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Perceptual decisions in the presence of decision-irrelevant sensory information require

a selection of decision-relevant sensory evidence. To characterize the mechanism

that is responsible for separating decision-relevant from irrelevant sensory information

we asked human subjects to make judgments about one of two simultaneously

present motion components in a random dot stimulus. Subjects were able to ignore

the decision-irrelevant component to a large degree, but their decisions were still

influenced by the irrelevant sensory information. Computational modeling revealed that

this influence was not simply the consequence of subjects forgetting at times which

stimulus component they had been instructed to base their decision on. Instead, residual

irrelevant information always seems to be leaking through, and the decision process is

captured by a net sensory evidence signal being accumulated to a decision threshold.

This net sensory evidence is a linear combination of decision-relevant and irrelevant

sensory information. The selection process is therefore well-described by a strong linear

gain modulation, which, in our experiment, resulted in the relevant sensory evidence

having at least 10 times more impact on the decision than the irrelevant evidence.

Keywords: computational model, gain modulation, irrelevant sensory evidence, linear combination, perceptual

decision, relevant sensory evidence

INTRODUCTION

Perceptual decision-making is the process of making a discrete choice based on available sensory
information. Most studies of the underlying mechanisms have used paradigms where a decision-
relevant sensory stimulus is presented in isolation. Perceptual decisions in everyday situations,
however, usually have to be made in the presence of sensory stimuli that are not relevant to the
decision at hand. Successful perceptual decisions therefore require a separation of decision-relevant
from irrelevant sensory information. If decision-relevant and irrelevant information are present at
different spatial locations, visuospatial attention can be allocated appropriately to preferentially
process the relevant stimulus (Sapir et al., 2005; Wilimzig et al., 2008; Zizlsperger et al., 2012; Wyart
et al., 2015). If decision-relevant and irrelevant information are present at the same spatial location,
other selectionmechanisms need to be at play. Feature-based attention could contribute in this case
(Treue andMartinez Trujillo, 1999; Martinez-Trujillo and Treue, 2004; Maunsell and Treue, 2006),
but we will discuss later that feature-based attentional modulation of sensory representations alone
is unlikely to provide sufficient separation.

Several recent animal studies were targeted at investigating the neural mechanisms underlying
this selection process. The experimental tasks tend to be modified versions of the well-known
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random-dot motion direction discrimination task, which has
been very influential in uncovering mechanisms of perceptual
decision-making (Shadlen and Newsome, 2001; Roitman and
Shadlen, 2002; Palmer et al., 2005). Sasaki and Uka used
a random-dot motion stimulus that also contained depth
information, and monkeys had to perform either a motion
direction or depth discrimination (Sasaki and Uka, 2009).
Other studies used a colored random-dot motion stimulus, and
monkeys had to perform either a motion direction or color
discrimination (Mante et al., 2013; Siegel et al., 2015). Sasaki
and Uka recorded from the middle temporal area and found
the representation of sensory evidence unaffected by the decision
relevance of a particular stimulus feature (Sasaki and Uka, 2009).
Mante et al. proposed that monkeys solve the task by taking
advantage of a selective integration mechanism, and neural
activity recorded from prefrontal cortex seemed consistent with
such a mechanism (Mante et al., 2013). Siegel et al. recorded
neural activity from a larger network of cortical areas, which
suggested a more distributed decision-making process (Siegel
et al., 2015).

Here we use human decision behavior and computational
modeling to gain insight into the decision process. We used
a motion-only version of the task, which has the advantage
that decision-relevant and irrelevant information are represented
by sensory neurons with the same properties, and quantifying
the neural representation of the sensory evidence is therefore
relatively straightforward, as neural responses to random-dot
motion stimuli have been studied in detail (Britten et al., 1993).
Subjects saw a two-component random-dot stimulus, which
contained both horizontal and vertical motion. Only one of these
components was decision-relevant on any given trial and subjects
had to perform either a horizontal (left vs. right) or a vertical
motion discrimination (up vs. down). We had first used this
type of stimulus in an fMRI study on cognitive control signals
associated with the different types of conflicts that arise when
performing this task (Wendelken et al., 2009). In this earlier
study, only two different motion strengths (coherence levels)
were used and decision times were not measured. Choices were
well-captured by a logistic function of a linear combination of the
decision-relevant and irrelevant coherences, suggesting that the
selection process might be described as a linear gain modulation
of the sensory evidence. Here we demonstrate that this model
of the decision process can not only capture choices over a wide
range of difficulty levels, but also account for the amount of time
that subjects require to make up their mind when performing
this task. We further show that incomplete suppression of the
decision-irrelevant sensory information is required to explain the
decision behavior and that lapses in remembering which stimulus
component had been cued alone are insufficient to account for
the observed behavior.

MATERIALS AND METHODS

Human Subjects
Thirteen UC Davis undergraduate students, both male and
female, participated in the study. This study was carried out in
accordance with the recommendations of the U.S. Department

of Health and Human Services regulations for the protection
of human subjects in research with written informed consent
from all subjects. All subjects gave written informed consent
in accordance with the Declaration of Helsinki. The protocol
was approved by the UC Davis Institutional Review Board.
All subjects had normal or corrected to normal vision. Each
subject completed at least five experimental sessions, resulting
in a minimum of 1,500 experimental trials per subject. Since the
maximum likelihood approach that was used for computational
modeling requires a substantial number of trials for each
experimental condition, we pooled data across subjects, which
requires decision behavior to be comparable across all the
subjects within the pool. We therefore initially screened the data
for potential outliers. For each subject, we determined the mean
response time (RT) for each experimental condition and took the
minimum mean RT as a measure of how quickly each subject
responded in an experimental condition leading to fast decisions.
Cluster analysis [k-means clustering using the Davies-Bouldin
criterion (Davies and Bouldin, 1979) and verified by silhouettes
(Rousseeuw, 1987)] of this value across subjects revealed two
clusters: two subjects were substantially slower than everybody
else. We excluded these two subjects from the data pool as
inclusion would have resulted in bimodal RT distributions. To
further verify that the pooling did not create RT distributions that
are inconsistent with those of individual subjects we performed
a group reaction time distribution analysis as suggested in
Ratcliff (1979). We determined the quantiles of individual
subjects’ RT distributions and compared their average (“group RT
distribution”) to the quantiles of the pooled RT distributions. The
comparison (Supplementary Figure 1) revealed that the pooled
RT distributions were similar to the group RT distributions, only
slightly wider, which the computational models that are used in
this paper can easily absorb as slightly increased variability in the
residual time (see Model of the decision process). The second
parameter that we analyzed was the influence of the irrelevant
motion component on the choice behavior (see Data Analysis
for how this influence was quantified). Typically, subjects would
show an increased likelihood of choosing the target associated
with the irrelevant direction of motion (positive slope of the
psychometric function when analyzing trials with only irrelevant
coherent motion). Only one subject showed the opposite effect
(negative slope). This subject was excluded from the data pool
to ensure comparable choice behavior. Our analyses in this paper
are therefore based on the pooled data from 10 subjects. This data
pool contained 14,218 valid (see Experimental Task and Visual
Stimulus) decision trials.

Experimental Setup
The subjects sat in front of a 22′′ flat-screen CRT video
monitor (ViewSonic P225f; viewing distance: 60 cm) with their
head on a chin and forehead rest. The visual stimuli were
generated by a Macintosh G4 computer running Mac OS 9,
MATLAB (The Mathworks, Natick, MA), and the Psychophysics
Toolbox (Brainard, 1997; Pelli, 1997) at a frame rate of 75Hz.
The experiment was controlled and the data were collected
by an Intel Pentium IV computer running QNX (Ottawa,
ON, Canada) and a modified version of REX (Laboratory of
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Sensorimotor Research, National Eye Institute). Eye movements
were monitored using an IR video eye tracker (Model 5,000,
Applied Science Laboratories, Bedford, MA). The eye position
of one eye was sampled at 240Hz. Prior to each experimental
session the eye tracker was calibrated using repeated fixation of
nine calibration targets.

Experimental Task and Visual Stimulus
The experimental task is illustrated in Figure 1. Each trial started
with the presentation of a central fixation mark (diameter: 0.3◦).
The measured fixation location had to remain within 2.5◦ of
the center of the screen throughout the trial (up to the saccadic
response). After 500ms of stable fixation, two targets (diameter:
0.5◦) appeared on the screen, either 5.7◦ to the left and to the
right of the center (horizontal cue) or 5.7◦ above and below the
center (vertical cue). The cue was chosen randomly with equal
probability on every single trial and served as an instruction
to the subject whether a decision about horizontal or vertical
motion had to be made on the given trial. The cue remained
on the screen for 750ms, after which the targets jumped to
new locations along one of the two diagonals (again randomly
chosen) with eccentricities of 8.0◦ (either bottom left and top
right, or top left and bottom right). After a random delay (min.:
0.3 s, max.: 1.0 s, truncated exponential distribution), a multi-
component random-dot pattern was presented at the center of
the screen (diameter: 5.0◦).

In the original version of the stimulus (as used, e.g., in Shadlen
and Newsome, 2001; Roitman and Shadlen, 2002; Palmer et al.,

2005) a certain fraction of the dots (defined as the coherence
of the stimulus) was moving coherently in a particular direction
whereas the rest of the dots were flickering randomly. Our multi-
component random-dot pattern had up to two coherent motion
components embedded (for a previous use of this type of stimulus
with three coherent components see Niwa and Ditterich, 2008).
Thus, in our case, there were three subpopulations of dots:
one of them was moving coherently either to the left or to
the right (fraction of dots defined by the coherence of the
horizontal component), one was moving coherently either up or
down (fraction of dots defined by the coherence of the vertical
component), and the rest of the dots were flickering randomly.
The stimulus is therefore described by a set of two coherences.
Which of the three subpopulations a particular dot belonged
to changed randomly over the course of the stimulus. As a
consequence, the stimulus is not perceived as an overlay of several
transparent layers of motion that could be easily separated,
but as a mixture of different motion components. See Treue
et al. (2000) for a discussion of transparent random-dot motion
stimuli. Corresponding pairs of dots, responsible for the percept
of apparent motion, were presented with a temporal separation
of 40ms (3 video frames). The coherently moving dots had a

speed of 6 deg/s, the dot density was 16.7 dots

deg2·s
, and each dot was

a little filled square with an edge length of 0.1◦. On each trial,
the coherence of each component was randomly chosen to be
either 0, 10, 20, or 30%, the horizontal direction was randomly
chosen to be either left of right, and the vertical direction was
randomly chosen to be either up or down. Some of the subjects

FIGURE 1 | Experimental task. Subjects made perceptual decisions about the direction of motion in a random dot stimulus that contained both horizontal and vertical

coherent motion. Only one of the two components was decision-relevant on any given trial (indicated by a cue at the beginning of the trial; the vertical axis is cued in

the shown example). Two choice targets appeared along one of the two possible diagonals, and subjects were instructed to make a goal-directed eye movement to

the target closest to the identified relevant direction of motion. The stimulus viewing duration was controlled by the subjects and choices and response times were

measured.
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also saw additional coherence combinations, but we limit our
analysis here to these combinations, which were experienced by
all subjects.

The subjects were instructed to identify the direction of the
relevant (cued) motion component, to ignore motion along
the irrelevant axis, and to make a saccadic eye movement to the
one describes the responseassociated choice target (closest to the
identified direction of motion). Each choice target was therefore
associated with one horizontal direction and one vertical
direction. The two motion components could either provide
evidence for the same target (we will refer to these types of
trials as “congruent” trials) or for opposite targets (“incongruent”
trials). Subjects were allowed to watch the stimulus for as long
as they wanted to (up to 5 s) and responded whenever they
were ready. After each trial they received auditory feedback as to
whether they had picked the correct target. The computer always
identified the target associated with the direction of motion along
the cued axis as the correct one. Since such a direction was also
randomly determined in the case of stimuli without relevant
coherent motion, one of the targets was randomly chosen to be
the correct one.

In order to complete a trial successfully (“valid trial”), the
subject had to maintain accurate fixation until the random-dot
pattern appeared. Once central fixation was broken, the eye
position had to be within 3.0◦ of one of the two choice targets
within 100ms and had to stay on this target for at least 200ms.

Data Analysis
When analyzing the data, we collapsed across different target
locations and whether the horizontal or the vertical motion
axis was cued as relevant. Thus, we only considered the set of
coherences, whether the irrelevant component provided evidence
for the same (“congruent” trial) or for the opposite target
(“incongruent” trial) as the relevant component, and whether
the subject picked the target associated with the direction of the
relevant motion component (“correct” choice) or not (“error”).
The motion strength of the irrelevant component was treated
as a positive value when the associated direction provided
evidence for choosing the correct target (“congruent trials”) and
as a negative value when the opposite target was supported
(“incongruent trials”).

When analyzing choice data from the random-dot motion
direction discrimination task, the psychometric function is
usually well-described by a logistic function of the form
p(correct choice) = eα·c

1+eα·c (Roitman and Shadlen, 2002; Palmer
et al., 2005), with c being the coherence of the stimulus and
α defining the slope of the psychometric function. We used
the same function to capture how choices were influenced by
coherent motion when only one of the stimulus components
had non-zero strength. The slope parameter α was determined
using maximum likelihood estimation. The standard error of the
parameter was calculated from the second partial derivative of
the log likelihood with respect to the parameter (Meeker and
Escobar, 1998). For stimuli with bothmotion components having
non-zero coherence we evaluated a function of the form

p(correct choice) =
e(αrel·crel + αirr ·cirr)

1+ e(αrel·crel + αirr ·cirr)

based on the idea that choices could be made on the basis of a
combination of relevant and irrelevant sensory evidence. crel is
the strength of the relevantmotion component, cirr is the strength
of the irrelevant component, with a negative value indicating an
incongruent trial, and αrel and αirr describe how much impact
the relevant and the irrelevant sensory evidence have on the
choice. In the case of only one motion component with non-zero
coherence this function reduces to the standard logistic function
mentioned above.

The response time (RT) was measured as the time between
the appearance of the random-dot stimulus and the breaking of
central fixation.

Computational Model
A general description of the ideas behind our model can be found
in the Results section.

Model of the Neural Representation of the Sensory

Stimulus
Since we used the same type of multi-component random-dot
motion stimulus as in an earlier study (Niwa and Ditterich,
2008) we took a very similar approach to modeling the neural
representation of the sensory stimulus. Specifically, the mean
response of a population of motion-sensitive neurons to a two-
component random-dot stimulus with coherences c1 (in the
preferred direction of the pool; 0 ≤ c1 ≤ 1) and c2 (orthogonal
to the preferred direction; 0 ≤ c2 ≤ 1) was modeled to be of the
form

s1 =

g ·

[

c1 + kn ·

(

1−
2

∑

i= 1
ci

)]

1+ ks ·
2

∑

i= 1
ci

where g is the overall gain of the sensory response (relationship
between neural activity and motion strength). The two additive
terms in the brackets reflect the two linear response components:
the first one describes the response to the coherent motion in
the preferred direction, the second one describes the response to
the noise dots. The term in parenthesis reflects the proportion of
noise dots in the stimulus. kn is the relative gain of the response
to the noise dots compared to the response to an identical
fraction of dots moving coherently in the preferred direction. The
term in the denominator reflects the divisive normalization. For
simplicity, we have chosen a linear term with ks describing the
gain/strength of the divisive normalization. The sum following ks
reflects the total amount of coherent motion in the stimulus and
is therefore a proxy for the overall activation of the population
across preferred directions. This approximation turns out to be
sufficient to capture the structure of the behavioral data.

In general, the mean responses of each of the four task-
relevant sensory pools (tuned to leftward, rightward, upward, and
downward motion) can be written as

sdir =
g ·

[

cdir + kn · (1− ctot)
]

1+ ks · ctot

with cdir being the coherence of motion in the preferred direction
of the pool (0 if there is coherent motion in the opposite
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direction) and ctot = crel + |cirr| being the total amount of
coherent motion in the stimulus.

The variances of the four sensory responses were modeled as

σ 2
sdir

= kv · sdir

As the sensory evidence has to be mediated by pools of spiking
neurons with Poisson-like properties, it is reasonable to assume
that the variability of the signal potentially increases with its
mean (see Ditterich, 2006 for a more detailed discussion of this
topic). The proportionality factor kv was determined empirically
through the model fit.

We described the outputs of the sensory pools as normal
random processes to be able to treat the decision process as a
standard diffusion process (based on Brownian motion), which
is reasonable if the pools are not too small.

The mean sensory response does not include baseline activity,
which would subtract out again at the opponent readout stage
(see next section). It could make a contribution to the variability
of the sensory response though, but we allow for a stimulus-
independent noise component of the decision signal (see below),
which can also include contributions due to baseline activity of
sensory neurons.

Model of the Decision Process
Similar to previous work on perceptual decision-making
involving the random-dot motion direction discrimination task
(Palmer et al., 2005; Ditterich, 2006; Niwa and Ditterich, 2008),
but also other tasks, we assume that decisions are based on
accumulating sensory evidence and comparing accumulated
evidence to a decision threshold, which can be formalized as
a bounded drift-diffusion process (Ratcliff and McKoon, 2008).
Sensory activity for opposing directions is initially subtracted to
obtain the net sensory evidence for, e.g., leftward vs. rightward
motion. The net sensory evidence then feeds into a neural
integrator, which accumulates the net sensory evidence over time.
As soon as the accumulated evidence exceeds a decision threshold
the decision terminates, which determines the decision time, and
the bound that is hit first determines which choice is made.

In our case, subjects are making a choice between two possible
targets, but there is decision-relevant and irrelevant net sensory
evidence. Our model assumes that the separation of the two
components is potentially not perfect and that the decision is
informed by a linear combination of both signals, with the
irrelevant information being weighed less (kirr < 1). Figure 3
shows the structure of the decision mechanism, illustrated for
the example of targets appearing in the upper-left and lower-
right corners and the vertical motion axis being cued (as in
Figure 1). Let’s further assume that the coherent vertical motion
is downward. The top integrator collects evidence for picking
the lower right target, which would be the correct choice in
the given example, the bottom integrator collects evidence for
picking the upper left target. The situation shown in the diagram,
two integrators racing against each other for a threshold crossing,
is equivalent to a single integrator with two decision bounds,
one above and one below the starting point of integration, if
the signals feeding into the two integrators are perfectly anti-
correlated, which is the case in our model (e2 = − e1). One

parameter can always be picked arbitrarily in a bounded drift-
diffusion model and we decided to place the decision bounds of
the one-dimensional drift-diffusion process at +1 and −1, with
the accumulation process starting at 0. The evidence signal that is
accumulated in support of picking the correct target (lower right
in this case) is

e1 =
(

sdown − sup
)

+ kirr ·
(

sright − sleft
)

+ n

with n allowing for some additional stimulus-independent, zero-
mean noise on the evidence signal. This signal that feeds into the
integrator has a mean of

e1 =
(

sdown − sup
)

+ kirr ·
(

sright − sleft
)

which corresponds to the drift rate of the drift-diffusion process
and a variance of

σ 2
e1
=

(

σ 2
sdown

+ σ 2
sup

)

+ k2irr ·
(

σ 2
sright

+ σ 2
sleft

)

+ σ 2
n

which corresponds to the diffusion component of the drift-
diffusion process. In general, for any combination of target
locations, cued axis, and coherences, this will be

e1 =
g ·

(

crel + kirr · cirr
)

1+ ks · ctot

with the upper bound corresponding to a correct choice and

σ 2
e1

=
kv · g

1+ ks · ctot
·
[

crel + k2irr · |cirr|

+ 2kn · (1− ctot) ·
(

1+ k2irr
)]

+ σ 2
n

A correct choice will be made when i1 > +1 and an error
(incorrect choice) will occur when i1 < −1.

The drift rate was allowed to vary randomly from trial to trial
and was drawn from a normal distribution with mean e1 and
standard deviation σDR. This feature enables the drift-diffusion
model to account for differences in correct and error response
times (Ratcliff and Rouder, 1998).

For calculating the predictions of the model (probabilities of
making a correct choice/error and decision time distributions
for each coherence combination) we took advantage of a
numerical solution to the first passage time problem (see
Ditterich, 2006, Appendix B.1 and Smith, 2000 for details). The
MATLAB function WIENER_VD_1D_2B_NUM.M, which has
been used for performing the model calculations, is part of the
Stochastic Integration Modeling Toolbox (written by JD), which
can be downloaded from the Software section of http://www.
peractionlab.org.

Response times were assumed to have two additive
components: the decision time and a residual time, which
could vary randomly from trial to trial and was assumed to be
normally distributed. (Predicted RT distributions were obtained
by convolving the decision time distributions with a Gaussian
kernel.)
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Model Fit and Predictions
Model parameters were identified by maximum likelihood
estimation (using the combination of choice and RT). The log
likelihood was obtained by summing, across all trials, the logs of
the probabilities of obtaining each trial’s particular combination
of choice and RT according to the model:

Log likelihood =
∑

all trials

ln Pmodel

(

choice, RT
)

Amulti-dimensional simplex algorithm (provided by MATLAB’s
Optimization Toolbox) was used to find the combination
of parameters that would maximize the likelihood of the
experimental data. A pattern search (provided by MATLAB’s
Global Optimization Toolbox) was used to make sure that the
simplex algorithm was not getting stuck in a local optimum.
Predicted decision time distributions were calculated up to a
minimum of 5,000ms with a temporal resolution of 5ms.

In some of our models (see main text for details) we allowed
for the possibility that subjects might sometimes forget which
motion axis had been cued by assuming that, on a certain
proportion of the trials (pwrong_axis), the decision would be
dominated by the irrelevant rather than the relevant component
of themotion stimulus. The predicted behavior on these trials was
obtained by exchanging the roles of the two motion components
in the model: The irrelevant sensory information would receive
a weight of 1, whereas the relevant information would only be
weighted by kirr . The overall predicted behavior (choices and RT
distributions) was then obtained as a weighted sum of (1 −

pwrong_axis) times the predicted behavior assuming appropriate
use of the cue information and pwrong_axis times the predicted
behavior assuming that the irrelevant axis was given the larger
weight.

For comparison purposes with the value estimated from
the choice data, the slope of the model-predicted psychometric
function for trials with only irrelevant coherent motion was
determined by a least-squares fit of a logistic function:

p
(

correct choice
)

=
eαmodel·cirr

1+ eαmodel·cirr

The standard error of the estimated slope was determined using
the principle of error propagation as typically done in non-linear
regression:

6p =

(

JTJ
)−1

· σ 2
res

6p is the parameter covariance matrix, in our case just the
variance of the estimated slope, J is the Jacobian, and σ 2

res the
variance of the residuals. The two slopes (data-based α and
model-based αmodel) were then compared using a t-test.

RESULTS

We asked human subjects to make a perceptual decision about
the direction of motion in a random dot stimulus. Importantly,
the stimuli contained two orthogonal components of coherent

motion, but only one component was decision-relevant on any
given trial. A cue at the beginning of each trial indicated whether
a decision was supposed to be made about motion along the
horizontal or the vertical axis. Two choice targets appeared
along one of the two possible diagonals such that each target
was associated with one horizontal and one vertical direction
of motion. Subjects made a goal-directed saccade to one of the
targets whenever ready, and we measured choices and response
times (RT). Figure 1 shows the structure of the task.

Decision Behavior
Figure 2A shows how often subjects selected the correct target
(the one associated with the direction of motion along the
decision-relevant axis) as a function of the strength of the
relevant and irrelevant motion signals. The decision-irrelevant
motion component could either provide evidence for the same
target as the relevant motion (“congruent trials”) or for the
opposite target (“incongruent trials”). This is captured by the
sign of the irrelevant motion strength: positive values indicate
congruent trials, negative values incongruent trials. The choice is
clearly dominated by the decision-relevant motion (steep slope of
the psychometric function along the relevant motion axis), with
accuracy increasing as the relevant motion strength increases. If
subjects were able to ignore the irrelevant motion component
completely the psychometric function would be flat along the
irrelevant motion strength axis, which it is clearly not, indicating
that the irrelevant sensory information had an impact on subjects’
choices. We can quantify this by fitting a logistic function to the
data from trials with only irrelevant coherent motion (blue line in
Figure 2A) and estimating its slope, which is shown in Figure 2B

(blue line). The estimated slope (αirr ; see Data Analysis) is 1.26
(SE: 0.18), which is significantly different from zero (p < 10−6;
t-test). A corresponding slope can also be estimated from trials
with only relevant coherent motion (red lines in Figures 2A,B),
which results in an αrel of 13.0. The ratio of the two estimates,
which is on the order of 10, provides a first estimate how much
more impact the decision-relevant sensory information had on
the choice compared to the irrelevant information. Thus, subjects
were able to ignore the irrelevant information quite well, but not
completely. The psychometric functions of individual subjects
are shown in Supplementary Figure 2.

One possible explanation for the remaining effect of the
decision-irrelevant sensory information on choice would be
that the irrelevant information can only be suppressed to a
certain degree and that some of the information always leaks
through. The decision would then be based on a combination
of the relevant sensory information and a weakened version
of the irrelevant information. The simplest case of such a
combination would be a linear superposition. Since the choice
behavior in the basic version of the random-dot motion direction
discrimination task is well-captured by a logistic function, we
therefore wondered whether the choice behavior in our task
could be captured by a logistic function based on a linear
combination of decision-relevant and irrelevant motion strength.
Figure 2C shows a superposition of the choice data (surface with
solid lines) and such a logistic function (surface with dashed
lines), using the two weights that had just been determined
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FIGURE 2 | Decision behavior. (A) Choice accuracy (picking the target associated with the direction of motion along the relevant axis) as a function of the strength of

the decision-relevant and irrelevant motion components. Positive values on the irrelevant motion strength axis indicate “congruent trials:” the irrelevant motion

component provided evidence for choosing the same target as the relevant motion component (green part of axis). Negative values indicate “incongruent trials:” the

irrelevant motion component provided evidence for choosing the opposite target (orange part of axis). The red line indicates trials with only relevant coherent motion,

the blue line indicates trials with only irrelevant coherent motion. (B) Logistic fits to data from trials with either only relevant coherent motion [red; corresponds to red

line in (A)] or only irrelevant coherent motion [blue; corresponds to blue line in (A)]. The filled circles reflect the data, lines are logistic fits based on maximum likelihood

estimation. (C) Overlay of data (surface with solid lines) and a logistic function based on a linear combination of relevant and irrelevant motion strength (surface with

dashed lines). The coefficients that have been used for constructing the surface are the ones derived from the fits in (B). (D) Mean response times (RT) for all tested

combinations of coherences. (E) Mean RTs of correct choices (blue) and errors (red) for trials without irrelevant coherent motion. Error bars reflect 95% confidence

intervals.

in Figure 2B. The general agreement is quite good, but if the
decision were indeed based on such a linear combination we
should be able to develop a model of the decision process that
can account for all aspects of the behavioral data, including RTs.
Figure 2D shows the mean RTs for all analyzed combinations of
motion strengths (note that the direction of the relevant motion
strength axis has been reversed compared to in Figures 2A,C

to be able to look at the data surface). Variations in mean RT
are dominated by the relevant motion strength, with responses
to stimuli without relevant coherent motion being ∼1 s slower
than responses to stimuli with 30% coherent relevant motion.
But mean RT is also affected by the strength of the irrelevant
motion component: the psychometric function is again not flat
along the irrelevantmotion strength axis. Similar to previous data
from the random-dot motion direction discrimination task, error
RTs, on average, tended to be longer than RTs associated with

correct responses. This is shown in Figure 2E for trials without
irrelevant coherent motion. RT distributions will be shown
later in Figures 4, 6 when comparing data and computational
models.

Computational Model Based on the Idea of
Incomplete Suppression of the Irrelevant
Information
We developed a computational model based on the idea
that decision-irrelevant sensory evidence is only incompletely
suppressed. As a consequence, the decision is based on a linear
combination of decision-relevant and irrelevant net sensory
evidence. Consistent with a large body of previous work, the
model is based on the integration-to-threshold framework, which
can be formalized as a drift-diffusion model (Palmer et al., 2005;
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Ditterich, 2006; Niwa and Ditterich, 2008; Ratcliff and McKoon,
2008). In the case of our experiment the sensory evidence is
represented by four pools of motion-sensitive neurons, tuned
to the four cardinal directions. Since the multi-component
random dot stimulus that has been used in this experiment
is similar to the one that has been used in our earlier 3AFC
study (Niwa and Ditterich, 2008), we took a similar approach
to modeling the neural response to the stimulus. A more
detailed justification can be found in Niwa and Ditterich (2008),
but, briefly, the representation of the sensory evidence for a
particular direction of motion was described as having a strong
linear response to coherent motion in the preferred direction
of the modeled pool of neurons and a weak linear response
to non-coherent motion in the stimulus (random flickering;
“noise dots”). This accounts for the roughly piecewise linear
relationship between signed motion strength (positive motion
strength corresponds to coherent motion in the preferred
direction, negative values to motion in the null direction)
and firing rate in the middle temporal area (MT) in response
to random dot motion along a single axis (Britten et al.,
1993). The typical direction tuning width of neurons in MT
has been reported to be on the order of 40–50◦ (half-width
at half-height) (Albright, 1984; Snowden et al., 1992; Treue
et al., 2000). Motion orthogonal to the preferred direction is
therefore not expected to cause considerable excitation, but
we included a divisive normalization mechanism (Simoncelli
and Heeger, 1998) to be able to account for interactions at
the population level when multiple subpopulations of neurons
that are tuned to different preferred directions are driven
by simultaneously present components of coherent motion in
multiple directions. The total amount of coherent motion in the
stimulus is used as a proxy for the overall population response.
Any potentially remaining small excitatory effect of orthogonal
coherent motion on the response of the subpopulation of MT
neurons providing evidence for a particular direction would not

be direction-selective (due to the symmetry of direction tuning
and both possible directions of motion having the same angular
separation from the preferred direction) and would therefore
be captured by our model by simply adjusting the strength of
the normalization mechanism. The resulting equations can be
found in Materials and Methods. The representation of sensory
evidence is followed by an opponent readout stage. The difference
between the activity of sensory neurons tuned to opposite
directions of motion is taken as the net sensory evidence in favor
of a particular direction. Net sensory evidence for each possible
choice is then accumulated over time until a decision threshold is
reached.

The critical addition to the model for being able to account
for the results of our experiment is the relevance-based
modulation stage. The net sensory evidence signal feeding into
a decision integrator is a linear combination of the decision-
relevant net sensory evidence along the cued motion axis
and a damped version of the irrelevant net sensory evidence
along the orthogonal axis. Figure 3 shows the structure of the
proposed decision mechanism for the example configuration
shown in Figure 1: targets are located to the top-left and bottom-
right of the motion stimulus and the vertical axis is cued as
decision-relevant. The race between the two shown integrators
to the decision threshold is mathematically treated as a one-
dimensional drift-diffusion process with an upper and a lower
bound corresponding to the two possible choices. The model
predicts a distribution of decision times. RTs were assumed to
be the sum of the decision time and a randomized residual time,
accounting for non-decision-related processing like response
preparation and execution. Further details can be found in
Materials and Methods.

The model parameters resulting from a maximum likelihood
fit can be found in Table 1. The gain of the irrelevant information
kirr is estimated to be 0.084. Thus, according to this model, the
decision-relevant net sensory evidence had 12 times more impact

FIGURE 3 | Structure of the computational model (shown for the example configuration in Figure 1). Decisions between the two possible action choices are based

on accumulating net sensory evidence to a decision threshold. The key element of the model is that the net evidence signal that the decision is based on is a linear

combination of decision-relevant (with a weight of 1) and irrelevant (with a weight of kirr ) sensory information.
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TABLE 1 | Model parameters and likelihoods.

Parameters/values Model using only linear

superposition (leaking

through of irrelevant

information)

Model using only fraction

of trials with opposite

weighting (lapses in

remembering cued

component)

Model using only fraction

of trials (fixed) with

opposite weighting

Model using linear

superposition and

fraction of trials with

opposite weighting

Sensory gain g (to obtain drift

rate in ms−1)

0.00780 0.00894 0.0103 0.00884

Response to noise dots kn 0.0433 0.0893 0.0815 0.0853

Strength of divisive

normalization ks

0.396 0.694 1.08 0.655

SD of drift rate σDR [ms−1] 5.68 · 10−4 5.28 · 10−4 4.78 · 10−4 5.47 · 10−4

Mean-dependent variability

of sensory response kv

0.235 0.245 0.223 0.261

Stimulus-independent noise

σ2
n [ms−1]

4.17 · 10−4 2.41 · 10−4 2.56 · 10−4 2.33 · 10−4

Gain of irrelevant sensory

information kirr

0.0844 0

(enforced)

0

(enforced)

0.0647

Proportion of trials with

opposite weighting

pwrong_axis

0

(enforced)

0.0421 0.16

(enforced)

0.0306

Mean residual time tres [ms] 347 346 345 350

SD of residual time σtres [ms] 37.5 37.2 39.9 40.0

Log likelihood −113,082 −113,088 −113,332

(worst fit)

−113,046

(best fit)

Slope of psychometric

function for trials with only

irrelevant coherent motion

αmodel

1.30 (SE: 0.02)

(determined after model

fit)

0.32 (SE: 0.11)

(determined after model fit)

1.28 (SE: 0.19)

(determined after model fit)

1.32 (SE: 0.10)

(determined after model

fit)

Model parameters shown in bold face were enforced; model parameters shown in normal font were obtained through maximum likelihood estimation. The slope of the psychometric

function (last row) is not an additional model parameter and was determined after the model fit.

on the decision than the irrelevant information. See Discussion
for a more general discussion of other model parameters.
Figure 4 shows a comparison between experimental data and this
model. As can be seen in Figure 4A, the psychometric function
is well-accounted for. The surface with solid lines represents
the data, the surface with dashed lines the model. The slope of
the model psychometric function along the irrelevant motion
strength axis is 1.30 (SE: 0.02), which is not significantly different
from the value estimated from the data (p = 0.85). Figure 4B
shows that mean RT is well-accounted for for the majority of
motion strength combinations, but the model has a tendency
to predict somewhat too long mean RTs when there is no
relevant coherent motion. This is a point we will come back
to later. Figure 4C shows three representative RT distributions:
no coherent motion at the top, only strong relevant coherent
motion in the middle, and only strong irrelevant coherent
motion at the bottom. There is good agreement between the
RT distribution shapes predicted by the model (red lines) and
the actual distributions in the data (blue histograms). Due to

the drift rate being allowed to show random variations across

trials (see Materials and Methods), the model can account

for the general observation that errors tended to be slower

than correct choices (Ratcliff and Rouder, 1998), but still

underestimates mean RTs on trials with strong relevant motion

(Figure 4D).

Computational Model Based on the Idea
That Subjects Sometimes Forget Which
Component Has Been Cued as Relevant
An alternative explanation for the decisions being affected
by the irrelevant sensory information would be that subjects
sometimes, on a certain fraction of the trials, have forgotten
which motion axis had been cued and end up making a decision
based on the motion along the axis that had not been cued
as decision-relevant. In this scenario, trials would be a mixture
of a majority of trials where the decision is based on the
relevant stimulus component and a minority of trials where
the decision is based on the irrelevant stimulus component.
The resulting psychometric function would show an effect of
the irrelevant motion strength even if subjects were able to
suppress the irrelevant information completely on those trials
where the appropriate motion component was used. Could this
idea potentially also explain the collected data? Fitting a model
with complete suppression of the irrelevant net sensory evidence
on the majority of trials and assuming that the decision is purely
based on the irrelevant net sensory evidence on a certain fraction
of trials results in the psychometric function shown in Figure 5A.
The surface with solid lines represents the data, the surface with
dashed lines the model. The model parameters can be found
in Table 1. The maximum likelihood estimate of how often a
decision would have to be based on the wrong component is on
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FIGURE 4 | Model assuming incomplete suppression of irrelevant evidence. (A) Choice accuracy (surface with solid lines = data, surface with dashed lines = model).

The solid lines connect the actual data points. The dashed lines connect the model predictions for the coherence combinations used in the experiment. The brighter,

oddly-shaped structures in the surface plot are the result of the data and model surfaces intersecting. (B) Mean RT (surface with solid lines = data, surface with

dashed lines = model). The solid lines connect the actual data points. The dashed lines connect the model predictions for the coherence combinations used in the

experiment. The brighter, oddly-shaped structures in the surface plot are the result of the data and model surfaces intersecting. (C) Representative RT distributions for

correct choices (blue histograms = data, red lines = model). Top: no coherent motion (441 trials); middle: only strong relevant coherent motion (852 trials); bottom:

only strong irrelevant coherent motion (262 trials). The difference in number of available trials is a consequence of changes in accuracy with motion strength and trials

with non-zero irrelevant motion strength being divided into congruent (positive signed irrelevant motion strength) and incongruent trials (negative signed irrelevant

motion strength). (D) Mean RTs of correct choices (blue) and errors (red) for trials without irrelevant coherent motion. The circles reflect the data, the lines the model.

Error bars indicate 95% confidence intervals.

the order of 4%. The slope of the model psychometric function
along the irrelevant motion strength axis is, however, only 0.32
(SE: 0.11), which is approximately one quarter of the value
estimated from the data and significantly smaller (p = 10−5).
The model therefore cannot account for the magnitude of the
effect that decision-irrelevant sensory information had on choice.
To match the impact one would have to postulate that subjects
based their decision on the wrong component of the stimulus
in ∼16% of the trials. This results in a slope of the model
psychometric function along the irrelevant motion strength axis
of 1.28 (SE: 0.19), which is not significantly different from the
value estimated from the data (p = 0.96). All model parameters
can be found in Table 1. The predicted psychometric function is
shown by the surface with dashed lines in Figure 5B. The model
now predicts substantially lower accuracy on incongruent trials
with strong relevant motion as observed in the experiment and
therefore again cannot account for the data.

Despite this model’s failure to capture the impact of the
irrelevant sensory information on choice behavior, the likelihood
associated with the model fit was not much worse than the
one associated with fitting the previously discussed linear
combination model, suggesting that there was some other aspect

of the dataset that could be explained by the forgetting model,
but not the linear combination model. As can be seen in
Figure 5C, the forgetting model can account for longer error
RTs, even when the relevant motion is strong. Slow errors on
trials with high relevant coherence are very unlikely according
to the linear combination model. They are more likely, however,
according to the model based on cue forgetting as they could
have been the consequence of basing the decision on the
wrong motion component, which can have low coherence even
when the cued component is strong. We therefore fitted a
final, hybrid model, assuming that decision-irrelevant sensory
information would never be fully suppressed and that subjects
would sometimes forget the cue and therefore end up basing their
decision on the wrong motion component on a fraction of the
trials.

Hybrid Model with Incomplete Suppression
of Irrelevant Evidence and Cue Forgetting
The parameters of the hybrid model can again be found in
Table 1. The data is best accounted for with a gain of the decision-
irrelevant net sensory evidence kirr of 0.065, corresponding
to the decision-relevant information having 15 times more
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FIGURE 5 | Model assuming cue forgetting. (A) Choice accuracy (surface with

solid lines = data, surface with dashed lines = model; see Figure 4A for

additional information). All model parameters were determined using maximum

likelihood estimation. Note that the model psychometric function has a much

shallower slope along the irrelevant motion strength axis. (B) Proportion of

trials on which the decision was based on the wrong motion component was

fixed at 16%; remaining model parameters determined using maximum

likelihood estimation. The slopes of the psychometric function along the

irrelevant motion strength axis now match, but the model predicts substantially

lower accuracy on incongruent trials with strong relevant motion than

observed in the data. (C) Mean RTs of correct choices and errors (see

Figure 4D for additional information).

impact on the decision than the irrelevant information, and
the decision being based on the wrong motion component in
3.1% of the trials. Figure 6 shows that the psychometric function

(Figure 6A), mean RTs (Figure 6B), and RT distributions
(Figure 6C) are well-captured by this model. Error RTs are
still somewhat underestimated, but mostly within the 95%
confidence intervals provided by the data (Figure 6D). The slope
of the model psychometric function along the irrelevant motion
strength axis is 1.32 (SE: 0.10), which is not significantly different
from the value estimated from the data (p= 0.80). Also note that
the match between data and model in mean RT for trials without
relevant coherent motion is improved over Figure 4B.

DISCUSSION

We have asked human subjects to make perceptual decisions
in the presence of both decision-relevant and irrelevant sensory
information. While the decisions were mostly based on the
relevant information, the irrelevant information still had a
clearly measurable influence. We have demonstrated that this
effect cannot purely be the consequence of subjects sometimes
forgetting which component of the sensory information had
been cued as decision-relevant. Instead, one has to postulate
that the decision mechanism is unable to completely suppress
the irrelevant evidence such that some of the information leaks
through and ends up affecting the decision. Using different
models, we have estimated the strength of the remaining
irrelevant sensory evidence to be between 6 and 10% of the
strength of the relevant signal. The selection mechanism is
mathematically well-described by a linear gain modulation such
that the decision can be described as being based on a linear
combination of decision-relevant and irrelevant net sensory
evidence.

Model Parameters and Their Interpretation
The ratio between the variance of the sensory response and its
mean was estimated to be between 0.24 and 0.26 (excluding the
model with an enforced proportion of trials being dominated
by the wrong stimulus component). This is very similar to
our previous estimate of 0.26 in a study on multi-alternative
perceptual decision-making (Niwa and Ditterich, 2008). This
ratio is clearly sub-Poisson, which is expected if the evidence
for motion in a particular direction is not provided by a single
neuron, but rather a population of neurons. On the other hand,
it is clearly not negligible, which can be due to a limited size
of the population and/or positive correlations between neurons
in the population, which have, for example, been reported in
area MT (Zohary et al., 1994). In addition to fluctuations of the
decision signal that scale with the activity of neurons representing
the sensory evidence, we also fitted a stimulus-independent
component of the variance of the decision signal, which was
estimated to be between 2 · 10−4 and 4 · 10−4 ms−1. This
roughly corresponds to the amount of noise contributed by a
pool of neurons driven by 15%-coherent motion in the preferred
direction. The overall amount of noise on the decision signal is
therefore dominated by the fixed component in the case of weak
stimuli, but the stimulus-dependent component can exceed the
fixed component in the presence of strong stimuli.

Themean residual time was consistently estimated to be about
350ms, which is similar to the value obtained in Niwa and
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FIGURE 6 | Hybrid model combining incomplete suppression of irrelevant evidence and cue forgetting. (A) Choice accuracy (surface with solid lines = data, surface

with dashed lines = model; see Figure 4A for additional information). (B) Mean RT (surface with solid lines = data, surface with dashed lines = model; see Figure 4B

for additional information). (C), RT distributions (blue histograms = data, red lines = model; see Figure 4C for additional information). (D), Mean RTs of correct

choices and errors (see Figure 4D for additional information).

Ditterich (2008). Mean decision times were therefore ranging
from ∼500 to 1,400ms across conditions, clearly dominating
mean RT. Similarly, the standard deviation of the residual time
was consistently estimated to be on the order of 40ms. Across-
trial variability in RT was therefore also clearly dominated by
variability in decision time.

Potential Contributions by Feature-Based
Attention
Decision-relevant and irrelevant sensory information were
presented at the same spatial location in our task. Spatial
attention could therefore not play a role in separating decision-
relevant from irrelevant evidence. Feature-based attention,
however, could have contributed: paying attention to a particular
axis of motion might modulate neural activity in such a way
that responses to motion along this axis are enhanced, whereas
responses to motion along the orthogonal axis might be reduced.
Treue and colleagues have reported changes in the firing rate
of MT neurons in response to a motion stimulus inside the
receptive field depending on the direction of a second, attended
motion stimulus outside the receptive field (Treue and Martinez
Trujillo, 1999; Martinez-Trujillo and Treue, 2004; Maunsell and
Treue, 2006). While robust, reported changes in firing rate due
to feature-based attention are of limited size, with firing rate
ratios typically much smaller than two. Since in our task the

firing rate of MT neurons is roughly proportional to the motion
strength, reducing the effectiveness of the irrelevant motion
component by a factor of at least 10, as determined in this study,
by modulating the firing rate of sensory neurons would require
a rate modulation of similar size, which is about an order of
magnitude larger than the effects reported in the literature. Firing
rate modulations in sensory representations due to feature-based
attention are therefore not expected to be sufficient to separate
decision-relevant from irrelevant information.

Sasaki and Uka trained monkeys to make judgments about

either the direction of motion or about stereoscopic depth of
3D random dot patterns (Sasaki and Uka, 2009). Recordings
from area MT revealed that the firing rate of neurons was
essentially unaffected by whether the monkeys had to make a
decision about the direction of motion or about depth. This
observation is supported by preliminary results from our own
lab. We recorded from area MT while a monkey performed
the same task as the human subjects in the reported study
here and also found no substantial changes in firing rate
depending on whether the recorded neuron carried decision-
relevant or irrelevant motion information on any given trial
(Ditterich, 2015). The observations from both labs suggest that
the separation of decision-relevant from irrelevant information is
not achieved by modulating the firing rate of neurons in sensory
representations. The single-unit data does not rule out that
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parameters of the population response other than the firing rate
could be modulated by decision-relevance. For example, Cohen
andNewsome reported changes in the correlation structure of the
neural response depending on whether pairs of neurons provided
evidence for the same choice or for opposite choices (Cohen and
Newsome, 2008). Future studies will have to show whether such
changes could contribute to the separation of decision-relevant
from irrelevant sensory information.

Neural Implementation of the Selection
Mechanism
Mitani et al. did a modeling study of the already mentioned
Sasaki and Uka dataset (Mitani et al., 2013). Similar to
our conclusion, they determined that the primary reason for
choices being affected by decision-irrelevant sensory information
was “interference,” i.e., task-irrelevant sensory evidence not
being fully suppressed, rather than “task misapplication,” which
corresponds to making a decision about the wrong axis of
motion in our task. In their case, the argument was based
on the addition of “task misapplication” to the model not
leading to a substantial improvement of the model fit. We saw
an improvement, but demonstrated that “task misapplication”
(using the wrong component) alone would lead to a data pattern
that is incompatible with the observed choice data, whereas
leaking through of the irrelevant information alone predicts a
pattern that is compatible with the observed choice data. Mitani
et al. considered a “gated-integrator” model, which is roughly
equivalent to the type of model considered here, and found that
it was able to account for the choice behavior (decision times
were not measured in their case). This model, however, was not
able to account for the choice probability (CP) time course of
recorded MT neurons. The authors therefore favored a “double-
leaky-integrator” model: decision-relevant and irrelevant sensory
evidence are assumed to be accumulated in separate integrators,
with the task-irrelevant integrator being much leakier than the
relevant one. There is, however, an alternative explanation for
the reported late CP effect as put forward by Nienborg and
Cumming (2010). It could be the consequence of a choice-related
feedback signal rather than a feedforward phenomenon, which
would restore compatibility of the data with a mechanism that
is based on integrating a linear combination of decision-relevant
and irrelevant sensory information.

Mante and colleagues trained monkeys to make a judgment
about either the direction of motion or the color content
of colored random dot stimuli (Mante et al., 2013). Single-
unit recordings from prefrontal cortex indicated that individual
neurons carried mixtures of decision-related signals. The authors
determined that it was possible to decode a number of signals

from the population response: unmodulated decision-relevant
as well as irrelevant sensory evidence and an accumulated
version of mostly the relevant sensory evidence. Inspired by
this experimental observation, the authors developed a neural
network model of selective integration, which could explain
how decisions could almost exclusively be based on the relevant
sensory evidence as well as the types of neural signals observed in
prefrontal cortex. Effectively, although the irrelevant momentary
evidence signal itself does not get attenuated in this model, it
acts like a gated integrator or gain modulator depending on task
relevance, as the irrelevant momentary evidence does not move
the state of the system along the decision axis, which means that
this component of the sensory evidence is not being integrated.
This study suggests that the problem of selective decision-making
might completely be solved by a local circuit in prefrontal cortex.

Siegel and colleagues recorded multi-unit activity from a
variety of cortical areas while monkeys also performed a
color vs. motion discrimination task (Siegel et al., 2015). The
authors reported that various task-related signals were present
in large, distributed networks of brain areas. Future studies will
therefore have to show where and how critical contributions
to the separation of decision-relevant from irrelevant sensory
information are made in the brain. Our results provide
computational constraints that will have to be met by candidate
neural mechanisms.
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