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It is well-known that data from diffusion weighted imaging (DWI) follow the Rician

distribution. The Rician distribution is also relevant for functional magnetic resonance

imaging (fMRI) data obtained at high temporal or spatial resolution. We propose a general

regression model for non-central χ (NC-χ ) distributed data, with the heteroscedastic

Rician regression model as a prominent special case. The model allows both parameters

in the Rician distribution to be linked to explanatory variables, with the relevant variables

chosen by Bayesian variable selection. A highly efficient Markov chain Monte Carlo

(MCMC) algorithm is proposed to capture full model uncertainty by simulating from

the joint posterior distribution of all model parameters and the binary variable selection

indicators. Simulated regression data is used to demonstrate that the Ricianmodel is able

to detect the signal much more accurately than the traditionally used Gaussian model

at low signal-to-noise ratios. Using a diffusion dataset from the Human Connectome

Project, it is also shown that the commonly used approximate Gaussian noise model

underestimates the mean diffusivity (MD) and the fractional anisotropy (FA) in the

single-diffusion tensor model compared to the Rician model.

Keywords: DTI, diffusion, fMRI, fractional anisotropy, mean diffusivity, MCMC, Rician

1. INTRODUCTION

Gaussian statistical models are very common in the field of neuroimaging, as they enable simple
algorithms for estimation of brain activity and connectivity. However, the measured signal in
diffusion weighted imaging (DWI) and functional magnetic resonance imaging (fMRI) is the
magnitude of a complex-valued Gaussian signal and therefore follows a Rician distribution, see
Gudbjartsson and Patz (1995) and section 2.1. The Gaussian model is a good approximation to the
Rician model in fMRI as the signal-to-noise (SNR), defined here as the ratio of the average BOLD
signal to its standard deviation, for fMRI data tends to be large enough for the approximation to
be accurate (Adrian et al., 2013). However, the recent push toward higher temporal and spatial
resolution in neuroimaging (Moeller et al., 2010; Feinberg and Yacoub, 2012; Setsompop et al.,
2013) may lead to low SNRs with increased risk of distorted conclusions about brain activity and
connectivity. Low SNRs are also common for DWI, especially when the b-value is high (Zhu et al.,
2009). Using a Gaussian model for diffusion tensor imaging (DTI) can therefore lead to severely
misleading inferences. The reason for the popularity of the Gaussian approach is that Gaussian
models can be analyzed using simple algorithms, while the Rician distribution is complicated since
it does not belong to the exponential family. More generally, MR images collected by simultaneous
acquisition from L independent coils may follow the non-central χ (NC-χ) distribution with

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2017.00586
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2017.00586&domain=pdf&date_stamp=2017-10-20
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bertil.wegmann@liu.se
https://doi.org/10.3389/fnins.2017.00586
https://www.frontiersin.org/articles/10.3389/fnins.2017.00586/full
http://loop.frontiersin.org/people/453316/overview
http://loop.frontiersin.org/people/370174/overview
http://loop.frontiersin.org/people/132770/overview


Wegmann et al. Bayesian Rician Regression for Neuroimaging

L degrees of freedom, depending on how the measurements
are combined into a single image (Tristán-Vega et al., 2012;
Aja-Fernandez and Vegas-Sanchez-Ferrero, 2016). We therefore
derive our algorithm for the general NC-χ model from which the
Rician model can be directly obtained as the special case when
L = 1.

1.1. Rician Models in Neuroimaging
Rician models have mainly been used for noise removal in DWI
(Basu et al., 2006; Awate and Whitaker, 2007; Aja-Fernandez
et al., 2008;Wiest-Daesslé et al., 2008; He and Greenshields, 2009;
Luisier et al., 2012). The common theme for these methods is
to apply a Rician denoising filter, to restore the images to have
no or reduced Rician noise, which often leads to simple and
fast estimation of the restored images. However, this approach
does not account for the uncertainty in denoising. This is in
contrast to our approach where we explicitly model the Rician
noise, thereby capturing the full uncertainty in the noise. Rician
denoising models have also been used for HARDI (Descoteaux
et al., 2008; Gupta and Awate, 2017), which uses a larger number
of diffusion-weighting gradient directions and potentially larger
b-values to obtain a more detailed restoration of the diffusion
images.

There are also some examples of Rician models with explicit
modeling of the Rician noise for tensor estimation (Andersson,
2008; Veraart et al., 2011). Although, these approaches use
sophisticated techniques for estimating the diffusion tensors, they
do not capture the full uncertainty of the model parameters in
contrast to our Bayesian approach. In addition, the only method
that we are aware of for estimating diffusion tensor parameters in
the more general NC-χ regression model, for data acquired with
several independent coils, is the (non-Bayesian) least squares
approach presented in Tristán-Vega et al. (2012).

There have also been a handful of approaches for the Rician
model in fMRI, but all of these have shown that the Gaussian
model is a good approximation of the Rician model due to
sufficiently large SNR levels (Solo and Noh, 2007; Zhu et al., 2009;
Adrian et al., 2013).

1.2. Non-central Chi and Rician Regression
We introduce a NC-χ regression model where both parameters
in the distribution (the mean and variance of the underlying
complex-valued signal) are modeled as functions of variables,
with the Rician model as an important special case. Our
framework is more general compared to other approaches, as it
is also possible to include variables to model the variance and
not only the mean of the noise. We propose a Bayesian analysis
of the model based on a highly efficient Markov Chain Monte
Carlo (MCMC) algorithm, to simulate from the joint posterior
distribution of all model parameters. The MCMC convergence is
excellent due to an accurately tailored proposal distribution; see
sections 3.4 and 4.5. A high efficiency makes it possible to use
a smaller number of simulations to obtain the same numerical
accuracy. This is absolutely crucial for imaging applications
since a separate MCMC chain is run for each voxel. Moreover,
our MCMC algorithm also performs Bayesian variable selection
among both sets of variables. A Bayesian approach using MCMC

has the obvious advantage of capturing the full uncertainty of
the model parameters in each voxel. Andersson (2008) develops
a sophisticated maximum a posteriori (MAP) estimation for
the DTI model, but does not deal with posterior uncertainty.
The posterior uncertainty, represented by the MCMC samples,
can easily be propagated to the group analysis, to down-weight
subjects with a higher uncertainty. This is in contrast to the
popular TBSS approach (tract-based spatial statistics) (Smith
et al., 2006) for voxel-wise multi-subject analysis of fractional
anisotropy (FA), which ignores the uncertainty of the FA.

1.3. Results
A simulation study in Appendix B in Supplementary Material
shows that our Rician regression model is remarkably adept at
recovering the signal even at very low SNRs. We also show
by visualizing brain activity within an fMRI context that the
Gaussian model is likely to lead to severely erroneous inference
in low SNR settings.

Using a freely available DWI dataset from the Human
Connectome Project (Essen et al., 2013), we show that commonly
used Gaussian DTI approximation underestimates the mean
diffusivity (MD) and substantially underestimates the FA of
the single-diffusion tensors, compared to the Rician model,
especially in white-matter regions with high FA. In addition, we
demonstrate that variables are needed in both parameters of the
Rician distribution, not only in the mean.

2. HETEROSCEDASTIC RICIAN AND NC-χ
REGRESSION

We start by describing our model for the special case of a Rician
distribution, and then generalize it to the NC-χ case.

2.1. Rician Regression
The measured MR signal is complex-valued

ỹi = ai + bi · j, for i = 1, . . . , n,

where j denotes the imaginary number. The real part ai ∼

N (µi cos θi,φi) and the imaginary part bi ∼ N (µi sin θi,φi) are
independent, and

lnµi = β0 + x′iβ

is a linear function of a vector of variables xi at measurement
i. In fMRI the vector xi typically contains the stimulus of the
experiment convolved with a hemodynamic response function,
polynomial time trends, and head motion parameters, while
xi mainly contains gradient directions in DTI. Note that φi is
potentially measurement-varying, to allow for heteroscedastic
complex-valued noise.

It is rare to analyze the complex signal measurements ai and
bi directly (Rowe and Logan, 2004 and follow-up papers are
exceptions). The most common approach is to use the magnitude
of ỹi as response variable, i.e.,

yi =
∣

∣ỹi
∣

∣ =

√

a2i + b2i .
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It is well-known that the magnitude follows a Rician distribution
(Rice, 1945) with density function

p(y|µ,φ) =
y

φ
exp

(

−

(

y2 + µ2
)

2φ

)

I0

(

yµ

φ

)

,

for y > 0 and zero otherwise, where I0 (·) is the modified Bessel
function of the first kind of order 0.

We propose the following heteroscedastic Rician regression
model

yi|xi, zi ∼ Rice(µi,φi) for i = 1, ..., n,

lnµi = β0 + xTi β ,

lnφi = α0 + zTi α, (1)

and independence of the yi conditional on the variables in xi and
zi. Since xi and zi may contain lags of the response variables,
our model can capture temporal dependence in fMRI. Note
also that we allow for heteroscedasticity in the complex signal,
since the variance of the underlying complex-valued signal φi

is a function of the regressors in zi. Although, the model in
Equation (1) has the same structure as a generalized linear model
(GLM) (McCullagh and Nelder, 1989), it is actually outside
the GLM class since the Rician distribution does not belong
to the exponential family. The logarithmic link functions used
in Equation (1) can be replaced by any twice-differentiable
invertible link function.

It is generally agreed in the neuroimaging literature that the
Rician model is a realistic description of the noise (Gudbjartsson
and Patz, 1995; Lindquist, 2008), with the Gaussian model
being a convenient approximate model at sufficiently high SNRs
(typically above 3). We will therefore assume in the current paper
that the Rician model is correct, and evaluate the difference
between the Rician and Gaussian models.

2.2. NC-χ Regression
Both fMRI and DWI images may be obtained from parallel
acquisition protocols with multiple coils, often used to increase
the temporal and spatial resolution. Under the assumption of
independent complex Gaussian distributed noise in each coil,
the sum of squared magnitudes follow the non-central χ (NC-
χ) distribution (Tristán-Vega et al., 2012; Aja-Fernandez and
Vegas-Sanchez-Ferrero, 2016). The non-central χ density with
2L degrees of freedom is of the form

p(y|µ,φ, L) =
yL

φµL−1 exp

(

−
y2 + µ2

2φ

)

IL−1

(

yµ

φ

)

, (2)

for y,µ,φ > 0, where IL−1 (·) is the modified Bessel function
of the first kind of order L − 1. We denote this as y ∼NC-χ .
Note that when L = 1, the density in Equation (2) reduces to
the Rice(µ,φ) density. Similarly to the Rician case, we can model
µ and φ as functions of explanatory variables via logarithmic
link functions. In summary, the observations are assumed to be

independently NC-χ distributed conditional on the explanatory
variables, according to

yi|xi, zi ∼ NC− χ(µi,φi, L)

lnµi = β0 + xTi β ,

lnφi = α0 + zTi α. (3)

Lagged response values may again be used as variables in µ and
φ to induce temporal dependence.

The order L of the NC-χ distribution may be given by the
problem at hand, for example by the number of independent coils
used for data collection. Due to the lack of perfect independence
between coils and other imperfections, L is often unknown and
needs to be estimated from the data. Note that L can in general
be any positive real number in the NC-χ distribution, and does
not need to be an integer. Our approach makes it straightforward
to introduce an MCMC updating step, to simulate from the
conditional posterior distribution of ln L, or even model ln L as
a linear function of variables.

3. BAYESIAN INFERENCE

The Bayesian approach formulates a prior distribution for all
model parameters, and then updates this prior distribution with
observed data through the likelihood function to a posterior
distribution.

3.1. Posterior Distribution and Posterior
Probability Maps
The aim of a Bayesian analysis is the joint posterior distribution
of all model parameters

p(β ,α|y,X,Z) ∝ p(y|β ,α,X,Z)p(β ,α),

where p(y|β ,α,X,Z) is the likelihood function for the MR signal,
p(β ,α) is the prior, y = (yi)

n
i=1, X = (xTi )

n
i=1 and Z = (zTi )

n
i=1; we

are here including the intercepts in β and α. The joint posterior
p(β ,α|y,X,Z) for the Rician and NC-χ regression models is
intractable, and we instead simulate from the joint posterior
using an efficient MCMC algorithm described in section 3.4.

3.2. Prior Distribution
Our prior distribution for the Rician and the NC-χ model is from
the general class in Villani et al. (2012). Let us for clarity focus
on the prior for β0 and β in lnµi = β0 + xTi β ; the prior on α0

and α in φ is completely analogous. We first discuss the prior
on the intercept β0. Start by standardizing the variables to have
mean zero and unit standard deviation. This makes it reasonable
to assume prior independence between β0 and β . The intercept
is then lnµ at the mean of the original variables. The idea is
to let the user specify a prior directly on µ when the variables
are at their means, and then back out the implied prior on β0.
Let µ have a log-normal density with mean m∗ and variance s∗2.
The induced prior on the intercept is then β0 ∼ N(m, s2) with

s2 = log
[(

s∗

m∗

)

2 + 1
]

andm = log(m∗)− s2/2.
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The prior on β needs some care, since its effect on the response
comes through a link function, and µ enters the model partly
via a non-linear Bessel function. Following Villani et al. (2012),
we let β ∼ N(0, c6), where 6 = (XTD̂X)−1 is the Fisher
information for β , X is the matrix of variables excluding the
intercept, and D̂ is the Fisher information for µ conditional on
φ, evaluated at the prior modes of β0 and β , i.e., at the vector
(m, 0′)′. Thus D̂ depends only on the constantm. The conditional
Fisher information forµ = (µ1, . . . µn)

′ is a diagonal matrix with
elements

−E

[

∂2 log p(yi|µi,φi)

∂µ2
i

]

g′(µi)
−2.

Setting c = n gives a unit information prior, i.e., a weak prior that
carries the information equivalent to a single observation from
the model.

3.3. Variable Selection
Our MCMC algorithm can perform Bayesian variable selection
among both sets of variables (i.e., x and z). We make the
assumption that the intercepts in lnµ and lnφ are always
included in the model. Let us again focus on β in the equation
for µ. Define the vector with binary indicators I = {I1, . . . Ip}
such that Ij = 0 means that the jth element in β is zero, and that
the corresponding variable drops out of the model. Let Ic denote
the complement of I . Let βI denote the subset of regression
coefficients selected by I . To allow for variable selection we take
the previous prior β ∼ N(0, c6) and condition on the zeros in β

dictated by I :

βI |I ∼ N
[

0, c(6I,I − 6I,Ic6−1
Ic ,Ic6

T
Ic ,I)

]

,

and βIc |I is identically zero. To complete the variable selection
prior, we let the elements of I to be a priori independent and
Bernoulli distributed, i.e., Pr(Ii = 1) = π , and π is allowed to
be different for the variables in µ and φ. We choose π = 0.5 for
both sets of variables in µ and φ. Other priors on I are just as
easily handled.

3.4. Markov Chain Monte Carlo Algorithm
We use the Metropolis-within-Gibbs sampler presented in
Villani et al. (2012) and Villani et al. (2009). The algorithm
samples iteratively from the set of full conditional posteriors,
which in our case here are

1. (β , Iβ )|·
2. (α, Iα)|·.

Note that we sample β and Iβ jointly given the other parameters
(indicated by ·). The full conditional posteriors p(β , Iβ |·) and
p(α, Iα|·) are highly non-standard distributions, but can be
efficiently sampled using tailored Metropolis-Hastings (MH)
updates. The sampling of the pair (α, Iα) is analoguous to the
sampling of (β , Iβ ), so we will only describe the update of (β , Iβ ).
The MH proposal distribution is of the form

J(βp, Ip|βc, Ic) = J1(βp|Ip,βc)J2(Ip|βc, Ic), (4)

where (βc, Ic) denotes the current and (βp, Ip) the proposed
posterior draw. Following Villani et al. (2009) , we choose J2
to be a simple proposal of I where a subset of the indicators
is randomly selected and a change of the selected indicators is
proposed, one variable at a time. Following Villani et al. (2012)
and Villani et al. (2009), we use a multivariate-t distribution with
10 degrees of freedom for the proposal of β , the J1 distribution.
The thicker tails of the t distribution ensures that the sampler
does not get stuck. However, we have verified that also a normal
proposal works well in our applications in section 4.5. The
multivariate-t distribution for the J1 distribution becomes

βp|Ip,βc ∼ t10

[

β̂ ,−

(

∂2 log p(β|y)

∂β∂βT

)−1 ∣
∣

∣

∣

β=β̂

]

,

where β̂ is the terminal point of a small number of Newton
iterations to climb toward the mode of the full conditional

p(βp|Ip, ·), and −
(

∂2 log p(β|y)

∂β∂βT

)−1
∣

∣

∣

∣

β=β̂

is the negative inverse

Hessian of the full conditional posterior evaluated at β = β̂ . Note
that we are for notational simplicity suppressing the conditioning
on the variables X and Z.

Importantly, the number of Newton iterations can be kept
very small (one or two steps is often sufficient), since the
iterations always start at βc, which is typically not far from
the mode. To implement the Newton iterations we need to

be able to compute the gradient
∂ log p(y|β)

∂β
and the Hessian

∂2 log p(β|y)

∂β∂βT efficiently. Villani et al. (2012) document that this

can be done very efficiently using the chain rule and compact
matrix computations, and details for the NC-χ regression are
given in Appendix A in Supplementary Material. In DTI, when
the parameter space is restricted to the set of positive definite
matrices, these expressions need to be extended, see section 4.2.

4. ESTIMATING FRACTIONAL
ANISOTROPY AND MEAN DIFFUSIVITY IN
DWI DATA

4.1. Diffusion Weighted Imaging
While fMRI data are mainly specified by the echo time and the
repetition time of the pulse sequence, DWI data also require
specification of the b-value (Le Bihan et al., 1986). The b-value
in turn depends on two factors; the strength and the duration
of the diffusion gradient. Using a larger b-value enables more
advanced diffusion models, e.g., through HARDI (Tuch et al.,
2002; Descoteaux et al., 2008; Gupta and Awate, 2017), which
for example can be used to properly account for multiple fiber
orientations in a single voxel. A significant drawback of a higher
b-value is, however, a lower signal to noise ratio. The main reason
for this is that the signal decays exponentially with time, and high
b-values require longer diffusion gradients. As a consequence,
Rician noise models are far more common for DWI than for
fMRI, as the Rician distribution is only well approximated by a
Gaussian for high SNRs.
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4.2. The Diffusion Tensor Model
The most common diffusion tensor model states that the signal
Si for measurement i can be written as

Si = S0 exp
(

−big
T
i Dgi

)

, (5)

where S0 is the signal in absence of any diffusion gradient, bi is
the b-value, gi = (gix, giy, giz)

T is the gradient vector and

D =





dxx dxy dxz
dxy dyy dyz
dxy dyz dzz





is the diffusion tensor. The single-diffusion tensor model in
Equation (5) can be written as a regression model of the form
in Equation (3) with (see e.g., Koay, 2011)

lnµi = β0 + xTi β , (6)

where β0 = ln S0, β =
(

dxx, dyy, dzz , dxy, dyz , dxz
)

and

xTi = −
(

big
2
ix, big

2
iy, big

2
iz , 2bigixgiy, 2bigiygiz , 2bigixgiz

)

.

For single-coil imaging, the noise aroundµi is Rician, and cannot
be well approximated by a Gaussian model for high b-values
where the signal-to-noise ratio is low. When data are collected
by parallel techniques using L coils, the noise is either Rician
distributed or NC-χ distributed with L degrees of freedom. If
the composite signal is a complex weighted sum of the L signals,
the magnitude of the composite signal is Rician distributed. If
the simpler sum of squares approach is used for merging the
L signals into a single image, the resulting signal is instead
NC-χ distributed (Tristán-Vega et al., 2012; Aja-Fernandez and
Vegas-Sanchez-Ferrero, 2016).

Note that since the tensor D is positive definite, the parameter
space of β in Equation (6) is restricted. We here use the Log-
Cholesky representation (Koay, 2011) to impose this restriction,
where the diffusion tensor D is expressed as

D(ω) = �T�

with

� =





eω1 ω4 ω6

0 eω2 ω5

0 0 eω3



 .

In this parametrization the vector of regression coefficients β(ω)
is given by

(e2ω1 ,ω2
4 + e2ω2 ,ω2

6 + ω2
5 + e2ω3 ,ω4e

ω1 ,ω4ω6 + ω5e
ω2 ,ω6e

ω1 ).

Most applications with the diffusion tensor model takes the
logarithm of the measurements and estimates β with least
squares (see Koay, 2011 for an overview). This estimationmethod
therefore does not respect the log link in the mean. One can
also argue that it also implicitly assumes Gaussian noise in the
sense that least squares equals the maximum likelihood estimate

only when the noise is Gaussian. Moreover, it does not guarantee
that the estimated tensor is positive definite. We refer to Koay
(2011) for an overview of constrained non-linear least squares
alternatives.

Wewill here take a Bayesian approach with Rician noise, using
a proper log link and a parametrization that guarantees that the
posterior mass is fully contained within the space of positive
definite matrices. Existing Bayesian approaches to DTI assume
Gaussian noise and use the random walk Metropolis (RWM)
algorithm to simulate from the posterior distribution. RWM is
easy to implement, but is well known to explore the posterior
distribution very slowly (see section 4.4). TheMetropolis-within-
Gibbs algorithm with tailored proposals and variable selection to
reduce the dimensionality of the parameter space presented in
section 3.4 can explore the posterior distribution in a much more
efficient manner (Villani et al., 2009, 2012). As a result of the
non-linear mapping from ω to β , the gradient of the likelihood
is modified to

∂ ln p(y|ω)

∂ω
=

(

X
∂β(ω)

∂ω

)T

g,

where g is the gradient vector in Villani et al. (2012) and

∂β(ω)

∂ω
=

















2e2ω1 0 0 0 0 0
0 2e2ω2 0 2ω4 0 0
0 0 2e2ω3 0 2ω5 2ω6

ω4e
ω1 0 0 eω1 0 0

0 ω5e
ω2 0 ω6 eω2 ω4

ω6e
ω1 0 0 0 0 eω1

















.

The Hessian can be modified accordingly.
The Fisher information based prior presented in section 3.2

can in principle be used for DTI. We have found however
that the numerical stability of our MCMC sampler improves
if we use an alternative prior, which we now describe. We
assume the priors for the intercepts β0 ∼ N(mβ , d) and α0 ∼

N(mα , d), independently of the priors for the unrestricted tensor
coefficients ω ∼ N(0, cI) and the variance function parameters
α ∼ N(0, cI), where c = 100 to induce non-informative priors
and I is the identity matrix. Note that the prior expected value
of 0 for α implies that the variance of the underlying complex-
valued signal φ is centered on the homoscedastic model a priori.
To set the prior mean on the intercepts β0 and α0, note first that
the models for µ and σ 2 in Equation (1) become β0 = lnµi

and α0 = lnφi when b = 0. It is therefore common in the DTI
literature to separately pre-estimate the mean intercept β0 by the
logarithm of the mean of measurements y when b = 0, and then
subsequently remove these observations from the dataset. This
procedure improves the numerical stability of the estimations.
In a similar vein, we set the prior expected values, mβ and mα

by taking the logarithm of the mean and variance of y when
b = 0, respectively; the observations with zero b-values are then
removed from the dataset in the remaining estimation. We have
found improved numerical stability in the MCMC algorithm if
we allow for a positive, but small, prior variance of d = 0.01.
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4.3. Data
We use the freely available MGH adult diffusion dataset from
the Human Connectome Project (HCP) (Essen et al., 2013;
Setsompop et al., 2013)1. The dataset comprise DWI data
collected with several different b-values, and the downloaded data
have already been corrected for gradient nonlinearities, subject
motion and eddy currents (Glasser et al., 2013; Andersson and
Sotiropoulos, 2016). The DWI data were collected using a spin-
echo EPI sequence and a 64-channel array coil (Setsompop et al.,
2013), yielding volumes of 140 x 140 x 96 voxels with an isotropic
voxel size of 1.5 mm. The data collection was divided into 5 runs,
giving data with four different b-values: 1,000, 3,000, 5,000, and
10,000 s/mm2. The number of gradient directions was 64 for b
= 1,000 and 3,000 s/mm2, 128 for b = 5,000 s/mm2, and 256
for b = 10,000 s/mm2. Merging the measurements from the 64
channels into a single image was performed using a complex
weighted combination (Setsompop et al., 2013), instead of the
more simple sum of squares approach. This is an important fact,
as the weighted approach for this data leads to noise with a Rician
distribution, instead of the NC-χ distribution resulting from the
sum of squares approach (Aja-Fernandez and Vegas-Sanchez-
Ferrero, 2016). Prior to any statistical analysis, the function FAST
(Zhang et al., 2001) in FSL was used to generate a mask of white
brain matter, gray brain matter and cerebrospinal fluid (CSF), to
avoid running the analysis on voxels in CSF.

4.4. Comparing the Rician and Gaussian
Models for DTI
We compare the Rician and Gaussian DTI models for the voxels
in slice 50 in the middle of the brain. See Wegmann et al. (2017)
for a comparison of the Gaussian DTI model with least squares
and nonlinear least squares estimates on the same data. We
mainly compare the estimation results between the models using
the whole dataset with all b-values up to b = 10,000 s/mm2, but
also present some results for subsets of the whole dataset with
b-values up to b= 3,000 and 5,000 s/mm2, respectively.

The estimated single-diffusion tensors are compared across
voxels for the Rician DTI model in Equation (1) to the Gaussian
counterpart, with respect to the DTI scalar measures mean
diffusivity (MD) and fractional anisotropy (FA). The DTI scalar
measures are functions of the eigenvalues λ1 ≥ λ2 ≥ λ3 of the
single-diffusion tensor, defined as

MD =
λ1 + λ2 + λ3

3
, FA =

√

3

2

√

√

√

√

√

√

√

√

3
∑

i=1
(λi −MD)2

3
∑

i=1
λ2i

.

Figure 1 shows the posterior means of FA and MD and the ratios
of posterior means between the models, and Figure 2 shows the
posterior standard deviations of FA and MD and the ratios of
posterior standard deviations between the models.

In general, the Gaussian model substantially underestimates
mean values of FA in many voxels, especially in mid-regions

1http://www.humanconnectome.org/documentation/MGH-diffusion/

FIGURE 1 | Posterior means and ratios of posterior means of FA and MD for

the Rician and Gaussian DTI models, using the whole dataset with all b-values

up to b = 10,000 s/mm2. The color bars are shown for the mid 95% values

and the minimum and maximum values are marked out at the bottom and top

of the color bars, respectively.

FIGURE 2 | Posterior standard deviations and ratios of posterior standard

deviations of FA and MD for the Rician and Gaussian DTI models, using the

whole dataset with all b-values up to b = 10,000 s/mm2. The color bars are

shown for the mid 95% values and the minimum and maximum values are

marked out at the bottom and top of the color bars, respectively.
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with low or mid-size values of FA, compared to the theoretically
correct Rician model. In addition, the Gaussian model greatly
underestimates MD across the whole slice of the brain compared
to the Rician model. Hence, using the Gaussian model for
DTI can therefore lead to severely misleading inferences. The
standard deviations of FA and MD are small for both models.
In white-matter regions with high FA values the Gaussian model
estimates slightly larger standard deviations of FA compared to
mid-regions with slightly larger standard deviations of FA for
the Rician model. On the other hand, the standard deviations
of MD are underestimated by the Gaussian model in all
voxels.

Figure 3 shows the posterior means of FA and MD and the
ratios of posterior means for the Rician models with variables
in the noise variance φ (heteroscedastic model) and without
variables in φ (homoscedastic model). The differences between
the models are small, but in the outer parts of the brain the
homoscedastic Rician model slightly overestimates the posterior
means of FA in a large number of voxels. The posterior standard
deviations of FA and MD for the Rician models are similar,
but the homoscedastic Rician model slightly underestimates,
in general, the standard deviation of FA in the outer parts of
the brain (not shown here). The differences in FA between
the Rician models agree with our previous findings that the
diffusion variables (directions) especially affect the noise variance
for the Rician model in the outer parts of the brain, where
directional DTI measures such as FA are affected. This is in
contrast to the non-directional measure MD, for which the

FIGURE 3 | Posterior means and ratios of posterior means of FA and MD for

the heteroscedastic (Hetero) and homoscedastic (Homo) Rician DTI models,

using the whole dataset with all b-values up to b = 10,000 s/mm2. The color

bars are shown for the mid 95% values and the minimum and maximum

values are marked out at the bottom and top of the color bars, respectively.

differences between the models are negligible. Hence, in voxels
with heteroscedastic noise variance that depends on the diffusion
directions the posterior means and standard deviations of FA
are slightly different for the heteroscedastic and homoscedastic
Rician models.

It is relatively uncommon with measurements at a b-value of
10,000. Figure 4 therefore shows the posterior means and the
ratios of posterior means of FA and MD between the models
for the part of the whole dataset with all b-values up to b =

5,000 s/mm2, hence excluding the observations with the highest
b-value. The differences in FA and MD are notably smaller
compared to the results from the whole dataset, but the Gaussian
model still underestimates the posterior mean values of FA and
MD substantially in many voxels. Taking an even smaller data
subset with all b-values up to b= 3,000 s/mm2, the differences in
FA and MD between the models become negligible (not shown
here).

To investigate the differences between the Rician and
Gaussian models in white matter, we use the function FAST
in FSL to compute the probabilities for white matter in each
voxel of the brain. Let a white-matter voxel be defined as
a voxel where the probability is 1 for white matter. It is
generally expected that white-matter voxels have high FA.
Figure 5 shows that this is true for the Rician model as the
distribution of the posterior means of FA is more skewed

FIGURE 4 | Posterior means and ratios of posterior means of FA and MD for

the Rician and Gaussian DTI models, using the part of the dataset with all

b-values up to b = 5,000 s/mm2. The color bars are shown for the mid 95%

values and the minimum and maximum values are marked out at the bottom

and top of the color bars, respectively.
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to larger values, compared to more uniformly distributed
posterior means of FA for the Gaussian model. Hence, the
Gaussian model underestimates, on average, FA in white-matter
voxels.

Figure 6 shows posterior inclusion probabilities for the
variables corresponding to

(

dxx, dyy, dzz
)

in z (the variance
function) for both models. In a large number of voxels the
inclusion probabilities for the Gaussian model are close or equal
to 1, compared to far fewer voxels for the Rician model. This
clearly shows that diffusion variables affect the noise variance
in both models, and may imply that homoscedastic DTI models
can give distorted results as we documented in Wegmann et al.
(2017) for the Gaussian DTI model. Using a part of the dataset
with all b-values up to b = 5,000 s/mm2 implies far fewer voxels
with inclusion probabilities close or equal to 1 for both models,
but there are still substantially more voxels with this property for
the Gaussian model compared to the Rician model (not shown
here).

4.5. MCMC Convergence and Efficiency
The MCMC convergence is excellent for both the Rician and
Gaussian DTI models, with high acceptance probabilities for µ

and φ in almost all voxels for all estimated datasets. The mean
MH acceptance probabilities for µ and φ are 74 and 87% for the
Rician model, compared to 70 and 90% for the Gaussian model.
The standard deviations of the acceptance probabilities across
voxels are 7.5 and 16.2% for the Rician model, compared to 5.1
and 5.2% for the Gaussian model.

We compare the efficiency of our MCMC algorithm to
commonly used Random Walk Metropolis (RWM) algorithms
for MCMC in DTI [see e.g., Zhou (2011) and the highly
influential work in Behrens et al. (2003)]. The RWM algorithms
use a multivariate normal distribution centered on the current
parameter value to propose a posterior draw of all parameters in
µ and σ in a single block. The most common choice of proposal
covariance matrix in DTI is a scaled identity matrix where the
scale is chosen adaptively to achieve optimal performance. We

FIGURE 5 | Histograms of posterior means (left) and posterior standard deviations (right) of FA for white-matter voxels for the Rician and Gaussian DTI models,

using the whole dataset. A white-matter voxel is defined as a voxel where the probability is 1 for white matter from the function FAST in FSL.

FIGURE 6 | Posterior inclusion probabilities for the variables corresponding to the diffusion directions
(

dxx ,dyy ,dzz
)

in the variance function φ for the Rician and

Gaussian DTI models. Note that the inclusion probability is close to 1 for a large number of voxels, especially for the Gaussian model.
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FIGURE 7 | Histograms of the ratio of independent draws per minute for our MCMC algorithm compared to each type of RWM algorithm for 100 randomly sampled

white matter voxels for the Rician model. The number of independent MCMC draws is defined as the number of total MCMC draws divided by the estimated

inefficiency factor IF = 1+ 2
∑∞

k=1 ρk , where ρk is the autocorrelation function of lag k of the MCMC chain. The rows correspond to the parameters, the columns to

the two covariance matrices in the RWM algorithm.

also compare our MCMC algorithm to a refined version with
covariancematrix−cH−1, whereH is the Hessian at the posterior
mode and c is a scalar which is again chosen adaptively for
optimal performance. Figure 7 shows that our MCMC algorithm
is much more efficient in almost all voxels than the RWM
algorithm with covariance matrix cI, and also more efficient than
the RWM algorithm with covariance matrix −cH−1 in most
voxels.

5. DISCUSSION

We propose a Bayesian non-central χ regression model for
neuroimaging with the Rician model as a prominent special case.
We use simulated Rician regression data to demonstrate that the
Rician model is remarkably adept at recovering the signal even at
very low SNRs; we also document that the Gaussian model fails
to detect the signal for low SNRs.

Real diffusion data from the Human Connectome Project
(Essen et al., 2013) is used to show that the results from the
correct Rician DTI model can differ substantially from the
approximate Gaussian model typically used for diffusion tensor
estimation. The Gaussianmodel greatly underestimates themean
diffusivity (MD) and substantially underestimates the FA of the
single-diffusion tensors, which is consistent with previous results
(Andersson, 2008).We also show that the differences between the
Rician and Gaussian models increase with the b-value, which is
natural since the SNR decreases with a higher b-value.

Contrary to previous Bayesian and EM approaches, our
Bayesianmethods work directly onNC-χ or Rician distributions,
without the need to introduce missing phase data. Our
framework is also more general compared to the work in
Andersson (2008) and other approaches, as it is possible to

include variables for both the mean and the variance of the noise,
and not only variables for the mean. We demonstrate that DTI
noise of the underlying complex-valued signal is heteroscedastic,
especially for the Gaussian model. This is consistent to our
recent work in Wegmann et al. (2017), where we documented
that using diffusion variables for the noise variance gives rather
different results for DTI. It is also possible to include headmotion
parameters, and their temporal derivatives, as variables for the
noise variance for both fMRI and DTI. This can for example
be used to down-weight measurements close to motion spikes
(Elhabian et al., 2014; Power et al., 2014; Siegel et al., 2014) (as
any measurement with a high variance is automatically down-
weighted in our framework). For models with a large number
of variables, our variable selection can discard variables of no
interest.

A potential drawback of our approach is the computational
complexity. It takes 5.6 s to run 1,000 MCMC iterations for the
Gaussian model in a representative voxel for the DTI data, and
11.2 s for the Rician model. The processing time was measured
using a computer with an Intel Core i7-4790K CPU, 4 physical
cores and 32GB ofmemory. For a typical DTI dataset with 20,000
brain voxels, this gives a total processing time of 7.8 h for the
Gaussian model and 15.6 h for the Rician model. For this reason,
we have only analyzed a single subject, as a group analysis with
20 subjects would be rather time consuming. As each voxel is
analyzed independently, it is in theory straightforward to run
MCMC on the voxels with a highly parallel structure, using a
CPU or a GPU (Guo, 2012; Eklund et al., 2013).

We have focused on the rather simple single-diffusion tensor,
while more recent work focus on extending the diffusion tensor
to higher orders. In Westin et al. (2016), a regression approach
is used to estimate the diffusion tensor and a fourth order
covariance matrix in every voxel. Our regression framework can

Frontiers in Neuroscience | www.frontiersin.org 9 October 2017 | Volume 11 | Article 586

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wegmann et al. Bayesian Rician Regression for Neuroimaging

therefore easily be applied to QTI (q-space trajectory imaging)
data (Westin et al., 2016) as well, and more generally for
any diffusion model that can be estimated using regression.
As a fourth order covariance matrix contains 21 independent
variables, the possibility to perform variable selection becomes
even more important. Furthermore, DTI is still the most
common choice for studies investigating FA differences between
healthy controls and subjects with some disease (Shenton et al.,
2012; Eierud et al., 2014). Another indicator of the importance of
FA is that the TBSS approach (Smith et al., 2006) has received
more than 3,541 citations (with 531 citations in 2016). Our
approach gives the full posterior distribution of the FA, and
any other function of the diffusion tensor, which can be used
for tractography and to down-weight subjects with a higher
uncertainty in a group analysis. This is in contrast to TBSS and
the work in Andersson (2008), which ignore the uncertainty of
the FA. Andersson (2008) develops a sophisticated maximum a
posteriori (MAP) estimation for the DTI model, but does not
deal with posterior uncertainty, in contrast to our full MCMC
sampling from the posterior distribution.
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