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Successful learning hinges on the evaluation of positive and negative feedback. We

assessed differential learning from reward and punishment in a monetary reinforcement

learning paradigm, together with cardiac concomitants of positive and negative feedback

processing. On the behavioral level, learning from reward resulted in more advantageous

behavior than learning from punishment, suggesting a differential impact of reward and

punishment on successful feedback-based learning. On the autonomic level, learning

and feedback processing were closely mirrored by phasic cardiac responses on a

trial-by-trial basis: (1) Negative feedback was accompanied by faster and prolonged

heart rate deceleration compared to positive feedback. (2) Cardiac responses shifted

from feedback presentation at the beginning of learning to stimulus presentation later

on. (3) Most importantly, the strength of phasic cardiac responses to the presentation

of feedback correlated with the strength of prediction error signals that alert the learner

to the necessity for behavioral adaptation. Considering participants’ weight status and

gender revealed obesity-related deficits in learning to avoid negative consequences and

less consistent behavioral adaptation in women compared to men. In sum, our results

provide strong new evidence for the notion that during learning phasic cardiac responses

reflect an internal value and feedbackmonitoring system that is sensitive to the violation of

performance-based expectations. Moreover, inter-individual differences in weight status

and gender may affect both behavioral and autonomic responses in reinforcement-based

learning.
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INTRODUCTION

Reinforcement learning describes the process of adapting behavior according to the consequences
of actions. Actions or choices that lead to reward or positive feedback should be repeated in similar
future situations, whereas actions or choices followed by punishment or negative feedback should
be avoided. Thus, in reinforcement learning positive and negative feedback provide the learner with
the necessary information for successful behavioral adaptation.
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In this paper, we wished to address three research questions:
(1) Can we observe systematic differences in leaning from reward
and learning from punishment in reinforcement learning?
(2) How is feedback processing and learning reflected in
phasic cardiac responses during reinforcement learning? (3)
How do gender and weight status impact on behavioral
measures and cardiac concomitants of reinforcement learning?
Thus, we applied an experimental design that comprised
independent reward and punishment conditions. During task
performance continuous ECG measurements were obtained.
Moreover, computational modeling was applied to behavioral
and autonomic measures. The paper is structured as follows. We
first introduce the main concepts of reinforcement learning and
phasic cardiac responses and derive hypotheses for our research
questions, followed by the presentation of our experimental
task, measurement techniques and analysis methods. We then
present our results in the order of our research question, i.e., first
regarding the behavioral level, second regarding the autonomic
level, and finally regarding the effects of weight status and gender
on both behavioral and autonomic measures.

Reinforcement learning in humans has been widely studied
in health and disease, and impaired reinforcement learning
mechanisms have been identified in various psychiatric
and neurological disorders including Parkinson’s disease,
Huntington’s disease, depression, schizophrenia, and several
addictive disorders (e.g., de Ruiter et al., 2009; Park et al.,
2010; Gradin et al., 2011; Maia and Frank, 2011). Some studies
thereby point at differential impairments in learning from
reward and learning from punishment (e.g., Frank et al., 2004;
Mathar et al., 2017b). In healthy populations, several studies
highlight parallels in learning from reward and punishment
(Kim et al., 2006; Delgado et al., 2008) including the critical
involvement of the brain’s dopaminergic system in both learning
mechanisms (Glimcher, 2011; Mathar et al., 2017b). However,
previous research also identified differences such as, increased
reaction times in punishment—compared to reward-based
learning, a tendency for reduced learning from punishment,
and differential functional brain responses in relation to reward
and punishment, sometimes even in the absence of detectable
differences in task performance (Delgado et al., 2000; Robinson
et al., 2010a; Mattfeld et al., 2011). The involvement of partially
different neutrotransmitter systems in reward and punishment
processing provides additional evidence for distinct albeit
overlapping processing mechanisms for reward and punishment
(Guitart-Masip et al., 2014; Jocham et al., 2014). Thus, processing
of reward and punishment has to be considered differentially in
the investigation of feedback-based learning.

The first goal of our study was a systematic assessment
of potential differences in learning from reward and learning
from punishment. We employed a probabilistic reinforcement
learning paradigm consisting of independent reward and
punishment conditions, where learners were provided with only
positive and only negative feedback, respectively. Ecological
validity of the task and participants’ task comprehension were
tested by valence and arousal ratings for the presented stimuli
prior to and after learning. The overall score achieved at the end
of the experiment and the number of participants’ advantageous

choices and response times were examined as measures of task
performance. Participants’ choice inconsistency was assessed as
measures for behavioral adaptation. Behavioral assessment was
complemented by computational modeling that facilitates a deep
and detailed analysis of learning on a trial-by-trial basis.

In reinforcement learning, behavioral adaptations are driven
by the prediction error (PE) signal (Schönberg et al., 2007). The
PE signal encodes the deviations between the expected and the
actual outcome of an action. A positive PE arises in situations
where an outcome is better than expected, and a negative PE
signifies that an outcome is worse. The strength or amplitude
of the PE reflects the degree of deviation between expected
and actual outcome, whereby fully unexpected and surprising
events result in larger PEs. Strength and directionality of the PE
signal determine how much and in which direction our current
behavior should be adapted for the future. On the neural level, the
PE signal is encoded in dopaminergic structures of the midbrain
and relayed from there to striatal and prefrontal target regions to
drive learning (Schultz et al., 1997; Schultz, 2002).

The construction of PE signals during learning relies on
multiple skills starting with the ability to constantly monitor
incoming feedback and to correctly build and maintain value
representations. Further, value representations have to be
updated over the course of learning, and behavior has to be
adjusted accordingly for future actions and decisions. Based
on behavioral observations alone, these various aspects of the
learning process cannot clearly be disentangled. Computational
neuroscience provides established mathematical models for
reinforcement learning that implement the different aspects
of learning and thus facilitate their detailed analysis. When
applied to individual behavioral data, these models identify
inter-individual differences in learning performance and decision
strategies (e.g., Rodriguez et al., 2006; Klein et al., 2007; Lee
et al., 2014; Mathar et al., 2017b) and facilitate the estimation
of trials-wise PE signals and subject-specific model parameters
from the data (Sutton and Barto, 1998; Gläscher and O’Doherty,
2010). Commonly, reinforcement learning models estimate
in each trial value representations for the available options.
Once an option was chosen by the learner, the PE signal is
calculated as the difference between the corresponding value
representation and the observed feedback. Value representations
are then updated according to the strength and directionality
of the PE signal. The most important model parameter in
computational reinforcement learningmodels is the learning rate
α. This model parameter is specific for each participant and
determines the degree to which value representations are updated
after feedback. In other words, the learning rate reflects how
strongly new experiences in one trial impact on the participant’s
knowledge acquired over all previous trials. In addition, most
models, including ours, provide a consistency parameter β which
reflects how deterministic or stochastic the learner behaves over
the course of the experiment. Comparing this parameter to
the observed switching behavior of the participant provides a
measure for model adequacy, i.e., for how well the computational
model captures participants’ behavior.

Complementing our behavioral analysis, we fitted for each
participant a computational reinforcement learning model to the
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behavioral data. The consistency parameter was used to ensure
model adequacy. Subsequently, trial-wise PE signals and subject-
specific learning rates were derived from the model and analyzed
to identify the sources of observed behavioral effects.

For our behavioral and computational modeling analysis we
derived the following two hypotheses from previous research:
Hypothesis 1: Across participants, reinforcement learning
should be reflected by an increase in correct responses and
overall task score as well as a decrease in reaction times over the
course of the experiment. Hypothesis 2: Learning performance
and reaction times were expected to differ between reward and
punishment conditions with a potentially reduced performance,
smaller model-derived learning rates, and increased reaction
times in the punishment condition.

Reactions of the autonomic nervous system provide a further
invaluable source of information for the investigation of feedback
processing and learning. Numerous previous studies investigated
cardiac responses to external stimuli and feedback, taking into
account their valence and information content. Concurrently,
these studies observed a distinct pattern of phasic heart rate (HR)
responses to the presentation of external stimuli: an initial cardiac
deceleration that peaks within one second after stimulus onset
which is followed by an acceleratory recovery to baseline after 2–
4 s. Thereby, it was consistently observed that HR deceleration is
prolonged, if the presented stimulus provides negative feedback
on a choice or action, in contrast to positive feedback that elicits
faster acceleratory recovery (e.g., Crone et al., 2003; VanDer Veen
et al., 2004; Groen et al., 2007).

Regarding the information content of a stimulus,
experimental results are less conclusive. Van Der Veen et al.
(2004) reported prolonged HR deceleration in response to
negative feedback which did not discriminate between situations
where the feedback was informative or non-informative for the
participant. In contrast, Mies et al. (2011) found transient cardiac
slowing after negative feedback only in situations where the
feedback was valid. In a similar vain, Groen et al. (2007) observed
a strong deceleration in response to negative feedback that was
prolonged in informative compared to non-informative feedback
trials in a probabilistic learning task in children. Importantly,
Groen and colleagues also reported a general reduction in
feedback-related HR deceleration over the course of learning,
and Crone et al. (2004b, 2005) observed HR slowing already
in anticipation of feedback, in particular when potentially high
gains or losses were to be expected.

Taken together these previous studies suggested that HR
deceleration in response to feedback might be caused by a
deviation between an expected and an actual outcome of an
action (Somsen et al., 2000; Crone et al., 2003). Further, they
point at a shift from reliance on external feedback to an internal
feedback monitoring system over the course of learning (Crone
et al., 2004b; Groen et al., 2007). However, one major caveat
of the previous work is that it provides only indirect evidence
for these hypotheses, as deviations from performance-based
expectations could not be assessed on a trial-by-trials basis. The
second goal of our study was to provide direct evidence for a
link between trial-wise performance and phasic cardiac responses
during learning and feedback processing. Specifically, the use
of the computational model enabled us to directly correlate

the strength of PE signals with the strength of autonomic
responses.

From the presented previous observations, we derived the
following additional hypotheses for our experiment: Hypothesis

3: We expected a significant HR deceleration in response to
feedback presentation which is more pronounced for negative
than for positive feedback. Hypothesis 4: Over the course of
learning, HR responses should shift from the presentation of
feedback toward the anticipation of potential feedback already at
the time of stimulus presentation. Hypothesis 5: The strength of
phasic HR responses should directly predict the strength of PE
signals on a trial-by-trial basis.

In our previous research, we identified weight status and
gender as important interacting factors influencing feedback
processing and reinforcement learning on the behavioral and
neural level (e.g., Horstmann et al., 2011; García-García et al.,
2014; Mathar et al., 2017a; Kube et al., submitted). In the context
of obesity, this might be explained by profound alterations of
the brain’s dopaminergic system (Wang et al., 2001; de Weijer
et al., 2011; Volkow et al., 2011; Horstmann et al., 2015b)
which underlies the coding of PE signals. This goes along with
wide-spread obesity-related changes in both brain structure and
function which extend from striatal regions into sensory and
cognitive control-related frontal cortices implied in outcome
processing and reinforcement learning (Horstmann et al., 2011;
Kullmann et al., 2011; García-García et al., 2015; Figley et al.,
2016; Hogenkamp et al., 2016).

The rewarding properties of food and increased responsivity
to food cues in obesity have been widely studied (e.g., Stice et al.,
2009; García-García et al., 2014; Pursey et al., 2014; Alonso-
Alonso et al., 2015; Horstmann et al., 2015a; Mathar et al., 2016;
Mühlberg et al., 2016). In contrast, the differential processing
of reward and punishment and reinforcement learning in
a none-food context are far less understood in individuals
with obesity. Coppin et al. (2014) presented first evidence for
performance deficits in a probabilistic reinforcement learning
tasks in individuals with obesity along with working memory
differences between lean and obese participants. Importantly,
obesity-related deficits in reinforcement learning were specific
to the avoidance of negative outcomes suggesting a differential
sensitivity to positive and negative feedback. Opel et al.
(2015) reported increased neural responses in reward-related
brain regions in individuals with obesity when presented with
monetary gains, with no obesity-specific alterations in the
processing of losses. In contrast, Balodis et al. (2013) observed
greater functional activation in subcortical and prefrontal brain
regions in individuals with obesity for the processing of both
monetary gains and losses. Thus, evidence for obesity-specific
deficits in reinforcement learning and differential processing of
reward and punishment in obesity is still inconclusive.

Gender-related influences on feedback processing and
learning have likewise been reported in previous studies. For
example, higher performance levels in men than in women were
observed in reversal learning and the well-known Iowa Gambling
task (Weller et al., 2009; Evans and Hampson, 2015). Robinson
et al. (2010b) report gender effects of dopamine depletion on
learning from punishment with significant improvement of
punishment processing after dopamine depletion in women, but
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not in men. In addition, in the context of feedback processing
and learning gender was found to closely interact with obesity.
For example, women with obesity showed a preference for risky
choices despite infrequent punishment with high penalties as well
as decreased behavioral adaptation after punishment in the Iowa
Gambling Task (Horstmann et al., 2011). Interestingly, this was
accompanied by gender-specific correlations between markers
of obesity and gray matter volume (GMV) in brain structures
involved in learning, cognitive control, and goal-directed
behavior.

The impact of weight status and gender on general heart
rate variability (HRV) have long been known (e.g., Zahorska-
Markiewicz et al., 1993; Ramaekers et al., 1998; Karason et al.,
1999; Windham et al., 2012; Koenig and Thayer, 2016). However,
to the best of our knowledge only two studies from our own
lab assessed phasic HR changes in the context of gender and
obesity to date. In these studies we observed, for obese women
specifically, blunted cardiac responses to social compared to
monetary stimuli (Kube et al., 2016) together with strong cardiac
slowing in novel social interactions (Schrimpf et al., 2017).

The third goal of our study was to explore the effects
of weight status and gender on phasic HR changes in
the differential processing of reward and punishment during
reinforcement learning. Further we aimed at consolidating
the heterogeneous previous findings on the behavioral level
by a systematic assessment of obesity—and gender-specific
alterations in learning performance, behavioral adaptation and
computational model parameters. We expected weight status
and gender to impact on both performance and HR responses,
possibly differentially for reward and punishment. However,
sparsity and inconsistency of previous results, as shown above,
precluded clear hypotheses for the size and direction of these
effects, rendering the present assessment of these two factors
more exploratory.

Finally, we have to consider different personal characteristics
that might influence reinforcement learning from reward and
punishment. Participants’ general sensitivity to reward and
punishmentmay impact on reinforcement learning performance,
given that the learning process heavily relies on the adequate
evaluation of rewarding and punishing feedback. In addition,
weaknesses in learning from reward and punishment and
impaired adaptation of choice behavior have previously been
linked to high trait impulsivity (e.g. Franken et al., 2008),
although an earlier study by the same authors did not result in
conclusive evidence for this relationship (Franken and Muris,
2005). In the same vein, it was argued that working memory
capacity crucially impacts on reinforcement learning (Collins
and Frank, 2012), in particular on the processing of PE signals
(Collins et al., 2017). Therefore, participants’ working memory
capacity, reward and punishment sensitivity, and trait impulsivity
were taken into account in our analyses.

MATERIALS AND METHODS

Participants
Sixty Caucasian participants, aged between 18 and 36 years, were
initially invited to our experiment. All participants were right-
handed, had normal or corrected-to-normal vision, and were

grouped according to BMI into a group of participants with
(BMI ≥30 kg/m2, <45 kg/m2) and without (BMI ≥18.5 kg/m2,
<25 kg/m2) obesity. Participants were recruited from the
participant database of the Max Planck Institute for Human
Cognitive and Brain Sciences, Leipzig, Germany. All participants
provided written informed consent prior to participation. The
study complies with the ethical standards of the Declaration
of Helsinki and was approved by the ethics committee of the
University of Leipzig.

All participants underwent an initial telephone screening
to evaluate inclusion and exclusion criteria. Exclusion criteria
were a history of neurological or neuropsychiatric disorders,
current smoking, recent or current dieting, use of drugs,
psychoactive medication, or medication influencing the
autonomic nervous system. These exclusion criteria were chosen
to avoid confounding alterations in reinforcement processing
due neuropsychiatric symptomatology and medication (Etkin
and Wager, 2007; Wittmann and D’Esposito, 2015), smoking
status (Martin et al., 2014), and hunger (Symmonds et al.,
2010; Levy et al., 2013). Participants reporting hyper- or
hypothyroidism were excluded, since these conditions may
affect their baseline cardiac responses as well as body weight
status (Bratusch-Marrain et al., 1978; Cacciatori et al., 2000;
Tzotzas et al., 2000). As previous studies have shown that
hypertension may be associated with altered baseline cardiac
responses (Schroeder et al., 2003; Kim et al., 2016), we excluded
participants who reported hypertension during the telephone
screening or exhibited values exceeding the range for normal
or high normal blood pressure (Mancia et al., 2013) in a
manual examination after the experiment. Further, a depressive
symptomatology has been found to be associated with altered HR
responses to the presentation of rewarding stimuli (Brinkmann
and Franzen, 2013, 2017). Therefore, we measured the current
depressive symptomatology using Beck’s Depression Inventory-
Short Form (BDI-SF, Beck and Steer, 1993) and excluded
participants with a BDI-SF > 10. Finally, as even moderate
physical exercise impacts on measures of HR and HRV (Rennie
et al., 2003; Hottenrott et al., 2006), we excluded participants
with more than 3 h per week of regular cardiovascular
training.

Upon participation, a total of 12 participants had to be
excluded due to an excessive number of miss trials during
the experiment (5), insufficient task comprehension identified
during a debriefing interview (6) and technical problems (1).
Thus, our final sample consisted of 48 participants (mean
age: 25.9 ± 4.37 years; range between 20 and 36 years)
including 24 participants with obesity (BMI = 35.59 kg/m2 ±

3.39 kg/m2, range 30.68–43.33 kg/m2, 12 female) and 24 lean
participants (BMI = 22.18 kg/m2 ± 1.37 kg/m2, range 19.83–
24.09 kg/m2, 12 female). Groups were matched for age and level
of educational background. For the latter we chose years of
scholastic education as a comparable objective variable. All but
two participants finished at least 12 years of scholastic education,
which in the German educational system is the prerequisite to
enter university to receive higher education. Two participants
finished secondary school after 10 years followed by vocational
training, which represents the second highest level of scholastic
education.
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Experimental Task
Participants performed a probabilistic reinforcement learning
task adapted from Kim et al. (2006) and Bódi et al. (2009).
The task consisted of 240 trials. In each trial participants were
presented with a pair of symbols and had to choose one of
them by button press. Three different pairs of symbols were
included in the experiment: (1) one pair signaled the possibility
of winning 50 points or receiving no outcome (80 reward/gain
trials), (2) one pair signaled the possibility of losing 50 points
or receiving no outcome (80 punishment/loss trials), and (3)
one pair was associated with a neutral outcome signaling neither
gain nor loss (80 neutral trials), see Figure 1. In each pair, one
symbol was associated with a higher probability of receiving
the respective outcome: In gain trials, the advantageous symbol
was associated with a 70% probability of winning 50 points and
lead to no outcome in only 30% of the trials in which it was
chosen. The disadvantageous symbol was associated with only a
30% probability of winning 50 points and led to no outcome in
70% of the trials in which it was chosen. Similarly, in loss trials
the advantageous symbol was associated with a 70% probability
of avoiding to lose 50 points, while the other symbol had a
loss avoidance probability of only 30%. In the neutral control
condition, the two symbols likewise had a 70 and 30% probability
of seeing neutral feedback, and 30 and 70% probability of no
outcome, respectively. Symbols were randomly assigned to a
given trial type, and trial order was randomized in blocks of 30
trials to ensure a roughly equal number of trials per condition in
each stage of the experiment.

Note that with this task design, participants could maximize
their overall task performance by choosing the advantageous
symbol in both the reward and the punishment condition, i.e., by
learning to select the high probability reward symbol in reward
trials and the high probability punishment avoidance symbol in

punishment trials. Choices during neutral trials did not affect
task performance. Importantly, independence of positive and
negative feedback in this task design additionally enabled us
to determine individual differences in learning from the two
feedback valences.

Trial timing in an example trial for the reward condition
is displayed in Figure 1. The pair of stimulus symbols was
presented for a maximum of 1,500ms and participants were
asked to select one of them. Once the symbol was selected, the
chosen option was highlighted for 1,000ms and a blank screen
followed for a 1,000ms delay period. Thereafter, the outcome was
presented for 2,000ms. If the participants received no outcome, a
fixation cross was shown instead. If the participants did not press
the button or were too slow, the trial was aborted and the text “zu
langsam!” (too slow) appeared on the screen. These trials were
dismissed from further analyses (1.5% of all trials). Each trial was
followed by an inter-trial-interval of 1,600–2,200ms.

Prior to the experiment, participants were instructed about
the task and performed a practice run of 12 trials, four trials
in each condition. The instructions included the information
that two symbols would be presented in each trial and the
task was to select one of them. Depending on their choice
participants would win 50 points, lose 50 points, receive a
financially neutral outcome or no feedback. Participants were
informed that the task comprised of three trial conditions
and that in each trial condition one symbol had a higher
probability of leading to an advantageous outcome. However,
they did not know which symbol was associated with a particular
outcome. In addition, participants were informed that their
net gain would be transformed into a monetary bonus at
the end of the experiment. Upon completion of all tasks and
questionnaires participants were debriefed about the aim of the
study.

FIGURE 1 | Experimental task. Example trial and task structure with reward/gain and punishment/loss probabilities of the reinforcement learning task.
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Experimental Procedure
Experiments were performed in a sound proof room that was
artificially lid with the blinds closed. Upon arrival, participants
were explained the procedure and comfortably seated on a
chair in front of a computer screen. They first performed
the working memory test. Participants were then prepared for
electrocardiogram (ECG) recording. To allow ECG to stabilize
after preparation, participants filled in the first questionnaire.
This was followed by a 5min baseline recording of ECG data
and the experimental task, including pre- and post-ratings
of the symbols. After the experimental task was finished,
participants filled out a second set of questionnaires, and were
debriefed about the experiment. Finally, participants’ current
height, weight, and blood pressure were measured. The entire
experiment lasted for∼2 h. Participants received reimbursement
of 7 Euro per hour and additional bonus of 2.86 Euro on
average, according to the score reached by the end of the
experiment.

Data Acquisition
ECG Data
The ECG was continuously recorded during the task with a
sampling rate of 500Hz using BioPac 3.7.7 and the MP35
recording unit. In order to ensure that participants show typical
and healthy cardiac responses at rest, ECG was also recorded for
HRV analysis during a 5min resting period before the start of the
experiment. Three Ag/AgCl ECG electrodes (Nessler Swaromed)
were placed below the right collar bone about 10 cm from
the sternum, on the left side between the lower two ribs, and
on the right lower abdomen. ECG data analysis was carried
out using customized Matlab-based scripts (Matlab R2013b,
The MathWorks, Sherborn, MA, USA) for R-peak detection
and artifact correction. Automatic R-peak detection identified
all stationary data points that exceeded 20% of the global
ECG maximum and were preceded by data points with a first
derivative 1.5 times larger than the global ECG maximum. A
median template of the QRS-complex around the detected R-
peaks was calculated, andQRS complexes with a cross correlation
coefficient larger than 0.8 were selected. All automatically
detected R-peaks were visually inspected to ensure correct R-peak
detection and manually corrected where necessary. Inter-beat-
intervals (IBI) were calculated as time difference between two
subsequent R-peaks. IBIs deviating more than 3.5 SDs from the
session’s mean IBI or more than 50% from the preceding IBI
were identified as artifacts and replaced by the session’s mean
IBI length. Note that this approach differs from the often applied
interpolation by neighboring IBIs. However, we avoided any
interpolation from neighboring IBIs in ECG data modeling, as
the statistical analysis of phasic IBI changes crucially depends
on the direct comparison of neighboring IBIs. Interpolating
corrupted IBIs by their neighbors might therefore compromise
the validity of the statistical analysis. Across participants only
0.37% of all IBIs (421 out of 112,016) were identified as artifacts
with an average of 0.36% of IBIs per person. The largest number
of IBIs replaced for an individual participant amounted to 66 out
of 3,034. These very few artifacts were unlikely to significantly
impact on subsequent statistical analyses.

Personality Traits, Working Memory Scores, and

Ratings
Four potential influencing factors were regarded in the behavioral
analysis and assessed for each participant prior to or after the
task: participants’ responsiveness to reward, responsiveness to
punishment, impulsivity, and working memory capacity. The
first three factors were assessed by means of two questionnaires,
the BIS/BAS (Carver and White, 1994) and the UPPS Impulsive
Behavior Scale (Whiteside and Lynam, 2001). The BIS/BAS
captures two general motivational systems that underlie behavior.
The Behavioral Inhibition System (BIS) represents an aversive
motivational system that is sensitive to punishment and reward
omission. The Behavioral Activation System (BAS) reflects an
appetitive motivational system which is sensitive to reward and
the avoidance of punishment. Note that the internal consistency
of the three BAS factors drive, fun seeking, and reward
responsiveness is still under debate for the German version of
the questionnaire that was used in our experiment (Strobel et al.,
2001; Mueller et al., 2013). Observed effects regarding these
factors should thus be treated with caution.

The UPPS is designed to assess distinct personality
facets associated with impulsive behavior: urgency, (lack
of) premeditation, (lack of) perseverance, and sensation seeking.
These four subscales possess very good internal consistency in
the German version of the UPPS (Schmidt et al., 2008).

Possible inter-individual performance differences due to
visual working memory capacity, were assessed in the German
version of the revised Wechsler Memory Scale (WMS-R), subtest
Figural Memory (Wechsler, 1987; Härting et al., 2000).

Immediately before and after the learning task, we obtained
subjective valence and arousal ratings for each symbol to
determine changes in affective responses toward the stimuli.
Here, each cue was presented individually and rated according to
valence and arousal on 9-point Self-Assessment Manikin visual
analog scales (Bradley and Lang, 1994). This enabled us to
investigate task-induced differential changes in the evaluation of
advantageous and disadvantageous symbols.

Data Analysis
Computational Model of Learning Behavior
Trial-wise PEs, subject- and condition-specific learning rates and
choice consistency estimates were derived from a computational
reinforcement model. The model is an implementation of the Q-
learning algorithm (Watkins and Dayan, 1992). It was previously
applied in a comparable implicit learning paradigm in healthy
individuals and clinical populations, where it was shown to
adequately capture reinforcement learning tasks based on time-
invariant probabilistic stimulus-outcome associations (Mathar
et al., 2017b). In more detail, the model consists of six input
nodes Ii=1,...,6 with weighted connections to two output nodes
(Q-values)Qj=1,2 that represent the presence or absence of the six
possible symbols i (three pairs of symbols) and the two possible
outcomes j in each condition, respectively. On each trial, activity
of the output nodes is computed as

Qj =
∑

i
wij Ii, (1)
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where wij represents the weight connecting input node Ii and
output node Qj. Weights are initialized to 0.25, representing
equal distribution of initial weights between the four connections
that can be updated within one trial (connections from two
stimulus symbols at a time to the two outcomes). Weights are
updated in each trial k by means of

wij(k+ 1) = wij

(

k
)

+ αr/p/nSj(Rj − Qj)Ii, (2)

whereRj encodes the actual outcome in this trial and Sj represents
the participant’s choice. The latter is included for allowing the
model to simulate the behavior of the individual participant
rather than optimal learning.

To differentially assess learning from reward (potential gains)
and punishment (potential losses), we fitted three independent
learning rates for the reward αr , punishment αp, and neutral
condition αn, respectively. In reinforcement learning, a learning
rate reflects how strongly new experiences in one trial impact
on the participant’s knowledge acquired over all previous trials.
For each participant, the three individual learning rates were
determined that minimized the sum of squared differences
between the model’s output and the participant’s choice:

∑

jk

(

Sjk − Qjk

)2
→ min, (3)

with j = 1, 2 and k again marking the trial number. In a
subsequent step, wemodeled the probability for each participant’s
choices of a particular symbol to follow a softmax distribution:

P
(

choice = Sj|Q1,Q2
)

=
exp(βQj)

exp (βQ1) + exp(βQ2)
with j = 1, 2,

(4)

where the parameter β reflects the consistency of choicesmade by
the participant. That is, the parameter reflects how deterministic
or stochastic the participant behaves over the course of the
experiment, with high β-values representing more stochastic or
inconsistent behavior.

Model fitting and estimation of all parameters was
accomplished by non-linear optimization. Recall that the
PE in each trial encodes the discrepancy between expected and
actual outcome. Thus, after model fitting the prediction error
PEk for trial k can be directly derived from Equation (2) as

PEk = Sjk(Rjk − Qjk)Iik. (5)

Prior to statistical analysis of model parameters, model adequacy
was assessed in two ways. First, the model’s choice consistency
parameter β was regressed against the overall number of switches
between choices exhibited by the participant. A strong regression
signifies that, across subjects, the model adequately captured
participants’ behavior, because if the model correctly reproduces
participants’ actual behavior, then a model’s choice consistency
(small β) should go along with few switches made by a
participant, while inconsistent choice behavior of the model (i.e.,
large β) should entail large number of switches by the participant.
Second, model fit was compared across participant groups by

means of the Bayesian Information Criterion (BIC, Schwarz,
1978), as comparable model fit is a prerequisite for parameter
comparability.

Autonomic Responses
In our event-related HR analysis we closely followed the
procedures applied in previous assessments of phasic cardiac
concomitants of stimulus and feedback processing (e.g., Somsen
et al., 2000; Crone et al., 2003; Van Der Veen et al., 2004; Groen
et al., 2007). For the event-related analysis of stimulus processing,
four IBIs were extracted around stimulus presentation: IBI 0 was
measured at the time of stimulus presentation and was preceded
by IBI−1 and immediately followed by IBIs 1 and 2. All stimulus-
related IBIs were referenced to a statistically independent IBI
−2 prior to trial start. Statistical analyses of this reference IBI
revealed no significant valence, gender, or obesity effect (repeated
measures ANOVAs with within-subject factor valence (reward,
punishment, neutral) and between-subject factors gender and
obesity; all p > 0.282).

For the event-related analysis of feedback processing, five IBIs
were extracted: IBI 0 was measured at the time of feedback
presentation and was preceded by IBI −1 and immediately
followed by IBIs 1, 2, and 3. In order to marginalize the
impact of differential stimulus processing on the feedback-related
analysis, all IBIs were now referenced to the IBI −2 prior
to feedback presentation. This ensures independence of IBI
changes at feedback presentation from IBI changes at stimulus
presentation, as a reference IBI after stimulus presentation
effectively functions as a new “baseline” preceding feedback
presentation. Note that for the purpose of plotting responses to
stimuli and feedback on a common scale in Figure 3, in this
plot all IBIs from stimulus presentation to HR recovery after
feedback presentation are referenced to a common IBI-2 prior to
stimulus presentation and named IBI 0 (presentation of stimulus)
to IBI 7.

In order to assess learning-induced effects on performance
over the course of the experiment, experimental trials were
divided into four task blocks of 60 trials each. Learning-
induced effects on phasic IBI changes were expected
to emerge later than behavioral adaptation. They were
thus assessed by comparison of the first and the second
experimental half, containing trials 1 to 120 and trials 121–240,
respectively.

Finally, a potential learning-induced shift in heart beat
responsiveness from the presentation of feedback to the
presentation of stimuli was directly investigated based on the
mean area under the curve (AUC) that describes changes in IBI
length following stimulus and feedback presentation. Specifically,
for each subject, a trapezoid was calculated, representing the AUC
of changes in IBI length from IBI 0 to IBI 2 after the presentation
of a stimulus and the presentation of feedback, respectively. Note
that reference IBIs for stimulus-related and feedback-related
IBIs were identical to the independent analyses of stimulus and
feedback processing in order to ensure comparability of AUCs
across the two event types. Mean AUCs were then submitted to
a repeated measures ANOVA containing event type (stimulus,
feedback), experimental half (1st half, 2nd half), and valence
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(reward, punishment) as within-subject and gender and obesity
as between-subject factors.

Relationship of the PE Signal and Autonomic

Responses
Subsequent to modeling each participant’s learning behavior, we
analyzed the relationship between the obtained trial-wise PEs
and the relative IBI length following feedback presentation. For
this, we employed a general linear model (GLM) and subsequent
statistical evaluation of the GLM parameters. Specifically, for
each subject, the vector of PEs after positive and after negative
feedback was modeled as

PEk = bc + b0 IBI0k + b1 IBI1k + b2 IBI2k + εk

for all trials k that led to positive or negative feedback
respectively, with the PE derived from the computational
learning model as dependent variable, IBI 0, IBI 1, and IBI 2 as
independent variables, the corresponding vector of coefficients
b and the error vector ε. Across subjects, coefficient estimates
corresponding to IBI 0, IBI 1 and IBI 2 were subjected to a
one sample T-test. Coefficients with a significant difference from
zero mark a predictive effect of the corresponding independent
variable on the size of the PE. In other words, across participants,
PE and IBI are systematically associated for any IBI with a
GLM coefficient that significantly differs from zero. In order
to compare predictive effects across the three IBIs as well as
across conditions, GLM coefficients were subsequently subjected
to a repeated measures ANOVA with IBI (IBI 0, IBI 1,
IBI 2) and valence (reward, punishment) as within-subject
factors. For the comparison across IBIs, standardized coefficients
were used.

Statistical Methods
All acquired and modeled data as well as their hypothesized
interdependencies were statistically analyzed using IBM SPSS
Statistics 22.0 (IBM Corp., Armonk, NY, USA). For all statistical
tests we assume statistical significance for p < 0.05. For each
analysis, statistical tests were chosen depending on the nature
and distribution of the data as follows. Group differences
(lean vs. obese, female vs. male) for normally distributed data
in demographics, questionnaire scores, performance measures,
BIC-values, and model parameters were analyzed by univariate
ANOVAs with obesity and gender as fixed between-subject
factors. For normally distributed data we report mean and
standard deviation. Mann-Whitney-U-Tests were applied when
the assumption of normality was violated as assessed by Shapiro-
Wilk test. Here, we report medians and [min, max] of the data or,
in cases where the full range of possible values was covered by the
results, [25th, 75th percentiles]. Pairwise post-hoc comparisons
were calculated to assess origin and directionality of interaction
effects observed in univariate or repeated measures analyses of
variance.

Across participants, performance differences were compared
between experimental conditions and between task blocks by
related samples Friedman’s Two-Way Analysis of Variance

by Ranks for three or more conditions or task blocks,
and by Wilcoxon signed rank tests for two conditions,
respectively. Differences between conditions in the number
of switches were statistically assessed by a sign test, as
the assumption of the Wilcoxon signed rank test for a
symmetrically shaped distribution of differences was not met.
Reaction times were analyzed by repeated measures ANCOVA
with between-subject factors obesity and gender, within-
subject factor valence (reward, punishment, neutral) and task
block (blocks 1–4). Age was included as covariate of no
interest.

Differences in valence and arousal ratings between symbols
prior to the task were assessed by repeated measures ANOVAs
with symbol as within-subject factor and obesity and gender
as between-subject factors. Task induced changes in valence
and arousal ratings were analyzed by repeated measures
ANOVAs with time point (pre/post task) as within-subject
factor and obesity and gender as between-subject factors.
Bivariate correlations between questionnaire scores and working
memory capacity with performance measures were determined
by Pearson’s correlation coefficients. Normality of the data was
ensured by Shapiro-Wilk test.

Differences in phasic IBI were statistically evaluated by
repeated measures ANOVAs. Specifically, mean IBI differences
in response to stimulus presentation were statistically evaluated
using a repeated measures ANOVA with valence (reward,
punishment), experimental half (1st half, 2nd half), and IBI
(four levels; IBI −1, IBI 0, IBI 1, IBI 2) as within-subjects
factors and obesity and gender as between-subjects factors.
Note that the “factor experimental half ” was included in the
ANOVAs to identify autonomic reactions that might only
be present at the beginning or toward the end of learning.
The specific analysis of a potential learning-induced shift in
autonomic responsiveness is described below. For the analysis
of IBI differences in response to feedback, the within-subject
factor IBI consisted of five levels: IBI −1, IBI 0, IBI 1, IBI 2,
IBI 3. To identify the underlying cause in IBI differences, e.g.,
differences in deceleration or recovery speed between conditions
or participant groups, changes between neighboring IBIs were
assessed. In other words, differences between IBI −1 and IBI
0, between IBI 0 and IBI 1 and so forth were calculated and
statistically compared across any interacting effect e.g., between
genders or positive and negative feedback trials. Graphically, this
is reflected in the steepness of the slope between two neighboring
IBIs.

All pairwise post-hoc tests and all statistical tests involving
dependent data were Bonferroni corrected for multiple
comparisons. The latter included, for example, all tests involving
the number of switches, all correlations of the same performance
measure with personality traits etc. In cases where correction
for multiple comparisons was required, we report only those
p-values as significant that are below the adjusted significance
threshold and report the applied number of tests as correction
factor (CF), e.g., p-values below the adjusted threshold of p <

0.025 and the correction factor CF 2 in case of two tests on
dependent data.

Frontiers in Neuroscience | www.frontiersin.org 8 October 2017 | Volume 11 | Article 598

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kastner et al. Cardiac Concomitants of Reinforcement Learning

RESULTS

Demographics
Descriptive statistics of participants’ demographic characteristics
are reported in Table 1. As intended, across groups participants
did not differ with respect to age and educational background.
Lean and obese participants significantly differed in weight,
BMI, and waist-to-hip ratio. Male and female subjects
significantly differed in height, weight, and waist-to-hip ratio but,
importantly, not in BMI distribution. Gender and weight status
can thus be regarded as independent factors in the statistical
analysis. In the same vein, baseline HR did not significantly
differ between groups and HRV analysis at rest revealed typical
patterns of cardiac activity (Supplementary Material), ruling out
any impact of those factors on the subsequently observed effects
in phasic cardiac responses.

Behavioral Analysis
Addressing hypotheses 1 and 2, we first analyzed participants’
task performance in the reinforcement learning task according
to the overall score achieved and according to the number of
advantageous choices made over the course of the experiment.
In addition, we defined a learning criterion for the reward and
punishment condition that allowed us to assess speed of learning
as follows: A participant had successfully learned the task, if he or
she chose the symbol with high probability of receiving a reward
and with high probability of avoiding a punishment in 9 out of
10 consecutive trials in the reward and punishment condition,
respectively.

Supporting hypothesis 1, all participants increased their scores
from the initial 2,000 points with final scores ranging from
2,150 to 3,550 points. The number of advantageous choices
significantly increased over the four experimental blocks for
the reward and the punishment condition [choose reward: χ2

(3)

= 53.975, p < 0.0005; avoid punishment χ2
(3) = 50.940, p <

0.0005, Figure 2A]. No difference across blocks was observed in
the neutral condition (p = 0.49). Both number of advantageous
reward and punishment choices were significantly higher than
the number of neutral choices with high probability feedback
(reward: z = 5.32, p < 0.0001; punishment z = 5.03, p

< 0.0001), pointing at successful learning from both reward
and punishment. However, in line with our hypothesis 2, the
number of advantageous choices was significantly higher in
reward compared to punishment trials (z = 2.470, p = 0.014),
reflecting an increased influence of positive compared to negative
reinforcement during learning.

Adding to the differences in task performance across
conditions, we observed a statistically significant difference in
the time point of reaching the learning criterion: Participants
reached the learning criterion on average after 14 [25th and 75th
percentile: (10,26)] reward trials, but only after 23 [25th and 75th
percentile: (15,35)] punishment trials (z = −1.98, p = 0.047).
Note that four participants did not reach the learning criterion
in one or both conditions. These four participants were excluded
from all analysis involving the learning criterion.

Performance scores and number of advantageous choices
significantly correlated in a negative way with the overall number
of switches in both reward (score r = −0.787, advantageous
choices: r = −0.831) and punishment trials (score: r = −0.639,
advantageous choices: r = −0.870, all p < 0.005, CF 4).
Importantly, both the number of switches before and after
reaching the criterion was higher in the punishment compared to
the reward condition (median and [25th, 75th percentile] values:
reward (before) = 24.10 [9.09, 35,06]%, punishment (before) =
36.07 [25.57, 44.86]%, z = −3.75, p < 0.001; reward (after) =
5.39 [0, 11.29]%, punishment (after) = 16.83 [8.02, 28.48]%, z
= −4.31, p < 0.0001, CF 2). Thus, the higher overall number
of switches in the punishment condition was not restricted to
exploring all choice options, but continued to be increased after
successful learning. Note that because the number of trials before
and after reaching the criterion varied across participants and
conditions, we used the relative number of switches (in %) for
this analysis.

Analyses of reaction times further supported our hypotheses.
In line with hypothesis 1, learning was accompanied by a
significant decrease in reaction times (RT) over the course of the
experiment [main effect of task block: F(2.035, 87.507) = 25.488,
p < 0.001, all pairwise differences statistically significant with
p < 0.0016, CF 6, except for the change from block 2 to block
3, Figure 2B]. In line with hypothesis 2, we observed a main

TABLE 1 | Descriptive statistics.

LEAN OBESE p

Male Female Male Female Factor obesity Factor gender

Age (years) 26.2 (5.78) 25.0 (4.41) 26.7 (3.2) 26.0 (4.11) 0.564 0.482

Years of education 13 (13-13) 13 (13-13) 13 (10-13) 13 (10-13) 0.187 0.657

Height (m) 1.80 (0.04) 1.71 (0.06) 1.80 (0.7) 1.67 (0.06) 0.206 <0.001

Weight (kg) 73.37 (4.77) 63.75 (6.57) 115.24 (15.54) 99.37 (9.83) <0.001 <0.001

BMI 22.63 (1.20) 21.73 (1.44) 35.59 (3.24) 35.61 (3.68) <0.001 0.565

WHR (cm) 0.82 (0.04) 0.75 (0.04) 0.95 (0.05) 0.84 (0.05) <0.001 <0.001

HR (beats per min) 66.50 (8.74) 65.33 (7.5) 65.17 (10.53) 67.17 (9.78) 0.925 0.876

Distribution of gender, age, level of education, height, weight, body mass index (BMI), waist-to-hip ratio (WHR), and baseline heart rate in male and female participants with and without

obesity. Values represent mean and standard deviation except for years of education [median (min-max)]. Group differences were determined by univariate ANOVA with obesity and

gender as fixed between-subject factors. Significant group effects at p < 0.05 are marked in bold.
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FIGURE 2 | Behavioral results. Top: Number of advantageous choices (A) and reaction times (B) for the reward, punishment and neutral condition; bottom:

Significant gender effects in the number of advantageous choices (C) and in the overall number of switch (D) trials for the reward and punishment condition.

Advantageous choices refer to trials where participants chose the symbol with the higher probability for gaining a reward or avoiding a punishment in the reward and

punishment condition, respectively. Switch trials refers to those trials where participants changed their choices from one symbol in the previous trial of this condition to

the other symbol in the current trial. Statistically significant differences at p < 0.05 are marked with *.

effect of valence [F(1.741, 74.855) = 36.866, p < 0.0001] with
longest RTs in punishment trials (854.75ms ± 17.59), shortest
RTs in reward trials (757.07ms ± 18.05) and RTs in neutral
trials (811.56ms ± 17.51) in between (all pairwise comparisons
statistically significant at p < 0.0001, CF 3).

Finally, changes in valence and arousal ratings before and
after learning were in line with our behavioral findings, with
significantly increased valence and arousal ratings for the high
probability reward symbol, and significantly increased arousal
ratings, but decreased valence ratings for the punishment
symbols after learning (Supplementary Material). These findings
corroborate the ecological validity of our task design.

Computational Modeling and Analysis of
Learning Parameters
After fitting the model to each participant’s behavioral data,
we first accessed model adequacy by means of the consistency

parameter β . Across participants, the model parameter β

explained a significant 54% of the variability in switching
behavior [linear regression, R2 = 0.54, adjusted R2 = 0.53,
F(1, 46) = 53.41, p < 0.0001] speaking for model behavior that,
after model fitting, captured significant portions of variability in
participants’ behavior. In addition, BIC-values obtained across
participants did not significantly differ with respect to the
factors gender and obesity (both p > 0.09). Thus, model fit
was comparable across participant groups, a prerequisite for
parameter comparison across groups as presented below.

From the fitted models, three independent learning rates for
the reward, punishment, and neutral condition were derived for
each subject. Across participants, learning rates in the reward
(0.1 ± 0.07) and the punishment (0.07 ± 0.04) condition
were significantly increased compared to the neutral [0.001,
(0.001, 0.26)] condition (z = 3.687 and z = 3.551, respectively,
both p < 0.0004, CF 2), again reflecting learning in both
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reinforcement-based conditions. In addition better learning
performance in the reward compared to the punishment
condition was accompanied in a small but significant difference
in learning rates with a higher learning rate for reward compared
to punishment trials [main effect of condition, F(1, 47) = 4.09, p
= 0.04]. This reflects the different speed of learning between the
two conditions, as a smaller learning rate directly translates to
a slower albeit correct update of value representations over the
course of learning.

Impact of Personality Traits and Working
Memory Capacity
In order to ensure that none of the observed behavioral effects
were simply attributable to a systematic impact of the previously
identified personality traits or workingmemory, we first analyzed
potential group differences of these factors and their correlations.
Detailed statistical results of this analysis are provided as
Supplementary Material. Small gender differences were observed
for BAS reward responsiveness, total BIS score, UPPS urgency,
UPPS perseverance, and theWMS-R score. Bivariate correlations
between these scores and performance measures did not reach
significance. Thus, none of the observed behavioral effects were
merely reflecting differences in personality traits or working
memory capacity. Consequently, we omitted these factors in the
subsequent analysis of phasic IBI changes in response to the
presentation of stimuli and feedback.

Analysis of Autonomic Responses
Sequences of mean IBIs from stimulus presentation to HR
recovery after feedback presentation are shown in Figure 3.
Across all participants, changes in IBI length are plotted
separately for reward and punishment trials during the first
and second experimental half. As becomes obvious by visual
inspection already, in the first experimental half, IBI deceleration

was stronger in the punishment compared to the reward
condition for both the presentation of stimuli as well as feedback.
These differences vanished later in the experiment. In order to
disentangle the impact of stimulus and feedback presentation on
IBI length, changes in IBI length were assessed in the following
detailed statistical analyses independently for the presentation of
stimuli and the presentation of feedback.

First, we statistically analyzed mean IBI differences in
response to stimulus presentation. In addition to the main
effect of IBI [F(1.68, 74.06) = 29.66, p < 0.0001], we observed
a main effect of valence [F(1, 44) = 12.44, p = 0.001] and a
significant IBI × valence interaction [F(2.38, 104.61) = 23.12, p
< 0.0001, Figure 4A]. This was driven by a significantly higher
increase in IBI length from IBI 0 to IBI 1 in punishment
trials compared to reward trials [F(1, 44) = 4.50, p = 0.040],
representing stronger initial deceleration in response to stimuli
predicting potential punishment. This was followed by a
smaller decrease in IBI length from IBI 1 to IBI 2 in the
punishment condition [F(1, 44) = 27.01, p< 0.0001], representing
a pronounced prolonged deceleration in response to stimuli
predicting potential punishment. Thus, HR changes in response
to stimulus presentation followed the pattern that we predicted
in hypothesis 3 for HR responses to feedback, with pronounced
reactivity for punishment compared to reward.

Additionally, we observed a main effect of experimental half
[F(1, 44) = 10.30, p= 0.002] and a significant IBI× experimental
half interaction [F(2.3, 100.99) = 5.50, p = 0.004, Figure 4B]. This
interaction resulted from higher increase in IBI length from
IBI −1 to IBI 0 [F(1, 44) =10.86, p = 0.002] and a stronger
decrease from IBI 1 to IBI 2 [F(1, 44) = 9.57, p = 0.003] in the
second compared to the first half of the experiment. Thus, across
reward and punishment conditions, anticipatory deceleration to
the stimulus and recovery after stimulus presentation increased
significantly over the course of the experiment. This already

FIGURE 3 | Phasic cardiac responses. Sequence of IBIs in response to reward (red) and punishment (blue) for the first (left) and the second (right) experimental half.

For the purpose of plotting responses to stimuli and feedback on a common scale, in this figure all IBIs from stimulus presentation to HR recovery after feedback

presentation are referenced to a common IBI −2 prior to stimulus presentation and named in relation to stimulus presentation IBI 0 to IBI 7. Arrows mark the

presentation of stimuli (ST) and feedback (FB). Note that the statistical analysis of IBIs was performed separately for stimulus and feedback presentation (see

Figures 4, 5).
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FIGURE 4 | Cardiac responses to stimulus presentation. Effects of valence and time on changes in relative IBI length around stimulus presentation. (A) Deceleration in

response to stimulus presentation was stronger and prolonged for stimuli predicting punishment compared to reward. (B) Cardiac reactivity in response to ST

presentation was more pronounced during the second experimental half. Arrows mark the presentation of stimuli (ST). Significant differences (at p < 0.05) between

conditions or experimental half 1 and 2 in the slope between neighboring IBIs are marked with *.

FIGURE 5 | Effects of weight status and gender. Interaction between gender and valence on changes in relative IBI length around feedback presentation during the

first experimental half. The interaction was driven by (1) stronger overall cardiac reactivity to feedback presentation in women compared to men (red vs. green lines),

and (2) stronger anticipatory deceleration and faster recovery in the punishment (B) compared to the reward condition (A) in women only with no observable

differences in men. None of these effects was observable in the second half of the experiment. Arrows mark the presentation of feedback (FB). Significant differences

(at p < 0.05) between genders in the slope between neighboring IBIs are marked with *.

points at a shift in HR responsiveness over time, which is more
directly addressed below.

Second, we analyzed mean IBI differences in response to
feedback. The analysis revealed a main effect of IBI [F(2.05, 89.97)
= 9.07, p < 0.0001] and a significant three-way interaction
of experimental half × IBI × valence [F(2.56, 112.51) = 4.453,
p = 0.008], again signifying an impact of the factors valence
and time on IBI. However, as we also found a significant four-
way interaction experimental half × IBI × valence × gender
[F(2.56, 112.51) = 2.90, p = 0.046], the impact of valence and time
cannot be interpreted without considering the factor gender.

Regarding the factor valence, our analysis shows that IBI 0, IBI
1, IBI 2 were significantly longer in the punishment compared
to the reward condition, but only in women (F(1, 44) = 6.157, p
= 0.017; F(1, 44) = 8.931, p = 0.005; F(1, 44) = 4.253, p = 0.045,
respectively, Figure 5 red lines), not inmen (all p> 0.66, Figure 5
green lines). The difference between reward and punishment
in women was driven by higher anticipatory deceleration from
IBI −1 to IBI 0 in punishment compared to reward trials [t(23)
= 2.28, p = 0.033], and a prolonged deceleration from IBI 2
to IBI 3 in the reward compared to the punishment condition
[t(23) = 4.97, p < 0.0001]. Thus, while these findings support
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our hypothesis 3 of a significant HR deceleration in response to
negative feedback, the expected differential effect of positive and
negative feedback was gender specific. Importantly, the effects of
feedback valence on IBI were significant only in the first, but not
in the second experimental half, which again points at a shift in
HR responsiveness over time.

To directly address the hypothesized shift in HR

responsiveness from feedback to stimulus presentation during
learning, we analyzed for each subject the mean area under
the curve (AUC) of changes in IBI length following stimulus
and feedback presentation. Most importantly, we observed an
event type (stimulus/feedback presentation) × experimental half
interaction [F(1, 44) = 12.97, p = 0.001] which was driven by
significantly higher responses to stimulus presentation compared
to feedback presentation in the second half of the experiment
[F(1, 44) = 8.70, p= 0.005]. This strongly supports our hypothesis
4 as it represents the expected shift from relying on external
feedback to update choice behavior to an internal monitoring
system evaluating acquired knowledge in the course of learning.

Addressing our final hypothesis, we assessed the relationship
between IBI length and strength of PE signal after the
presentation of positive or negative feedback. This relationship
was modeled by a GLM with subsequent statistical analysis
of the GLM coefficients. Across subjects, all GLM coefficients
corresponding to IBI 0, IBI 1, and IBI 2 after feedback
presentation significantly differed from zero [all t(47) > 5.89, all
p < 0.001, CF 6]. Thus, across subjects the three IBIs following
positive or negative feedback were systematically correlated with
the strength of the PE signal.

Comparing standardized coefficients across IBIs and
conditions revealed a main effect of valence [F(1, 47) = 6.21,
p = 0.016] with higher mean coefficients in the punishment
(0.516 ± 0.055) compared to the reward condition (0.386 ±

0.036), and a main effect of IBI [F(2, 94) = 8.28, p < 0.001]
with a significantly higher coefficient for IBI 1 (0.552 ± 0.060)
compared to IBI 0 (0.369 ± 0.0034) and compared to IBI 2
(0.432 ± 0.042, p = 0.0003 and p = 0.008, respectively, CF 3). In
line with our hypothesis, these results show that phasic changes
in IBI following feedback processing, in particular changes in
IBI 1, directly reflect the strength of PE signals, i.e., the degree
of discrepancy between expected and actual outcome of an
action. This relationship is particularly pronounced for negative
feedback.

The Effects of Weight Status and Gender
Weight status and gender influenced some but not all
investigated aspects of reinforcement learning and feedback
processing both on the behavioral and the physiological level.
For the sake of succinctness, we summarize below all significant
effects of these two factors in the different analyses including
corresponding p-values. Detailed statistical analyses of these
effects can be found in the Supplementary Material.

On the behavioral level, we observed a significant condition-
specific impact of weight status on learning speed. In the
punishment condition, participants with obesity reached the
learning criterion significantly later than lean participants (p =

0.036).With respect to the factor gender, we observed a difference

in task performance with higher overall scores for men than
in women (at a trend level p = 0.094) and more advantageous
choices for men than women in the reward condition (p= 0.036,
Figure 2C). This was accompanied by a significantly higher
number of switches in women than men in both reward (p
= 0.023) and punishment trials (p = 0.045, Figure 2D). Most
importantly, in the reward condition women more often than
men continued to switch between choices after reaching the
learning criterion (p = 0.007), leading to reduced performance
in learning from reward in women. In contrast, learning rates
derived from the computational model did not differ between
genders (p = 0.80). Thus, the observed performance differences
between genders were not rooted in differential integration of
new experiences into existing knowledge, but rather in the
inconsistency of choice behavior as reflected in the increased
switching in women even after successful learning.

On the autonomic level, we observed a three-way interaction
of IBI with obesity and gender in the phasic cardiac responses
to stimulus presentation (p = 0.039). This interaction was
driven by an increased initial deceleration in response to
stimulus presentation in lean men. We further observed gender
differences in cardiac responses to positive and negative feedback
presentation during the first experimental half. In reward trials,
women showed slower HR recovery than men with smaller
HR deceleration from IBI 1 to IBI 2 and from IBI 2 to IBI
3 (p = 0.015 and p = 0.024, respectively, Figure 5A). In the
punishment condition, women showed overall increased HR
responses compared to men, caused by a stronger anticipatory
deceleration from IBI−1 to IBI 0 (p= 0.006, Figure 5B).

Finally, a three-way interaction of experimental half,
gender, and obesity was observed in AUC-values (p = 0.024)
with significantly higher responses in lean men compared
to lean women during the first experimental half (p =

0.022). This speaks for a faster internalization of stimulus-
outcome associations in lean men during the initial phase of
learning.

DISCUSSION

Successful learning and behavioral adaptation hinges on the
sufficient detection and adequate evaluation of external feedback
and several studies have established a link between the processing
of external feedback and autonomic reactions (e.g., Somsen
et al., 2000; Crone et al., 2003, 2005; Groen et al., 2007).
Using a probabilistic learning task, we investigated the cardiac
concomitants of reinforcement-based learning and the impact
of weight status and gender on learning performance. Further,
we introduced a new method for simultaneously analyzing
behavioral and autonomic data that enabled us to link these
two modalities on a trial-by-trial basis. Our study makes several
important contributions to our understanding of reinforcement
learning and related autonomic reactions. We could show
that learning and feedback processing is closely mirrored by
phasic cardiac responses on several levels (1) On a trial-by-
trial basis phasic cardiac responses after feedback are correlated
with the strength of PE signals that encode the deviation
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between expected and actual outcome of a choice or action.
(2) Cardiac responses shifted from feedback presentation at the
beginning of learning to stimulus presentation at later stages.
(3) Feedback valence impacted on cardiac responses with faster
and prolonged HR deceleration in response to negative feedback.
Additionally, we observed differential impacts of weight-status
and gender on both learning performance and changes in HR
responses. In the following, we discuss these results in more
detail.

Several previous studies have shown that during
reinforcement-based learning, the processing of feedback is
reflected in HR slowing. However, investigations into the precise
meaning of the observed effects yielded heterogeneous results
so far. Van Der Veen et al. (2004) reported that cardiac slowing
was stronger and prolonged for negative compared to positive
feedback, but did not discriminate between informative and
non-informative feedback. They argued that HR deceleration
may thus be sensitive to the valence rather than relevance of
feedback. Others found that cardiac responses were stronger
toward unexpected feedback and suggested that this reflects the
monitoring of learning-relevant information (Somsen et al.,
2000; Crone et al., 2003, 2005). With our approach we were
able to directly address these different views, linking learning
performance and behavioral adaptation to estimates of internal
learning signals. If cardiac responses merely reflected feedback
valence, no direct link to PE signals would be expected. In
line with previous studies, our results show an overall stronger
and prolonged HR deceleration in response to punishment
compared to reward. However, we additionally found that the
strength of HR deceleration following feedback was indeed
predictive of the strength of the model-derived PEs that
indicate how much the provided feedback deviated from
the participants’ expectations. Interestingly, this relationship
was particularly pronounced for negative feedback, which
signals the need for behavioral adjustments, while positive
feedback reinsures the learner that the current choice behavior is
correct.

Supporting our hypotheses, we further observed that HR
responses toward feedback changed over the course of learning.
Specifically, each symbol pair in the current task was exclusively
associated with the prospect of a reward, threat of punishment,
or financially neutral feedback and these associations did not
change over time. Consequently, after an initial learning phase
the participants should have been able to anticipate the potential
trial outcome associated with a presented symbol pair. Indeed,
this was reflected in HR responses, showing a shift of cardiac
responses from the presentation of feedback during the first
half of the experiment to the presentation of the symbol pairs
in the second half. This corroborates findings by Groen et al.
(2007), who observed a general reduction in feedback-related HR
deceleration with learning, together with a shift of HR slowing
from the IBI following feedback presentation to the IBI preceding
feedback presentation in later stages of the experiment.

Taken together, these results provide strong new evidence
for the assumption that HR deceleration during learning is
sensitive to learning-relevant information and reflects an internal
monitoring system to detect the violation of expectations derived

from preceding experience, while over the course of learning
a shift from the dependency on external feedback signals at
initial stages to the use of internal error detection mechanisms
occurs.

Successful feedback-based learning requires the integration
of multiple processes. In each trial of a reinforcement learning
paradigm, the learner needs to monitor incoming feedback,
build and maintain value representations, construct a PE
signal, update value representations according to the PE
and, when necessary, adjust behavior for future actions and
decisions. Deficits in feedback-based learning can be caused by
impairments in any of these sub-processes or a combination
thereof. For example, phenomenologically similar deficits in
reinforcement learning can be observed in young children
and older adults, but these deficits are likely attributable to
impairments in different underlying mechanisms: a reduced
executive control capacity in children, and a decline in the ability
for differentiated value representation with age (Hämmerer and
Eppinger, 2012). However, based on behavioral observations
alone, the various aspects of the learning process cannot clearly
be disentangled.

Our behavioral data combined with computational
modeling allowed us to partly disentangle the sub-processes
of reinforcement learning in a within-subject fashion. In line
with our hypothesis, learning was evident on the behavioral
level from increasing overall task scores, increasing numbers
of optimal choices, and decreasing reaction times over time
across participants. In addition, participants changed their
valence and arousal ratings for the symbols according to their
probabilities of predicting reward or punishment. Together,
these results signify behavioral adaptations that were generally
appropriate for the task at hand. Further, higher model-derived
learning rates in the reward and punishment compared to
the neutral condition point at appropriate updating of value
representations in both conditions. However, we also observed
systematic differences between the processing of positive and
negative feedback with more advantageous choices and shorter
reaction times for reward than for punishment. Computational
modeling revealed a small difference in learning rate between
the reward and punishment condition. This was corroborated
by the fact that participants on average needed longer to
reach the learning criterion in the punishment than in the
reward condition. Both results indicate a slower updating of
value representations after negative feedback. In addition,
reduced performance in the punishment condition could
be linked to switching behavior with more switching after
negative than after positive feedback. While this speaks for an
appropriate behavioral adaptation after punishment, increased
switching was also observable after the learning criterion was
reached, i.e., after participants should have learned that it is
advantageous to stick to a certain symbol, even if it is occasionally
punished.

In sum, behavioral analysis and computational modeling
suggest that the observed differences in task performance when
learning from reward and learning from punishment were not
caused by insufficient sensitivity to or internal representation
of negative feedback. Rather they are attributable to (1) a
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difference in value updating or, in other words, different speed
of learning between these conditions and (2) differences in
behavioral adaptation in the exploration and exploitation phase
of learning with continued increased switching after successful
learning in the punishment condition. While our analyses cannot
provide a full explanation of differences in positive and negative
feedback, they would predict similar value representations and
PE signals on the neural level, while the utilization of these signals
for learning might differ. This hypothesis will be subject of our
future investigations.

In addition to general psychophysiological correlates of
reinforcement-based learning, we hypothesized that weight
status and gender might impact on performance and HR
responses for rewards and punishments. Supporting our
hypotheses, we found that individuals with obesity showed
a slower learning of advantageous choice behavior in the
punishment learning condition. Specifically, they needed more
time to learn to stably choose the advantageous choice option.
This is in line with previous reports of a compromised learning
performance in individuals with obesity (Coppin et al., 2014).
Interestingly, in the current study, weight status was not related
to other performance measures that captured behavior across the
whole experiment (e.g., learning rate, number of advantageous
choices). This suggests that differences were restricted to the
initial learning phase, while individuals with obesity were able
to compensate and reach a comparable performance across
the whole experiment. Indeed, using the same paradigm in a
functional magnetic resonance study, we found obesity-related
impairments particularly during the first half of the experiment
(Kube et al., submitted). In the same vein, Zhang et al. (2014)
reported differences in learning performance between lean and
obese women within as few as ∼20 trials, supporting the idea
of an early acquisition deficit in obesity. Various mechanisms
for impaired reinforcement-based learning have been identified
in other populations, showing alterations in PE encoding in
aging (Eppinger et al., 2013), PE utilization in addiction (Park
et al., 2010), and working memory capacity in healthy individuals
(Collins and Frank, 2012) to be related to a poorer performance.
Indeed, in a recent paper, Collins et al. (2017) argue that learning
in simple reinforcement-based tasks is best explained by a
mixture of working memory and PE processes. Though we have
not found group differences in visual working memory in the
current study, obesity-related impairments in other measures of
working memory capacity have been shown to affect preference
learning (Coppin et al., 2014). Additionally, we have previously
linked reinforcement learning deficits in obesity to a less efficient
utilization of negative PEs in the striatum (Mathar et al.,
2017a), thus adding another potential mechanism to explain
obesity-related effects in the current study. In sum, these results
suggest that individuals with obesity exhibit a slower learning
performance. However, so far, the underlying mechanisms have
not been fully discovered, with potentially different mechanisms
interacting to explain learning alterations in individuals with
obesity.

Complementary to the effect of weight-status, we found
a modulation of learning performance and HR responses by
gender. In line with numerous previous studies (e.g., Crone

et al., 2003; Groen et al., 2007), cardiac responses to external
stimuli were characterized by an initial HR deceleration, followed
by an acceleratory recovery response. However, in our study,
women compared to men exhibited a prolonged HR deceleration
after rewards and a stronger initial deceleration to punishment
particularly during the first half of the experiment. As detailed
above, previous studies have mostly reported a stronger and
prolonged deceleration to the presentation of negative stimuli
(Crone et al., 2004a; Van Der Veen et al., 2004), but in the
context of learning stronger HR responses may likewise be
associated to the processing of learning-relevant information in
general (Somsen et al., 2000; Crone et al., 2003, 2005). Further,
responses may also depend on the motivational significance of
the stimulus material. For instance, a stronger deceleration seems
to occur for large compared to small monetary losses (Crone
et al., 2004b), while highly arousing positive and negative pictures
have been found to elicit stronger cardiac deceleration than low
arousing emotional stimuli (Balconi et al., 2009). Consequently,
stronger HR responses to both reward and punishment in
women compared to men could speak for a stronger utilization
of learning-relevant information or a generally heightened
sensitivity to feedback stimuli in women.

Surprisingly, this was not directly mirrored in the learning
indices, as women exhibited a poorer performance than men,
particularly when learning from reward feedback. Gender-related
influences on performance in reward-based choice tasks have
been frequently reported in other studies. For instance, men have
been shown to exhibit a higher performance in reversal learning
tasks than women (Evans and Hampson, 2015) and likewise
outperform women in the Iowa Gambling task (Weller et al.,
2009; Evans and Hampson, 2015). Interestingly, this seems to
be driven by the fact that men quickly learn to choose cards
from decks associated with smaller immediate rewards, but a
larger net payoff across trials, while women keep choosing from
a deck with frequent high immediate rewards and even higher,
but infrequent losses (Overman, 2004). Males thus appear to
be more sensitive to the long-term monetary outcomes of the
task, and females are more sensitive to immediate rewards.
Indeed, in our study, women were characterized by higher trait
reward sensitivity than men. Likewise, stronger HR responses to
feedback may be an indicator of heightened feedback sensitivity
in women. Interestingly, an allegedly lower learning performance
in women than men was accompanied by comparable learning
rates, speaking for similar value updating processes in both
genders and against insufficient feedback monitoring in women,
respectively. Instead, women showed more inconsistent choice
behavior, i.e., even after they had stably learned to choose the
more advantageous symbol in reward trials, they more often
switched to the other (disadvantageous) symbol than men. In
the light of previous studies, this could indicate that despite
their knowledge of the advantageous choice options, womenwere
more susceptible to the presentation of probabilistic (misleading)
feedback, i.e., the infrequent omission of an expected reward
after an advantageous choice and the infrequent receipt of
a reward after a disadvantageous choice may have fostered
switching behavior more strongly in women than men. In sum,
our results suggest that the observed performance deficits in
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learning from reward in women were not caused by deficits
in feedback monitoring or the representation and updating of
stimulus values, but by a higher responsiveness to reinforcement
that was accompanied by more pronounced HR responses and
interfered with the beneficial behavior in the current study.

Lastly, we found evidence for a combined influence of obesity
and gender on HR responses. Specifically, lean men exhibited
a stronger initial deceleration during stimulus presentation
than lean women, suggesting a stronger anticipatory response
to the prospect of reinforcement. However, HR changes did
not translate to alterations in behavioral performance and no
differences were found between men and women with obesity.
This is a clearly surprising finding, especially, since previous
studies have highlighted that alterations in executive functioning
and behavioral adaptation may be particularly pronounced in
women with obesity, while performance of men with obesity
remains relatively intact (Weller et al., 2008; Horstmann et al.,
2011; Zhang et al., 2014). Consequently, the influence of gender
on obesity-effects seems specific for certain types of stimuli and
tasks and requires further consolidation.

Finally, some limitations of the current study design must be
acknowledged: First, it has been shown that cardiac markers are
significantly influenced by stimulus timing during cognitive and
emotional processing. For instance, negative emotional stimuli
presented at systole are detected more easily (Garfinkel et al.,
2014) and perceived as more intense than stimuli presented
at diastole (Gray et al., 2012; Garfinkel et al., 2014), while
words encoded at systole are less well remembered than words
encoded at diastole (Garfinkel et al., 2013). In the current study,
stimulus and feedback presentation were not time-locked to
the onset of systole or diastole. Instead they were presented
at variable points within the cardiac cycle. This leaves the
possibility that differences in cardiac responses may have been
affected by incidental differences in stimulus timing within the
cardiac cycle. However, trial order was pseudo-randomized and
trials were separated by varying ITI lengths and delay periods,
thus rendering an influence of stimulus onset unlikely. Second,
the interval between stimulus and feedback presentation was
relatively small with a maximum of 3,500ms. While this is
sufficient to minimize the impact of the strongest autonomic
reactions to the stimulus (IBI 0 and IBI 1) on the following
feedback presentation, a full recovery of cardiac responses before
feedback presentation is unlikely. It would clearly be ideal to
separate both phases by longer delay periods to await a recovery
to baseline before feedback presentation. However, this would
in turn result in significantly longer trials and a significantly
increased duration of the experiment, which can potentially
facilitate fatigue and decreases attention toward the task. Instead,
we used an IBI after stimulus presentation as reference for the
feedback-related IBIs, thus technically excluding any stimulus-
related carryover effects from stimulus to feedback presentation.
Similarly, feedback was followed by the next trial’s stimulus
presentation after 3,600 to 4,200ms which again might not
have been entirely sufficient for full recovery. To alleviate this
problem, we used jittered ITIs and a pseudo-randomized trial
order, and statistically ensured that the reference IBIs for the
stimulus analyses were independent of all factors that could

impact on the subsequent IBIs. Third, we did not measure
respiration in the current study, though it has been shown that
HR fluctuates depending on respiration. Heart periods become
shorter or longer in phase relationship with inspiration and
expiration (Berntson et al., 1993). While some highlight the need
to remove respiratory influences from the ECG signal (Quintana
andHeathers, 2014), others argue that resting HR and respiration
share a common basis (Thayer et al., 2011). Thus, under
spontaneous breathing conditions, controlling for respiration
may remove variance in the ECG signal that the researcher
is actually interested in (Laborde et al., 2017). Nevertheless,
measuring respiration simultaneously to ECG could have helped
to detect non-cyclical breathing patterns (e.g. sighs) that could
bias HR results (Vaschillo et al., 2015). Lastly, it would have been
interesting to investigate in more detail a potential link between
the stimulus—and feedback-related cardiac responses during
learning with the observed differences in switching behavior in
the reward and punishment condition and between genders, in
particular after reaching the learning criterion. Unfortunately,
our task design did not allow for such a detailed analysis as the
number of switch trials after successful learning were too small
for a statistically sound analysis. An experimental design that
provokes higher switching rates and includes conditions where
switching might also be an advantageous strategy together with
ECG measurements could be an interesting approach for future
work to answer this question.

CONCLUSION

In the present study, we investigated learning performance and
cardiac concomitants of reinforcement learning together with the
impact of feedback valence, gender, and weight status on learning
performance and autonomic responses. We could show that
the strength of cardiac responses to learning-related feedback
directly reflects the strength of PE signals that alert the learner to
the necessity for value updating and behavioral adaptation. Thus,
phasic changes in HR seem to express processes of an internal
feedback monitoring system that is sensitive to the violation
of performance-based expectations. Moreover, apparent gender-
related deficits in reinforcement learning were not caused
by deficiencies in knowledge acquisition, but by insufficient
adaptation in an environment that requires consistent choice
behavior. Finally, our study adds evidence to the notion that
individuals with obesity might be impaired in learning to avoid
negative outcomes.
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