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Bile acids are best known as detergents involved in the digestion of lipids. In addition, new

data in the last decade have shown that bile acids also function as gut hormones capable

of influencing metabolic processes via receptors such as FXR (farnesoid X receptor)

and TGR5 (Takeda G protein-coupled receptor 5). These effects of bile acids are not

restricted to the gastrointestinal tract, but can affect different tissues throughout the

organism. It is still unclear whether these effects also involve signaling of bile acids to

the central nervous system (CNS). Bile acid signaling to the CNS encompasses both

direct and indirect pathways. Bile acids can act directly in the brain via central FXR and

TGR5 signaling. In addition, there are two indirect pathways that involve intermediate

agents released upon interaction with bile acids receptors in the gut. Activation of

intestinal FXR and TGR5 receptors can result in the release of fibroblast growth factor 19

(FGF19) and glucagon-like peptide 1 (GLP-1), both capable of signaling to the CNS. We

conclude that when plasma bile acids levels are high all three pathways may contribute

in signal transmission to the CNS. However, under normal physiological circumstances,

the indirect pathway involving GLP-1 may evoke the most substantial effect in the brain.

Keywords: bile acids, CNS, brain, FXR, FGF19, TGR5, GLP-1

INTRODUCTION

Bile acids are synthesized in the liver from cholesterol and released in the intestinal lumen upon
food intake. They are predominantly known for their role as nutritional detergents that dissolve
lipids and lipid-soluble vitamins. However, a growing body of recent literature describes bile
acids as versatile signaling molecules (Houten et al., 2006; de Aguiar Vallim et al., 2013; Kuipers
et al., 2014), with a widespread distribution of bile acid receptors throughout the organism. Via
these receptors, bile acids are capable of modulating their own synthesis (Chiang, 2009; Lefebvre
et al., 2009), lipid, glucose and energy metabolism (Thomas et al., 2008a,b; Lefebvre et al., 2009;
Schonewille et al., 2016). In addition, bile acids can signal via intermediate signaling molecules that
are released upon activation of bile acid receptors in the intestine. The receptors receptive for these
intermediate molecules are also distributed ubiquitously throughout the body.
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Bile acids and their associated receptors have been detected in
the human and rodent brain (Mano et al., 2004a; Ferdinandusse
et al., 2009; Keitel et al., 2010; Huang et al., 2016; McMillin
et al., 2016; Zheng et al., 2016), however, it is still not clear
whether bile acids are capable of signaling to the central nervous
system (CNS) and what this signaling could imply. Two recent
reviews discussed the role of bile acids in neurological diseases
(Ackerman and Gerhard, 2016; McMillin and DeMorrow, 2016),
but did not elaborate on the possible physiological effects of
bile acid signaling. Therefore, in this review we discuss the
signaling pathways of bile acids implicated in the control of
energy metabolism under normal physiological circumstances,
involving both direct and indirect pathways to the CNS.

BILE ACID METABOLISM AND THE
ENTEROHEPATIC CIRCULATION

Bile acid synthesis and enterohepatic cycling have been
elaborately reviewed previously (Russell, 2003; Thomas et al.,
2008b). In short, bile acids have a cholesterol backbone. Bile
acid biosynthesis mainly occurs in hepatocytes (Figure 1), where
the classical pathway is initiated by cholesterol 7α-hydroxylase
(CYP7A1) which is regulated by the farnesoid X receptor (FXR).
The alternative pathway can be initiated by different enzymes
that are also expressed outside the liver. De novo synthesized bile
acids are called primary bile acids. In humans the primary bile
acids are cholic acid (CA) and chenodeoxycholic acid (CDCA);
in mice the dominant bile acids are CA and muricholic acid
(MCA). Subsequently, these bile acids are conjugated with the
amino acids glycine (mainly in humans) or taurine (mainly in
mice). Bile acids are transported from the hepatocytes through
the bile canaliculi and stored, together with cholesterol and
phospholipids, in the gallbladder. Following food intake, the
presence of nutrients (especially fats and proteins) in the stomach
triggers gallbladder emptying which results in the release of bile
acids into the duodenum. When bile acids pass through the
intestinal tract, they contribute to the absorption of lipids and
fat-soluble vitamins. In the intestine, gut microbiota deconjugate
and dehydroxylate the primary bile acids, converting them into
secondary bile acids and enhancing the diversity of the bile
acid pool (Figure 1). In the jejunum and colon, unconjugated,
and uncharged bile acids enter the enterocytes through passive
diffusion (Figure 2). In the ileum, active uptake of conjugated
bile acids takes place by the apical sodium-dependent bile acid
transporter (ASBT). In total about 95% of the bile acids are
reabsorbed into intestinal enterocytes. The remaining 5% is
excreted via feces, a loss which is compensated for by de novo
bile acid synthesis in the liver. Specific transporters in enterocytes
make sure that bile acids are redirected to the liver via the portal
vein. In the liver, about ∼90% of the bile acids are cleared from
the hepatic circulation for reuse. Bile acids can be recycled 4–12
times per day between hepatocytes in the liver and enterocytes in
the intestine—which is called the enterohepatic circulation (Mok
et al., 1977; Figure 2). Only a small portion (<10%) of the total
bile acid pool reaches the systemic circulation. Systemic plasma
bile acid concentrations show a postprandial increase, resulting

in a daily rhythm associated with food intake that fluctuates
between 5 and 15µM in humans (Angelin and Bjorkhem, 1977;
LaRusso et al., 1978; Schalm et al., 1978; Glicksman et al.,
2010; Steiner et al., 2011; Sonne et al., 2016). Also in rodents
a daily rhythm of plasma bile acid levels has been reported
(Ho, 1976a,b; Zhang et al., 2011; Eggink et al., 2017). These
feeding-induced changes indicate that circulating bile acids could
provide a postprandial signal, transmitting information about
the arrival of nutrients and the subsequent availability of energy
(Thomas et al., 2008a). In addition, hepatocytes are equipped
with a machinery that can actively promote bile acid excretion
when hepatic bile acid concentration increase extensively, as
accumulating bile acids can be toxic due to their detergent-like
function (Zollner et al., 2006). Consequently, many cases of liver
failure or liver damage result in an increased efflux of bile acids
into the systemic circulation, leading to high levels of plasma bile
acids (Neale et al., 1971; Engelking et al., 1980; Benyoub et al.,
2011; Tanaka et al., 2012; Quinn et al., 2014; McMillin et al.,
2016).

BILE ACIDS AND THE BLOOD-BRAIN
BARRIER

Once in the systemic circulation, bile acids reach the brain via the
internal carotid and vertebral arteries that join in an artery ring at
the base of the brain—the circle of Willis. From here the arteries
arise that ensure blood supply to the brain. In contrast with other
capillaries throughout the body, brain capillary endothelial cells
are interconnected by tight junctions so substances in the blood
need to cross the endothelial cell membranes in order to enter
the brain. This blood-brain barrier (BBB) protects the brain from
potentially harmful circulating molecules (Bernacki et al., 2008;
Abbott et al., 2010).

There are reports that both unconjugated and conjugated
bile acids can cross the BBB (Keene et al., 2001; Palmela et al.,
2015; McMillin et al., 2016; Figure 3A), however, the involved
mechanisms are still uncertain. Unconjugated bile acids might
diffuse across the BBB, because CA, CDCA, and deoxycholic
acid (DCA) are capable of diffusing across phospholipid bilayers
(Kamp and Hamilton, 1993) and their brain levels correlate with
their serum levels (Higashi et al., 2017). Indeed, unconjugated
ursodeoxycholic acid (UDCA) crossed the BBB in a dose depend
manner in orally treated amyotrophic lateral sclerosis patients
(Parry et al., 2010). Conjugated bile acids need active transport
to cross the BBB due to their larger structure and amphipathic
nature (St-Pierre et al., 2001). Indeed, several xenobiotic and
bile acid transporters found in the liver, intestine, and kidney
are also present at the BBB and choroid plexus providing
the machinery for bile acid transport over the BBB. These
include members of the solute carrier (SLC) family such as
the organic anion transporting polypeptides (OATP) and ASBT,
and members of the ATP-binding cassette transporters (ABC)
family such as the multidrug resistance protein (MRD) 2 and
4 (Choudhuri et al., 2003; Bernacki et al., 2008; Abbott et al.,
2010; Klaassen and Aleksunes, 2010; Ballatori, 2011; Table 1).
The main function of these transporters is to protect the brain
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FIGURE 1 | Schematic representation of bile acid synthesis pathways in humans. Bile acid synthesis from cholesterol occurs via different pathways. The classic

pathway occurs in the liver and is responsible for the majority of bile acid synthesis. This pathway is initiated by the enzyme cholesterol 7α-hydroxylase (encoded by

CYP7A1) and results in the formation of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA). Key enzymes for the formation of CA or CDCA are

sterol 12α-hydroxylase (CYP8B1) and sterol-27 hydroxylase (CYP27A1), respectively. In rodents, the primary bile acids formed are CA and muricholic acid (MCA). The

primary bile acids are conjugated to the amino acids glycine (G, mainly in humans) or taurine (T, mainly in rodents) forming conjugated bile acids and bile salts. The

formation of secondary bile acids occurs in the intestine under the control of gut flora and when returned to the liver these secondary bile acids can also be

conjugated to glycine and taurine. The alternative pathway of bile acid synthesis also occurs in other tissues besides the liver. This pathway is initiated by CYP27A1

and also involves CYP7B1. After several metabolic steps CDCA is formed. The last pathway occurs in the brain and is believed to be important for neuronal

cholesterol clearance. Cholesterol is converted to 24(S)-hydroxycholesterol by CYP46A1 and subsequently exits the brain and enters the bloodstream (dotted line). In

the liver, bile acid synthesis continues involving CYP39A1 resulting in CDCA after several steps.

from potentially toxic molecules by transporting them out of
the brain into the bloodstream (Abbott et al., 2010). However,
the presence of these transporters on both the basolateral
(blood-facing) and apical (brain-facing) side, also facilitates the
transport ofmolecules from the systemic circulation into the CNS
(Abe et al., 1998; Klaassen and Aleksunes, 2010). Of interest,
an in situ rat brain perfusion with [3H]TCA resulted in no
significant uptake of the bile acid in the ipsilateral hemisphere
within 2min, suggesting that the labeled TCA did not cross
the BBB (Kitazawa et al., 1998). Direct evidence of in vivo
transport of bile acids over the BBB via their transporters is still
lacking.

Plasma Bile Acid Levels and the Integrity of
the Blood-Brain Barrier
During liver failure, plasma bile acid levels can increase
dramatically (Benyoub et al., 2011; Tanaka et al., 2012; Quinn
et al., 2014; McMillin et al., 2016), sometimes even up to 20-fold
in rats (Quinn et al., 2014) and 100-fold in humans (Neale et al.,
1971; Engelking et al., 1980). At high concentrations (≥1.5mM)
bile acids are capable of damaging the lipid layers of the BBB
(Greenwood et al., 1991), due to their detergent and lytic action
on cell membranes (Naqvi et al., 1970; Greenwood et al., 1991).
At lower concentrations (0.2–1.5mM), bile acids may modify the
BBB in a more subtle way (Greenwood et al., 1991). The bile acids

CDCA and DCA increase phosphorylation of the tight junction
protein occludin in a Rac1-dependent mechanism, resulting in
the disruption of tight junctions (Quinn et al., 2014) and leading
to increased permeability of the BBB (Greenwood et al., 1991;
Quinn et al., 2014). Consequently, allowing bile acids and other
molecules to diffuse into the brain. UDCA and its glycine-
conjugated form glyco-ursodeoxycholic acid (GUDCA) exert a
protective effect on brain endothelial cells by reducing apoptosis
(Palmela et al., 2015). In addition, a recent study showed that
microglial cells express TGR5 and that binding of taurine-
conjugated UDCA (TUDCA) to TGR5 has anti-inflammatory
effects in a mouse model of acute brain inflammation (Yanguas-
Casás et al., 2017). This could explain the neuroprotective
effects of TUDCA observed as reduced neuronal apoptosis in
several animal models for neurodegenerative diseases, such as
Huntington’s disease (Keene et al., 2001, 2002), Alzheimer’s
disease (Sola et al., 2006; Viana et al., 2009), Parkinson’s disease
(Duan et al., 2002), acute ischemia (Rodrigues et al., 2002),
and hemorrhagic stroke (Rodrigues et al., 2003). These findings
highlight the physiological differences of bile acid species, where
DCA and CDCA interfere and disturb gap junction function in
the BBB, but UDCA and its conjugated forms exert a protective
effect on brain endothelial cells and neurons. It is still unknown
whether these different effects are due to the different affinities of
these bile acids for FXR.
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FIGURE 2 | Schematic representation of the enterohepatic circulation of bile

acids. Bile acids are synthesized in the liver and stored in the gallbladder.

Following food intake, bile acids are released into the duodenum. Traveling

down the intestine, the majority of bile acids are taken up by enterocytes. In

the jejunum and colon passive diffusion of unconjugated and uncharged bile

acids takes place and the ileum is the main site for active uptake of conjugated

bile acids by bile salt transporters. About 95% of the bile acids are reabsorbed

in the ileum and consequently only a small portion (∼5%) of the bile acids is

lost through fecal output. The bile acids that are absorbed by the enterocytes

are released into the portal vein and redirected to the liver for recycling. Only a

small portion escapes the enterohepatic circulation and reaches the systemic

circulation. The liver extracts 80–90% of the portal total bile acids.

BILE ACIDS IN THE CENTRAL NERVOUS
SYSTEM

When plasma bile acid concentrations increase during hepatic
failure, cerebral bile acid levels also rise excessively in humans
and rodents (Bron et al., 1977; Ceryak et al., 1998; Tripodi et al.,
2012). Additional reports suggest that these elevated levels of bile
acids are derived from the systemic circulation (DeMorrow et al.,
2012; Quinn et al., 2014; McMillin et al., 2015, 2016; Palmela
et al., 2015). Also in healthy conditions detectable levels of both
conjugated and unconjugated bile acids have been reported in the
brain, both in rodents and humans (Mano et al., 2004a; Zheng
et al., 2016; Higashi et al., 2017; Pan et al., 2017; Table 2). In rats
no glycine-conjugated bile acids were detected in the rat brain
(Mano et al., 2004a; Higashi et al., 2017). In one study CDCA is
the most abundantly present bile acid in the rat brain, making up
92.1% of the total amount of cerebral bile acids and mainly being
found in protein-bound form conceivably preventing it from
exiting the brain (Mano et al., 2004a). However, a different study
found that CA was most abundantly present in the rat brain and

did not find the high amounts of protein-bound CDCA (Higashi
et al., 2017). The discrepancy in CDCA levels between these
studies could not be sufficiently explained. In addition, various
bile acid transporters are expressed in the CNS such as ASBT
in the hypothalamus and frontal cortex (McMillin et al., 2015;
Nizamutdinov et al., 2017; Table 1), providing a mechanism for
the neuronal uptake of bile acids.

The unconjugated bile acids (CA, CDCA, and DCA) seem to
bemostly derived from the periphery by passive diffusion as brain
levels correlate with serum levels and intraperitoneally injected
D4-CA and D4-CDCA are well-detected in the brain (Higashi
et al., 2017). There are also indications that at least parts of the
biosynthesis pathway for bile acids is present in the brain, because
involved enzymes and intermediates have been detected locally
(Cali et al., 1991; Björkhem et al., 1998; Lund et al., 1999; Li-
Hawkins et al., 2000; Mano et al., 2004a,b; Ogundare et al., 2010).
Since only a part of the biosynthesis pathway of bile acids is
present in the brain, its main function has been proposed to be
cholesterol clearance (McMillin and DeMorrow, 2016).

BILE ACID RECEPTORS IN THE CENTRAL
NERVOUS SYSTEM

The most studied bile acid receptors are FXR (Makishima et al.,
1999; Parks et al., 1999; Wang et al., 1999) and the Takeda
G protein-coupled receptor 5 (TGR5) (Maruyama et al., 2002;
Kawamata et al., 2003). Both receptors are abundantly expressed
in the enterohepatic circulation, but also in the brain [FXR:
(Huang et al., 2016; McMillin et al., 2016); TGR5: (Maruyama
et al., 2002, 2006; Keitel et al., 2010; Yanguas-Casás et al., 2017)].
Other receptors that might bind bile acids and can be found
in the CNS are summed in Table 3, their possible functions are
reviewed elsewhere (McMillin and DeMorrow, 2016).

EFFECTS OF ELEVATED PLASMA BILE
ACID LEVELS ON THE CENTRAL
NERVOUS SYSTEM

As mentioned above, receptors able to bind bile acids are also
expressed in the CNS and thus are capable of mediating the
actions of bile acid signaling. Most studies investigated the
effects of central bile acid signaling in the pathological state
or pharmacologically administered bile acids directly into the
brain (reviewed in Ackerman and Gerhard, 2016; McMillin and
DeMorrow, 2016). For example a study investigating hepatic
encephalopathy induced by acute liver failure in mice found
doubled amounts of bile acids in the brain compared to the
control situation (McMillin et al., 2016). The elevated plasma and
cerebral bile acid levels consequently generate an amplified effect
and show what the possible consequences are of pathologic bile
acid signaling in the brain. The variety of effects of bile acids in
the diseased brain (McMillin and DeMorrow, 2016) illustrates
that bile acids cannot be seen as one signal, but different forms
have different effects, including their difference in affinity for the
receptors. Moreover, they do not reflect on the effects of bile acid
signaling to the CNS under normal physiological circumstances
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FIGURE 3 | Schematic overview of the bile acid signaling pathways to the central nervous system. Bile acids in the intestinal lumen can signal to the central nervous

system (CNS) via different pathways, in this review we focused on the direct pathway (A), the indirect pathway via farnesoid X receptor-fibroblast growth factor 19

(FXR-FGF19) signaling (B), and the indirect pathway via Takeda G protein-coupled receptor-glucagon-like peptide-1 (TGR5-GLP-1) signaling (C). (A) Bile acids in the

intestine escape the enterohepatic circulation and reach the systemic circulation. Bile acids need to pass the blood-brain barrier (BBB) in order to interact with

receptors in the brain, e.g., FXR and TGR5. Deoxycholic acid (DCA) and chenodeoxy cholic acid (CDCA) have been found to interact with gap junction proteins,

resulting in a leaky BBB. (B) Bile acids taken up by enterocytes can activate the nuclear receptor FXR, which results in the release of FGF19. FGF19 is released by the

enterocyte and reaches the portal vein, a small portion of FGF19 will not be taken up by the liver and enters the systemic circulation. FGF19 needs to cross the BBB

to interact with FGF receptors (1–4) in the brain. The protein β-klotho is necessary for the formation of a stable receptor-complex. (C) in the intestine, a specific group

of enteroendocrine cells, L-cells, produces GLP-1 upon the activation of TGR5 which can be triggered by bile acids. GLP-1 is quickly degraded by the enzyme

dipeptidyl peptidase-4 (DPP-4, not shown), consequently high concentrations of GLP-1 are only found in the lamina propria of the intestine. A small portion of intact

GLP-1 reaches the portal vein and even a smaller portion reaches the systemic circulation. It is questionable whether sufficient intact GLP-1 reaches the brain to

interact with GLP-1 receptors, hence the dashed line. GLP-1 receptors are also expressed on afferent terminals of the vagal nerve present in the lamina propria and

portal vein. The vagal nerve projects to the nucleus of the solitary tract (NTS) in the brainstem, from where projections are directed toward other brain regions, e.g. the

hypothalamus (the vagal-brainstem-hypothalamic pathway).

caused by the postprandial elevated plasma bile acid levels, of
which little is known.

INDIRECT BILE ACID SIGNALING TO THE
CENTRAL NERVOUS SYSTEM VIA
FXR-FGF15/19 PATHWAY

In addition to the direct signaling pathway described in the
previous section, bile acids can also provide a signal to the CNS
via the gut-brain axis. After their release into the intestine, bile
acids can interact with receptors in the gastrointestinal system
and thereby initiate a signal cascade that reaches the CNS. In
this section we will discuss the indirect pathway initiated by FXR
activation and the release of fibroblast growth factor (FGF) 15/19
(Figure 3B). FXR is primarily activated by CDCA and CA and
to a lesser extent by DCA and LCA (Makishima et al., 1999;

Parks et al., 1999; Wang et al., 1999). In contrast, UDCA and
muricholic acid (MCA) do not seem to activate FXR (Makishima
et al., 1999; Parks et al., 1999; Wang et al., 1999) and even seem
to antagonize FXR in mice (Sayin et al., 2013; Hu et al., 2014),
highlighting an important difference between humans and mice,
because MCA is the major bile acid in mice and does not occur
in humans (Takahashi et al., 2016). FXR is extensively expressed
in hepatocytes and enterocytes. In the enterohepatic circulation
FXR functions as a bile acid sensor, providing negative feedback
to the bile acid synthesis and transport machinery when bile acid
levels rise. For an extensive overview of FXR function in the
enterohepatic circulation we recommend (Lefebvre et al., 2009;
De Magalhaes Filho et al., 2017).

Intestinal FXR and FGF15/19
In the intestine, activation of FXR can trigger the production
of FGF19, a FGF with hormonal characteristics (Holt et al.,
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TABLE 1 | Bile acid transporters found in the brain.

Bile acid

transporter

Localization References Function and substrate forms

MRP2 Apical/Basolateral Brain endothelial

cells in mouse and rat

Miller et al., 2000; Soontornmalai

et al., 20061
The ABC family are active efflux pumps that transport chemicals

through a membrane. Substrates include: TCA and its sulfated

forms.

MRP3 Tight junction of Choroid Plexus in

mouse

Soontornmalai et al., 20061 Substrates include: preferably conjugated bile acids.

MRP4 Apical Brain Capillary endothelial cells

in rat and human

Nies et al., 2004; Roberts et al.,

20081
Substrates include: CA and conjugated bile acids.

OSTα/OSTβ No reports on mRNA or protein in

brain, minimal mRNA found in mice

Klaassen and Aleksunes, 2010;

Ballatori, 2011

In the intestine, OSTα/β transports bile acids across the basolateral

membrane of the enterocyte: releasing them to the portal vein.

BSEP mRNA expression in rat choroid

plexus is ∼2.75% of hepatic Bsep

expression

Choudhuri et al., 2003 In the liver, BSEP is an active transport mechanism across the

canalicular membrane of the hepatocyte: secreting conjugated bile

acids into the bile ducts.

OATP1A1 Apical Choroid plexus epithelial cells

in rat

Angeletti et al., 19971 The SLC family are typical uptake transporters even though some

can function bidirectional. Substrates include: unconjugated and

conjugated bile acids.

OATP1A4 Basolateral Choroid plexus epithelial

cells in rat; mRNA in brains of male

and female C57BL/6 mice

Gao et al., 1999; Cheng et al., 20051 Substrates include: unconjugated and conjugated bile acids.

OATP1A2 In brain capillary endothelial cells in

human, but not determined what side

Lee et al., 20051 Substrates include: unconjugated and conjugated bile acids

OAT3 Basolateral Brain Capillary endothelial

cells in rat

Kikuchi et al., 2003; Roberts et al.,

20081
Substrates include: unconjugated and conjugated CA.

NTCP mRNA expression in rat choroid

plexus is ∼1.8% of hepatic Ntcp

expression

Choudhuri et al., 2003 In the liver, NTCP transports bile acids across the basolateral

membrane of the hepatocyte in a sodium-dependent manner:

facilitating uptake of unconjugated and conjugated bile acids from

the portal blood.

ASBT Rat and mouse hypothalamus and

frontal cortex, low mRNA expression

in human brain and rat choroid plexus

Choudhuri et al., 2003; Klaassen and

Aleksunes, 2010; McMillin et al.,

2015; Nizamutdinov et al., 2017

In the intestine, ASBT transports bile acids across the apical

membrane of ileal enterocytes in a sodium-dependent manner:

absorption of unconjugated and conjugated bile acids from the

intestine. ASBT on the apical surface of cholangiocytes participate

in the cholehepatic recirculation. ASBT in the brain could facilitate

uptake of bile acids into neurons and other brain cells.

Subsequently, intracellular bile acids could activate nuclear

receptor.

1References are according to Klaassen and Aleksunes (2010). ABC, ATP-binding cassette transporters; MRP, multidrug resistant protein; OST, organic solute transporter; BSEP, bile

salt export pump; SLC, solute carriers; OATP, organic anion transporting polypeptide; OAT, organic anion transporter; NTCP, Na+ taurocholate cotransporting polypeptide; ASBT, apical

sodium-dependent bile acid.

2003; Potthoff et al., 2012). The rodent orthologue for human
FGF19 is FGF15, which has comparable, but not necessarily
identical functions (Inagaki et al., 2005; Jones, 2008). The most
abundant expression of FGF15/19 is found in the terminal ileum
of the intestine (Holt et al., 2003; Inagaki et al., 2005; Fon Tacer
et al., 2010). Bile acids absorbed by enterocytes can activate
the nuclear receptor FXR, which leads to the production of
FGF15/19 (Kliewer and Mangelsdorf, 2015). The enterocytes
release FGF15/19 from their basolateral membrane into the
portal vein. Subsequently, FGF15/19 activates the fibroblast

growth factor receptor (FGFR) 4 in the liver and this leads to
the inhibition of de novo bile acid synthesis by inhibition of
Cyp7a1. Liver and intestinal FXR KO models have shown that
Cyp7a1 inhibition depends mostly on intestinal FXR activation
via FGF15 (Kim et al., 2007). FGF19 mRNA is expressed in the
intestine and in hepatocytes in the liver, while in mice FGF15
mRNA is only expressed in the intestine (Song et al., 2009; Fon
Tacer et al., 2010). Outside the enterohepatic cycle FGF15/19
can signal in an endocrine manner and is involved in lipid and
glucose metabolism (Owen et al., 2015). In both human and
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TABLE 2 | Bile acids found in the brain.

Bile acids Localization References Function and diseased state

Unconjugated CDCA, DCA, and CA Adult male and female

Wistar rats

Mano et al., 2004a No clear function. Bile acids were mainly found in protein-bound form.

Unconjugated CDCA, DCA, and CA Adult male Wistar and

Sprague Dawyley rats

Higashi et al., 2017 No clear function. Bile acids were not found in protein-bound form.

CDCA, DCA, LCA; TUDCA, TCA,

TCDCA, TαMCA, TβMCA

Adult male wild-type

C57BL/6 and FXR KO mice

Huang et al., 2015 Function is unknown but FXR KO mice had higher levels of bile acids in

serum and (thus?) in brain.

Total bile acids Adult Sprague Dawyley rats

hypothalamic tissue

measured by EIA

McMillin et al., 2015 In a cholestasis model serum bile acids increased and gained entry into

the brain via a leaky BBB. Intracellular hypothalamic bile acids may have

a role in modulating the HPA axis during liver disease.

C24-bile acids (i.e., the sum of

conjugated and unconjugated CA,

CDCA, UDCA, DCA)

PDD patients, DBP

deficiency patients and

control subjects

Ferdinandusse et al.,

2009

No difference in total C24-bile acids between patients and controls.

Further analysis of different brain areas also showed no differences.

No bile acids were found in

human CSF, only

intermediates of bile acid

synthesis

Ogundare et al.,

2010

CA, GCA, TCA, CDCA, GCDCA,

TCDCA, DCA, GDCA, LCA, UDCA

Neocortex, Brodmann area

7 of AD patients and

age-matched controls

Pan et al., 2017 The amount of TCA was significantly lower in AD patients compared to

age-matched controls with no form of dementia.

CA, TCA, DCA, LCA, MCA, TMCA,

TUDCA

Adult female APP/PS1dE9

and C57BL/6J mice

Pan et al., 2017 The AD model mice had significant lower amounts of brain bile acids.

CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; CA, cholic acid; LCA, lithocholic acid; TUDCA, taurine conjugated ursodeoxycholic acid; MCA, muricholic acid; EIA, enzyme-linked

immunoassay; PDD, peroxisome deficiency disorder; DBP, D-bifunctional protein; AD, Alzheimer Disease.

mouse FGF15/19 mRNA is widely expressed in the developing
brain (Nishimura et al., 1999; Ford-Perriss et al., 2001; Gimeno
et al., 2003), but not in the adult brain (Nishimura et al., 1999;
Fon Tacer et al., 2010).

Plasma levels of FGF15 in mouse (Katafuchi et al., 2015)
and FGF19 in humans (Lundåsen et al., 2006) have been found
to follow a daily rhythm. In humans, plasma FGF19 levels
respond to food intake and bile acids, showing a postprandial
increase following the peak of plasma bile acid levels ∼3 h after
a meal (Lundåsen et al., 2006; Sonne et al., 2016). In contrast, a
different study found that FGF19 levels predominantly respond
to carbohydrate intake compared to lipid or protein intake and
concluded that this would dissociate the FGF19 response from
bile acid signaling (Morton et al., 2013a). Which is an important
issue for further research.

FGF15/19 Signaling in the Central Nervous
System
FGF19 in the systemic circulation is capable of crossing the
BBB and is relatively stable in the brain (Hsuchou et al., 2013).
In addition, FGFRs are expressed in the brain (Wanaka et al.,
1990; Yazaki et al., 1994; Belluardo et al., 1997; Reuss and von
Bohlen und Halbach, 2003), suggesting that FGF19 could signal
from the intestine to the CNS. FGF19 binds directly to FGFR4
but a more solid bond is realized when β-Klotho is bound to
the FGF19-FGFR4 complex (Xie et al., 1999; Harmer et al.,

2004; Wu et al., 2007, 2009). The single-pass transmembrane
protein β-Klotho serves as a cofactor for FGF19 activity by
physically interacting with FGFRs, increasing the affinity of
FGF19 for FGFRs and causing efficient FGF signaling (Kurosu
et al., 2007; Ogawa et al., 2007). For successful binding of
FGF19 with FGFR1c, 2c, or 3c the presence of β-Klotho is
essential (Kurosu et al., 2007; Wu et al., 2009; Yang et al.,
2012). Whereas, FGFR1c, 2c, and 3c are highly expressed
in the brain, β-Klotho is not and is selectively expressed in
particular regions including the suprachiasmatic, arcuate, and
paraventricular nucleus of the hypothalamus, the area postrema
and solitary nucleus of the dorsal-vagal complex and the nodose
ganglia (Bookout et al., 2013; Liang et al., 2014; Owen et al.,
2015). These regions also express FGFRs (Fon Tacer et al.,
2010; Bookout et al., 2013; Ryan et al., 2013), however, to our
knowledge no studies looked at the co-expression of FGFRs
and β-Klotho. In the periphery the main target receptor of
FGF15/19 is FGFR4. In the brain, the expression of FGFR4 has
been detected in the hypothalamus (Ryan et al., 2013) and in
cholinergic neurons in the medial habenular nucleus (Itoh et al.,
1994; Miyake and Itoh, 1996). Overall the expression of FGFR4
in the CNS is less abundant than FGFR1c-3c (Fon Tacer et al.,
2010). Interestingly, intraperitoneal (ip) FGF19 injections inmice
resulted in increased FGFR activity in the hypothalamus, more
specifically in the arcuate nucleus (ARC) (Marcelin et al., 2014).
Staining for pERK1/2 revealed that in the ARC the AGRP/NPY
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TABLE 3 | Bile acid receptors found in the brain.

Bile acid

receptors

Localization References Function and bile acid affinity

FXR Human and mouse, mRNA

and protein level

Huang et al., 2016; McMillin et al.,

2016

The function FXR in the brain is still unclear. FXR KO mice showed disrupted

neurotransmitter systems. In an acute liver failure model blockage of central FXR

signaling delayed neurological decline. Substrate affinity: CDCA >> DCA, LCA > CA

> UDCA, MCA (antagonist).

TGR5 Human and rat, mRNA and

protein level

Maruyama et al., 2002; Kawamata

et al., 2003; Keitel et al., 2010;

Yanguas-Casás et al., 2017

The function of TGR5 in the brain is under investigation. TGR5 is present in various

cell types such as neurons, glia and microglia. TGR5 can also be activated by various

neurosteroids so TGR5 might also have bile acid independent functions in the brain.

Substrate affinity: LCA > DCA> MCA > CDCA > CA > HDCA > UDCA.

PXR mRNA and protein level in

mouse primary hippocamal

neurons

Litwa et al., 2016 Xenobiotic nuclear receptor that can activate Cytochrome P450 enzymes to dispose

toxins, for example at the BBB. In the brain neuronal PXR is involved in the

propagation of the neurotoxic and apoptotic effects of nonylphenol.

VDR Human brain protein

expression of VDR is

strikingly similar to rodents

Eyles et al., 2005, 2014 In the brain vitamin D can act as a neurosteroid via the VDR. In de adult rat brain VDR

is not localized to the membrane questioning its role in a fast calcium response.

GR Adult Sprague Dawyley rats Miura et al., 2001; McMillin et al.,

2015

UDCA can bind and translocate the GR. McMillin et al., propose that intraneuronal

bile acids in the hypothalamus can activate the GR and subsequently supress the

HPA axis.

S1PR2 Developing brain and adult

rodent brain

McMillin and DeMorrow, 2016;

McMillin et al., 2017

Indirect evidence suggest that S1PR2 functions in the brain and in vitro studies show

that conjugated bile acids can activate S1PR2.

M3 Raufman et al., 2002, 2003 Muscarine acetylcholine receptors (M1-5) are expressed throughout the CNS.

Chinese Hamster Ovary cells that express the M3 can be activated by TLCA in vitro,

albeit with high concentrations.

FXR, farnesoid X receptor; TGR5, Takeda G protein-coupled receptor; PXR, pregnane X receptor; VDR, vitamin D receptor; CAR, constitutive adrostane receptor; GR, glucocorticoid

receptor; S1PR2, sphingosine 1-phosphate receptor 2; M3, muscarine acetylcholine receptors; CNS, central nervous system.

(agouti-related peptide/neuropeptide Y) neurons and not the
POMC (pro-opiomelanocortin) neurons were involved in FGF19
signaling. NPY and POMC neurons modulate feeding behavior
by stimulating and inhibiting appetite, respectively (van den
Heuvel et al., 2011; Gumbs et al., 2016). Intracerebroventricular
(icv) administration of FGF19 decreased neural activation in
the ARC as measured by c-Fos expression and reduced gene
expression of Agrp and Npy (Marcelin et al., 2014), suggesting
that central FGF19 signaling inhibits AGRP/NPY neurons in
the ARC.

Taken together, FGF15/19 signaling in the CNS can generate
a wide spread of effects via the FGFRs that are present
in the hypothalamus, medial habenular nucleus and dorsal-
vagal complex. Consequently, bile acids in the enterohepatic
circulation can extend their signal to these cerebral regions via
the FXR-FGF15/19 pathway.

Central FGF15/19 Improves Metabolic Rate
and Glucose Metabolism
The effects of central FGF19 are mainly studied in animal models
for obesity and diabetics, because overexpression of FGF19 in
mice resulted in increased energy expenditure and animals on a
high fat diet (HFD) did not become diabetic or obese (Tomlinson
et al., 2002). Intravenous (iv) administration of FGF19, also
prevented genetic (ob/ob) and diet-induced (HFD) obese mice

to develop diabetes by improving glucose metabolism (Fu et al.,
2004). This beneficial effect of systemic FGF19 on glucose
metabolism was reduced by 50% when an FGFR antagonist was
infused in the brain (Morton et al., 2013b). In addition, rats on
a HFD showed reduced expression of hypothalamic FGFR1 and
4 compared to chow-fed rats (Ryan et al., 2013). These findings
suggest that central FGFR signaling is involved in energy and
glucose metabolism.

Icv FGF19 administration increased the metabolic rate in
wild type mice (Fu et al., 2004) and in HFD-fed and ob/ob
mice reduced weight gain and improved glucose metabolism
(Marcelin et al., 2014). A single administration of icv FGF19
had no effect on the energy expenditure, but improved glucose
metabolism in ob/ob mice and mice on a HFD (Morton et al.,
2013b; Marcelin et al., 2014) as well as in lean and HFD-fed
rats (Ryan et al., 2013). Pretreatment with an FGFR inhibitor in
the brain blocked the beneficial effects of icv FGF19 on glucose
metabolism (Morton et al., 2013b). In a rat model for type 1
diabetes, hyperglycemia could be reversed by icv administration
of FGF19 (Perry et al., 2015). An additional observation was
that central FGF19 resulted in decreased adrenocorticotropic
hormone (ACTH) and corticosterone plasma levels, suggesting
the suppression of HPA activity (Perry et al., 2015). The majority
of the studies, investigating the effects of central FGF19 on
glucose metabolism found no differences in insulin sensitivity
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or secretion that could explain improved glucose metabolism
(Morton et al., 2013b; Ryan et al., 2013; Perry et al., 2015).
However, one study did find improved insulin sensitivity in ob/ob
and HFD-fed mice treated with icv FGF19 compared to vehicle
treated mice (Marcelin et al., 2014). These studies highlight the
controversy concerning the involved mechanisms that explain
the effects of central FGF19 on glucose metabolism.

Consequently, these studies provide different explanations
concerning the mechanisms that drive the beneficial effect
of central FGF19 action on glucose and energy metabolism.
This highlights that further research is necessary to reveal the
underlying mechanisms that mediate central FGF19 action.
Altogether, little is known about the neurocircuitry involved
in FGF19-FGFR signaling that could be instigated by bile acid
binding to FXR in the intestine. In addition, it should be studied
to which extend the different FGFs contribute to the FGFRs
signaling in the CNS, because FGF21 binds to the same FGFR
and β-Klotho complexes as FGF19 and generates similar effects
when administered in the brain (Owen et al., 2015; Degirolamo
et al., 2016). However, above all the question remains whether
the postprandial increase in plasma FGF19 is sufficient to elicit a
substantial effect in the CNS.

INDIRECT BILE ACID SIGNALING TO
CENTRAL NERVOUS SYSTEM VIA
TGR5-GLP-1 PATHWAY

In this section we will discuss the indirect pathway involving
signaling via intestinal TGR5 (Figure 3C), which is the other
well-studied bile acid receptor that is expressed abundantly in
the enterohepatic circulation (Thomas et al., 2008a). The TGR5
receptor can be activated by both conjugated and unconjugated
bile acids, with litocholic acid (LCA) and taurolitocholic acid
(TLCA) being the most potent bile acids (Kawamata et al., 2003).
In the brain, TGR5 can also be activated by other endogenous
ligands, such as neurosteroids (Keitel et al., 2010). In the intestine,
stimulation of TGR5 by bile acids can also result in the release of
the gut hormone GLP-1, which is capable of extending the bile
acid signal from the intestine to other parts of the body, including
the CNS (Figure 3C; Katsuma et al., 2005; Thomas et al., 2009;
Ullmer et al., 2013).

Intestinal TGR5 and GLP-1
GLP-1 is an incretin that influences energy homeostasis by
reducing appetite and food intake and inhibiting gastric
emptying (Drucker and Nauck, 2006). In the gut a particular
group of entero-endocrine cells, L-cells, are responsible for
the production of GLP-1 and are predominantly found in the
terminal ileum and colon (Drucker and Nauck, 2006; Lim and
Brubaker, 2006). The action of bile acids on GLP-1 release
is predominantly regulated via TGR5 receptors located at the
basolateral membrane of L-cells, thus not facing the lumen of
the intestine (Brighton et al., 2015). This means that bile acids
first need to cross both the apical and the basolateral membrane
of intestinal cells in order to activate TGR5 and provoke a
GLP-1 response. L-cell GLP-1 release follows a circadian rhythm
suggesting it is also under control of the molecular clock system

(Gil-Lozano et al., 2014). In addition, GLP-1 release by L-cells
can also be triggered via different routes not involving bile
acid-induced TGR-5 activation (Lim and Brubaker, 2006). These
include indirect routes via endocrine and neural signals induced
by the presence of food in the stomach and upper intestine
(Lim and Brubaker, 2006; Holst, 2007), stimuli thought to be
responsible for the rapid postprandial release of GLP-1 (Holst,
2007). When food reaches the ileum, the GLP-1 producing L
cells are directly stimulated by glucose, fat (Lim and Brubaker,
2006; Ezcurra et al., 2013), and bile acids (Katsuma et al.,
2005; Thomas et al., 2009). The amplitude of the evoked GLP-
1 response depends on meal size (Vilsboll et al., 2003). It is
difficult to differentiate between the effects induced by GLP-1
in general and the effects that are particularly induced by GLP-
1 as a consequence of TGR5 activation by bile acids. Research
using TGR5 knockout (TGR5−/−) mice showed that these mice
still produce GLP-1 and seemed not different from wild type
mice (Thomas et al., 2009). However, TGR5−/− mice fed a HFD
displayed impaired glucose tolerance compared to wild types
(Thomas et al., 2009). This might indicate that under normal
circumstances sufficient GLP-1 is released via signaling routes not
involving TGR5-activation. However, this TGR5-independent
GLP-1 signal might not be proficient under more extreme
circumstances e.g., when high amounts of fat are digested.

Intestinal GLP-1 Signaling to the Central
Nervous System via Systemic Circulation
Intestinal GLP-1 can reach the brain via two major routes, one
being via the systemic circulation and interacting with GLP-1
receptors in the brain (Orskov et al., 1996; Yamamoto et al.,
2003) and the other route being through signaling via the vagus
nerve (Abbott et al., 2005; Rüttimann et al., 2009). When GLP-1
is released from the basolateral membrane of the L-cells, GLP-1
is taken up by capillaries and transported to the portal vein and
subsequently the liver (Holst, 2007). Nonetheless, only a fraction
of intestinal GLP-1 reaches the liver in its active form, because
the endothelial membranes of the capillaries express the enzyme
dipeptidyl peptidase-4 (DPP-4), which degrades GLP-1 rapidly
(Holst and Deacon, 2005). Due to the rapid decay only 25% of
the intestinal GLP-1 reaches the hepatic portal vein (Holst, 2007).
Of this portion only half reaches the systemic circulation via
the liver. DDP-4 is also present in plasma, therefore the small
amounts of GLP-1 reaching the systemic circulation have a half-
life of only 1–2min (Holst, 2007). In rats, a regular chow meal
led to a transient increase in GLP-1 levels in the hepatic portal
vein but not in the vena cava, showing that the postprandial GLP-
1 increase is not substantial in the systemic circulation (Punjabi
et al., 2014). Contrasting, in humans a postprandial increase in
plasma GLP-1 levels was evident, lasting several minutes (Vilsbøll
et al., 2001; Calanna et al., 2013; Sonne et al., 2014). The human
subjects used for plasma GLP-1 measurements (Sonne et al.,
2014) also showed a postprandial increase in plasma bile acid
levels (Sonne et al., 2016).

The GLP-1 receptor is expressed in various tissues including
the CNS (Richards et al., 2014; Cork et al., 2015). GLP-1 is
capable of crossing the BBB (Kastin et al., 2002), but it is
questionable whether sufficient intact GLP-1 reaches the BBB
and other distal tissues to elicit a substantial effect. Therefore,
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only the area postrema and subfornical area—circumventricular
organs—may be plausible brain regions that could gate peripheral
GLP-1 signaling via its GLP-1 receptors (Göke et al., 1995;
Orskov et al., 1996; Yamamoto et al., 2003). This pathway was
established by iv administration of GLP-1 in rats (Orskov et al.,
1996; Yamamoto et al., 2003; Punjabi et al., 2014), however, this
pathway might not be substantial under normal physiological
circumstances whenGLP-1 release is triggered by food intake and
bile acids.

Intestinal GLP-1 Signaling to the Central
Nervous System via Vagal Nerve Afferents
The other pathway through which intestinal GLP-1 could signal
to the CNS is via activation of vagal afferent fibers. These sensory
fibers originate in the nodose ganglion and provide terminals
into peripheral tissues, including liver tissue (Dardevet et al.,
2004, 2005), hepatic portal vein (Balkan and Li, 2000; Vahl
et al., 2007), and lamina propria of the intestine (Berthoud
et al., 2004; Nakagawa et al., 2004). These terminals express
GLP-1 receptors and are therefore responsive to local GLP-1
levels (Holst, 2007). The nodose ganglion projects to the nucleus
of the solitary tract (NTS) in the hindbrain (Nakagawa et al.,
2004; Holst, 2007). NTS neurons are bidirectional connected
with other brain regions, including the hypothalamus (Ricardo
and Koh, 1978; van der Kooy et al., 1984). In animal models
the signal transmission after ip GLP-1 administration was
abolished following subdiaphragmatic vagal deafferentation or
after transection of the brainstem-hypothalamic pathway (Abbott
et al., 2005; Rüttimann et al., 2009). This established the
importance of the vagal-brainstem-hypothalamic pathway for the
signal transmission of GLP-1 from the gastrointestinal tract to
the CNS. Subsequently, the brainstem and hypothalamus are
connected with brain regions involved in autonomic function,
metabolic processing, and cognitive and emotional functioning
(Rogers et al., 2016). These findings raise the question whether
bile acids themselves could directly interact with the vagal nerve
and relay a signal to the CNS. However, we have not found
reports that show the expression of bile acid receptors on the
vagal nerve.

GLP-1 Signaling via the Vagal Nerve
Afferents Is Involved in Glucose
Metabolism and Energy Homeostasis
Via the vagal-brainstem-hypothalamic pathway peripheral GLP-
1 can affect many brain regions and consequently many
processes. However, the most studied effects of peripheral GLP-1
are its inhibitory effect on food intake and increased perception of
satiety (Tang-Christensen et al., 1996; Turton et al., 1996; Abbott
et al., 2005; Talsania et al., 2005; Williams et al., 2006, 2009; Scott
and Moran, 2007; Hayes et al., 2008; Rüttimann et al., 2009;
Punjabi et al., 2014), which are both believed to be mediated
predominantly by the CNS (Turton et al., 1996). These data
suggest that vagal nerve terminals in the lamina propria of the
intestine are involved in regulating appetite.

Postprandial, the highest GLP-1 concentrations are found in
the lamina propria of the intestine and second in the hepatic

portal vein (Holst and Deacon, 2005; Holst, 2007). GLP-1
signaling via vagal afferents in the hepatic portal vein does not
modulate food intake (Rüttimann et al., 2009), but is involved in
modulating glucose metabolism by interacting with hepatoportal
glucose sensors (Balkan and Li, 2000; Burcelin et al., 2001;
Vahl et al., 2007). This reveals a pathway through which bile
acids may be capable to modulate glucose metabolism: TGR5-
mediated GLP-1 secretion acting upon hepatoportal glucose
sensors. Indeed, TGR5−/− mice on a HFD have impaired glucose
tolerance and TGR5 over expression in transgenicmice improved
glucose tolerance in combination with increased GLP-1 and
insulin secretion (Thomas et al., 2009). The above results indicate
a differentiation in GLP-1 pathways: glucose homeostasis is
mediated via the vagal afferents in the hepatic portal vein and
energy homeostasis is mediated via the vagal afferents in the
lamina propria (Rüttimann et al., 2009).

Taken together, bile acids in the intestine can signal to the
brain by using GLP-1 as an intermediate molecule to activate
vagal nerve afferents in the lamia propria and hepatic portal vein
that project to the NTS in the hindbrain and subsequently to the
hypothalamus. What the exact contribution of bile acids is in
the overall GLP-1 signal is difficult to determine, because other
nutrient and indirect signals could trigger GLP-1 release.

GLP-1 Released from Neurons in the
Hindbrain
An important consideration is that in addition to GLP-1 release
from the intestine, GLP-1 is also produced in the brain. GLP-
1 is secreted from a population of preproglucagon (PPG) cells
in the NTS and in the intermediate reticular nucleus within the
hindbrain (Han et al., 1986; Drucker, 1990; Larsen et al., 1997;
Trapp and Cork, 2015). PPG neurons project to a variety of
brain regions involved in energy homeostasis and autonomic
control including the hypothalamus, thalamus, and amygdala
(Merchenthaler et al., 1999; Llewellyn-Smith et al., 2011; Trapp
and Cork, 2015). Central GLP-1 signaling is generally linked
to energy homeostasis (Cabou and Burcelin, 2011) and glucose
metabolism (Sandoval, 2008; Sandoval et al., 2008). The presence
of GLP-1-releasing neurons in the brain adds an extra difficulty
to elucidating the effects of peripheral GLP-1 in the brain.
Electrophysiological findings indicate that PPG cells receive
monosynaptic input from vagal afferent fibers (Hisadome et al.,
2010). This could mean that peripheral GLP-1 from the intestine
could modulate the activity of PPG cells via vagal nerve afferents
and consequently stimulate GLP-1 release in the CNS (Hisadome
et al., 2010). However, direct evidence is lacking.

Glucagon-Like Peptide-2
Together with GLP-1 also glucagon-like peptide-2 (GLP-2) is
released from intestinal L-cells in response to nutrients and bile
acids. In addition, also in the brain GLP-2 is released from
the preproglucagonergic neurons in the brainstem together with
GLP-1. GLP-2 acts via its own G protein-coupled receptor, GLP-
2R which is mainly expressed in the gastro-intestinal tract and
CNS. In the gut, GLP-2 functions in intestinal mucosal health
and stimulates nutrient absorption, and in this way influences
energy homeostasis (Baldassano et al., 2016). Recently, it has been
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shown that GLP-2 also stimulates gall bladder filling via GLP-2R
and in a TGR5 independent manner in mice (Yusta et al., 2017).
In contrast to GLP-1 and the GLP-1R, the functions of GLP-2
and GLP-2R in the brain have not been studied much, but it is
thought that GLP-2 has anorexic effects and reduces appetite by
activating the GLP-2R in the ARC of the hypothalamus (reviewed
in Guan, 2014; Baldassano et al., 2016). However, in humans,
peripheral GLP-2 administration had no effect on satiety or food
intake (Schmidt et al., 2003; Sørensen et al., 2003). GLP-2 is not
an incretin and does not receive as much attention as GLP-1 with
respect to research on glucose metabolism and diabetes (Janssen
et al., 2013). We are not aware of any studies that investigated the
effects of bile acids or postprandial intestinal GLP-2 release on
central GLP-2 functioning. The blood half-life of GLP-2 is a few
minutes longer than that of GLP-1, but both are efficiently cleared
by the kidneys.

CONCLUDING REMARKS

In this review we discussed three different pathways via
which bile acids could signal to the CNS. In the direct
pathway (Figure 3A), bile acids reach the brain via the systemic
circulation. In the brain, the machinery for bile acid signaling is
present, i.e., receptors able to bind bile acids and transporters
to transport bile acids into neurons (Tables 1–3). However, it
remains uncertain whether this pathway is substantial under
normal physiological circumstances. More research is required
to determine whether the postprandial increase in plasma bile
acids is also translated into increased bile acid levels in the
brain and whether these amounts are sufficient to activate bile
acid receptors expressed in the brain. Considering the current
information, we believe that this pathway does not exert a
prominent route for bile acid signaling to the CNS.

The indirect pathway mediated by FXR-FGF15/19
(Figure 3B) could exert an effect via the CNS through the

presence of FGFRs in the brain. FGF15/19 signaling in the brain
is associated with energy and glucose homeostasis. However,
it is questionable whether the postprandial increase of plasma
FGF15/19 is sufficient for substantial signaling in the CNS.
We believe that under normal physiological circumstances the
peripheral mediated consequences of FGF15/19 signaling exceed
the effects that are possibly mediated via the CNS.

The indirect pathway mediated by TGR5-GLP-1 (Figure 3C)
can signal to the CNS via two routes, through the systemic
circulation and via the vagal nerve. The latter route is the most
significant signaling route, because postprandial GLP-1 levels are
high in the lamina propria of the intestine and hepatic portal
vein, where vagal nerve terminals are present. The vagal nerve
signals to the brainstem and subsequently to other brain regions.
Via this pathway bile acids could influence glucose and energy
homeostasis, among other things. Currently this seems to be the
only noteworthy signaling route to the CNS initiated by bile
acids under normal physiological circumstances. However, the
exact implications of bile acids for this signaling route and their
contribution to the whole-body postprandial response remains
an interesting subject for future research.
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