period of 1 sec during which no triggers were to be issued. (B) Spikes recorded from all electrodes over this 2 h period. Red triangles at bottom

show times at which triggers were issued. (C) A portion of the recording shown at higher magnification. (D) Two examples of motifs identified in the segment shown in

(C). (E) A screenshot of CLEM’s display during closed loop execution. Note the triggers issued on the digital out line and the output of the slow periodic closed-loop

procedure to User Channel 1. (F) A screenshot showing how plugins are loaded and how arguments can be passed to them interactively. The ability to load and

unload plugins allows the plugin to be modified without terminating CLEM. (G) The distribution of delays from last spike in the motif to the trigger. Note that delays

were distributed more or less evenly across the duration of one closed-loop sample-analyze-output loop (∼4ms at a sampling rate of 16 kHz; see Figure 7A).

Frontiers in Neuroscience | www.frontiersin.org 13 October 2017 | Volume 11 | Article 579

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hazan and Ziv Closed Loop Experiment Manager (CLEM)

0–4ms. It is worth noting that in all these runs, computer CPU
usage (eight cores) did not exceed 3–4% (including display, spike
detection, storage and all other background processes).

Source code for this DLL as well as a second DLL for real time
network burst detection (Eytan and Marom, 2006) can be found
at https://github.com/Hananel-Hazan/CLEM-Plugin-Template.

System Performance
The system described here uses interrupts generated by the
data acquisition card to clock sample-analyze-output loops.
To measure the sample-analyze-output execution times this
approach allows, and, importantly, the jitter in such times, we
wrote a small plugin in which the real-time closed loop procedure
(1) recorded time intervals (in sample units) between consecutive
calls (“timestamp based measurements”), and (2) changed an
output signal based on the input signal, and then measured
the time (in analog to digital sample units) since the command
was issued until an actual change was physically detected in a
subsequent iteration (“I/O based measurements”). For the latter
tests, we connected an Analog-out channel to one of the 64
Analog-in channels. During each iteration, the real-time closed
loop procedure examined the value of the input channel, and
set the analog output accordingly: For input values <1V, the
output was set to 5V; conversely, for input values >1V the
output was set to 0V. Because the minimal time interval between
consecutive interrupts was determined by the time needed to
collect the smallest allowable number of samples (64 samples for
each of the 64 input channels), sample-analyze-output loop time
intervals depended on sampling frequency (i.e., higher sampling
frequencies resulted in tighter loops). We thus tested system
performance at two sampling frequencies (16 and 45Khz). As
shown in Figure 7, mean interval times were 3.94 and 1.40ms at
16 and 45Khz, respectively (102,085 and 259,952 loops/iteration,
∼6min runs) with almost negligible jitter (Figure 7, insets).
These data thus suggest that the system can perform sample-
analyze-output loops at repetition rates exceeding 700Hz in a
very reliable fashion.

CONCLUSION

During recent years, multiple closed loop platforms for
neurophysiological studies have been put forward. It might thus
be asked why yet another platform is necessary? Indeed, many
excellent platforms are now available, with the performance
of some of them exceeding that of CLEM. It should be
noted, however, that many of such platforms require specialized
hardware (such as CMOS ASICs, SOCs, FPGAs) some of which
is not commercially available. Where commercial systems are
concerned, dedicated hardware (as well as software) tends to
be very costly in comparison to the system described here.
Others systems based on widely available software (e.g., Matlab)
and inexpensive hardware, (e.g., generic PCs serving as real
time targets) are useful but somewhat ungainly, as they are
based on multiple computers, require hardware tweaks, are
remarkably sensitive to software versions and releases, and often
lack informative and intuitive user interfaces. Finally, our own
experience with such systems has taught us that the latter point is

crucially important—we find that real time feedback, in the form
of data visualization, as well as the ease to set up and document
experiments is paramount. Moreover, we find that isolating the
experimenter from standard tasks (data visualization, storage,
etc.), exposing only powerful and flexible interfaces greatly
accelerates progress while reducingmistakes during development
and experimentation. Yet, as the platform is open and its source
code in the public domain, experimenters willing to put in the
required effort can further improve it and adapt it to changing
needs. Moreover, our insistence to adhere to a mainstream OS
and generic hardware should guarantee a reasonably long life
cycle and justify the time investment and commitment associated
with the selection of any system. Finally we wish to stress that
although CLEM was developed using cultured neurons growing
on MEA dishes, the system can be used in any experimental
setting where neuronal waveforms are recorded from up to 64
channels. All that is required is a physical connection of such
channels to the data acquisition board used here, which is readily
realized using a commercial break-out box or screw terminal. We
thus hope that CLEM will find a place in the gallery of open
platforms, and prove to be useful to anyone in need of an easy

FIGURE 7 | Closed loop performance. System performance was tested as

explained in main text. (A) Sampling rate set to 16 kHz. Mean interval time was

3.94ms (102,085 loops/iteration, 6min run). Inset: Bottom of histogram at

high magnification. (B) Sampling rate set to 45 kHz. Mean interval time was

1.40ms (259,952 loops/iteration, 5.7min run). Inset: Bottom of histogram at

high magnification.

Frontiers in Neuroscience | www.frontiersin.org 14 October 2017 | Volume 11 | Article 579

https://github.com/Hananel-Hazan/CLEM-Plugin-Template
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hazan and Ziv Closed Loop Experiment Manager (CLEM)

to use, inexpensive, yet powerful multichannel electrophysiology
platform with flexible closed loop abilities.

MATERIALS AND METHODS

Cell Culture
Primary cultures of rat neurons were prepared according
to a protocol approved by the “Technion, Israel Institute
of Technology Committee for the Supervision of Animal
Experiments” (ethics approval number IL-019-01-13). Briefly,
cortices of 1–2 days-old Wistar rats of either sex were dissected,
dissociated by trypsin treatment followed by trituration using
a siliconized Pasteur pipette. 0.8–1.1 × 106 cells were plated
onto thin-glass MEA dishes (Multichannel Systems) containing
30µm diameter electrodes arranged in an 8 × 8 array. MEA
dishes were pre-treated with polyethylenimine (PEI, Sigma) to
facilitate cell adherence. Preparations were kept in a humidified
tissue culture incubator and grown in medium containing
minimal essential medium (MEM, Sigma), 25 mg/l insulin
(Sigma), 20mM glucose (Sigma), 2mM L-glutamine (Sigma), 5
mg/ml gentamycin sulfate (Sigma) and 10% NuSerum (Becton
Dickinson Labware). Half of the volume was replaced three
times a week with feeding medium similar to the medium
described above but devoid of NuSerum, containing a lower
L-glutamine concentration (0.5mM) and 2% B27 supplement
(Invitrogen).

Multielectrode Setup
The setup used for collecting data shown in Figures 1, 6 was
based on the system described in Table 2 (Rig 2) running CLEM
and a 60-channel MEA amplifier (MEA1060-BC; MCS). The 60
channels of amplified and filtered data were connected to 60
of the 64 analog to digital input channels of the PD2-MF-64-
3M/12 data acquisition board using a home built connection
box. This box also provided connections to the board’s analog
out channels as well as four digital output lines. To maintain
neuronal network viability during recordings, the MEA dishes
were heated to 37◦C using the amplifiers built in heating base and
a commercial controller (Multichannel Systems), and covered
with a custom built “cap” equipped with ports through which
a sterile air mixture was streamed into the dish, and perfusion

media introduced and removed. In addition, the cap contained
a dipping reference electrode made of thin platinum. The
preparations were continuously perfused with feeding media at a
rate of 2ml/day using silicone tubes connected to the cap through
the aforementioned ports, and an ultra-slow peristaltic pump
(Instech Laboratories Inc., USA). In addition, a 95% air/5% CO2

sterile mixture was streamed continuously into the dish at rates
regulated by a high precision flow meter (Gilmont Instruments,
USA).

AUTHOR CONTRIBUTIONS

HH coded the software, analyzed its performance and wrote the
manuscript. NEZ conceived the project, coded the software, and
wrote the manuscript.

FUNDING

This work was supported by funding received from the
Israel Science Foundation (1175/14) to NEZ, the Deutsche
Forschungsgemeinschaft (SFB 1089—Synaptic Micronetworks
in Health and Disease), the Allen and Jewell Prince Center
for Neurodegenerative Processes of the Brain, and the Adelis
Foundation. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the
manuscript.

ACKNOWLEDGMENTS

We are grateful to Leonid Odesski for his invaluable technical
assistance, to Larisa Goldfeld and Tamar Galateanu for preparing
the cortical cell cultures used during system development, to
Liran Hazan, Eshed Rabinovitz, and Yael Abuhatsera for testing
the system and for their useful suggestions and to ShimonMarom
for many helpful suggestions and comments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2017.00579/full#supplementary-material

REFERENCES

Biró, I., and Giugliano, M. (2015). A reconfigurable visual-programming library

for real-time closed-loop cellular electrophysiology. Front. Neuroinform. 9:17.

doi: 10.3389/fninf.2015.00017

Bontorin, G., Renaud, S., Garenne, A., Alvado, L., Le Masson, G., and Tomas, J.

(2007). A real-time closed-loop setup for hybrid neural networks. Conf. Proc.

IEEE Eng. Med. Biol. Soc. 2007, 3004–3007. doi: 10.1109/IEMBS.2007.4352961

Brown, J. H., and Martin, B. (2010). “How fast is fast enough? choosing between

Xenomai and Linux for real-time applications,” in Proceeding of the 12th

Real-Time Linux Workshop (RTLWS’12) (Nairobi), 1–17.

Bryant, C. L., and Gandhi, N. J. (2005). Real-time data acquisition and control

system for the measurement of motor and neural data. J. Neurosci. Methods.

142, 193–200. doi: 10.1016/j.jneumeth.2004.08.019

Cozzi, L., D’Angelo, P., Chiappalone, M., Ide, A. N., Novellino, A., Martinoia, S.,

et al. (2005). Coding and decoding of information in a bi-directional neural

interface. Neurocomputing 65–66, 783–792. doi: 10.1016/j.neucom.2004.10.075

Eytan, D., and Marom, S. (2006). Dynamics and effective topology underlying

synchronization in networks of cortical neurons. J. Neurosci. 26, 8465–8476.

doi: 10.1523/JNEUROSCI.1627-06.2006

Fong, M. F., Newman, J. P., Potter, S. M., and Wenner, P. (2015). Upward synaptic

scaling is dependent on neurotransmission rather than spiking. Nat. Commun.

6:6339. doi: 10.1038/ncomms7339

Hafizovic, S., Heer, F., Ugniwenko, T., Frey, U., Blau, A., Ziegler, C., et al. (2007).

A CMOS-based microelectrode array for interaction with neuronal cultures. J.

Neurosci. Methods. 164, 93–106. doi: 10.1016/j.jneumeth.2007.04.006

Kaufman, M., Reinartz, S., and Ziv, N. E. (2014). Adaptation to prolonged

neuromodulation in cortical cultures: an invariable return to network

synchrony. BMC Biol. 12:83. doi: 10.1186/s12915-014-0083-3

Krook-Magnuson, E., Gelinas, J. N., Soltesz, I., and Buzsáki, G. (2015).

Neuroelectronics and biooptics: closed-loop technologies in neurological

disorders. JAMA Neurol. 72, 823–829. doi: 10.1001/jamaneurol.2015.0608

Laxpati, N. G., Mahmoudi, B., Gutekunst, C. A., Newman, J. P., Zeller-Townson,

R., and Gross, R. E. (2015). Real-time in vivo optogenetic neuromodulation

Frontiers in Neuroscience | www.frontiersin.org 15 October 2017 | Volume 11 | Article 579

https://www.frontiersin.org/articles/10.3389/fnins.2017.00579/full#supplementary-material
https://doi.org/10.3389/fninf.2015.00017
https://doi.org/10.1109/IEMBS.2007.4352961
https://doi.org/10.1016/j.jneumeth.2004.08.019
https://doi.org/10.1016/j.neucom.2004.10.075
https://doi.org/10.1523/JNEUROSCI.1627-06.2006
https://doi.org/10.1038/ncomms7339
https://doi.org/10.1016/j.jneumeth.2007.04.006
https://doi.org/10.1186/s12915-014-0083-3
https://doi.org/10.1001/jamaneurol.2015.0608
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Hazan and Ziv Closed Loop Experiment Manager (CLEM)

and multielectrode electrophysiologic recording with neurorighter. Front.

Neuroeng. 7:40. doi: 10.3389/fneng.2014.00040

Lin, R. J., Bettencourt, J., Wha Ite, J., Christini, D. J., and Butera, R. J. (2010). Real-

time experiment interface for biological control applications. Conf. Proc. IEEE

Eng. Med. Biol. Soc. 2010, 4160–4163. doi: 10.1109/IEMBS.2010.5627397

Linaro, D., Couto, J., and Giugliano, M. (2014). Command-line cellular

electrophysiology for conventional and real-time closed-loop experiments. J.

Neurosci. Methods 230, 5–19. doi: 10.1016/j.jneumeth.2014.04.003

Müller, J., Bakkum, D. J., and Hierlemann, A. (2013). Sub-millisecond closed-

loop feedback stimulation between arbitrary sets of individual neurons. Front.

Neural Circuits 6:121. doi: 10.3389/fncir.2012.00121

Newman, J. P., Fong, M. F., Millard, D. C., Whitmire, C. J., Stanley, G. B., and

Potter, S. M. (2015). Optogenetic feedback control of neural activity. Elife

4:e07192. doi: 10.7554/eLife.07192

Newman, J. P., Zeller-Townson, R., Fong, M. F., Arcot Desai, S., Gross, R. E.,

and Potter, S. M. (2013). Closed-loop, multichannel experimentation using the

open-source neurorighter electrophysiology platform. Front. Neural Circuits.

6:98. doi: 10.3389/fncir.2012.00098

Novellino, A., D’Angelo, P., Cozzi, L., Chiappalone, M., Sanguineti, V.,

and Martinoia, S. (2007). Connecting neurons to a mobile robot: an in

vitro bidirectional neural interface. Comput. Intell. Neurosci. 2007:12725.

doi: 10.1155/2007/12725

Ortega, F. A., Butera, R. J., Christini, D. J., White, J. A., and Dorval, A. D. II (2014).

Dynamic clamp in cardiac and neuronal systems using RTXI. Methods Mol.

Biol. 1183, 327–354. doi: 10.1007/978-1-4939-1096-0_21

Patel, Y. A., George, A., Dorval, A. D., White, J. A., Christini, D. J., and

Butera, R. J. (2017). Hard real-time closed-loop electrophysiology with the

Real-Time eXperiment Interface (RTXI). PLoS Comput. Biol. 13:e1005430.

doi: 10.1371/journal.pcbi.1005430

Potter, S. M., El Hady, A., and Fetz, E. E. (2014). Closed-loop neuroscience and

neuroengineering. Front. Neural Circuits 8:115. doi: 10.3389/fncir.2014.00115

Reinartz, S., Biro, I., Gal, A., Giugliano, M., and Marom, S. (2014). Synaptic

dynamics contribute to long-term single neuron response fluctuations. Front.

Neural Circuits 8:71. doi: 10.3389/fncir.2014.00071

Rolston, J. D., Gross, R. E., and Potter, S. M. (2010). Closed-loop, open-source

electrophysiology. Front. Neurosci. 4:31. doi: 10.3389/fnins.2010.00031

Wallach, A. (2013). The response clamp: functional characterization of

neural systems using closed-loop control. Front. Neural Circuits 7:5.

doi: 10.3389/fncir.2013.00005

Wallach, A., and Marom, S. (2012). Interactions between network synchrony

and the dynamics of neuronal threshold. J. Neurophysiol. 107, 2926–2936.

doi: 10.1152/jn.00876.2011

Wallach, A., Eytan, D., Gal, A., Zrenner, C., and Marom, S. (2011). Neuronal

response clamp. Front. Neuroeng. 4:3. doi: 10.3389/fneng.2011.00003

Wright, J., Macefield, V. G., van Schaik, A., and Tapson, J. C. (2016). A Review

of control strategies in closed-loop neuroprosthetic systems. Front. Neurosci.

10:312. doi: 10.3389/fnins.2016.00312

Zrenner, C., Eytan, D., Wallach, A., Thier, P., and Marom, S. (2010). A generic

framework for real-time multi-channel neuronal signal analysis, telemetry

control, and sub-millisecond latency feedback generation. Front. Neurosci.

4:173. doi: 10.3389/fnins.2010.00173

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Hazan and Ziv. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 October 2017 | Volume 11 | Article 579

https://doi.org/10.3389/fneng.2014.00040
https://doi.org/10.1109/IEMBS.2010.5627397
https://doi.org/10.1016/j.jneumeth.2014.04.003
https://doi.org/10.3389/fncir.2012.00121
https://doi.org/10.7554/eLife.07192
https://doi.org/10.3389/fncir.2012.00098
https://doi.org/10.1155/2007/12725
https://doi.org/10.1007/978-1-4939-1096-0_21
https://doi.org/10.1371/journal.pcbi.1005430
https://doi.org/10.3389/fncir.2014.00115
https://doi.org/10.3389/fncir.2014.00071
https://doi.org/10.3389/fnins.2010.00031
https://doi.org/10.3389/fncir.2013.00005
https://doi.org/10.1152/jn.00876.2011
https://doi.org/10.3389/fneng.2011.00003
https://doi.org/10.3389/fnins.2016.00312
https://doi.org/10.3389/fnins.2010.00173
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Closed Loop Experiment Manager (CLEM)—An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments
	Introduction
	Existing Approaches and Solutions
	Real-Time Hardware
	Hybrid Real-Time and General-Purpose Systems
	Real-Time or Soft Real-Time Software Controllers
	Selected Solution-Overview
	Software Architecture
	Graphic User Interface Thread
	Core Function Threads
	User-Defined Closed Loop Procedures
	Demonstration of Closed-Loop Execution
	System Performance

	Conclusion
	Materials and Methods
	Cell Culture
	Multielectrode Setup

	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

