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Neurodegenerative diseases and traumatic brain injuries (TBI) are among the main

causes of cognitive dysfunction in humans. At a neuronal network level, they both

extensively exhibit focal axonal swellings (FAS), which in turn, compromise the information

encoded in spike trains and lead to potentially severe functional deficits. There are

currently no satisfactory quantitative predictors of decline in memory-encoding neuronal

networks based on the impact and statistics of FAS. Some of the challenges of this

translational approach include our inability to access small scale injuries with non-invasive

methods, the overall complexity of neuronal pathologies, and our limited knowledge

of how networks process biological signals. The purpose of this computational study

is three-fold: (i) to extend Hopfield’s model for associative memory to account for the

effects of FAS, (ii) to calibrate FAS parameters from biophysical observations of their

statistical distribution and size, and (iii) to systematically evaluate deterioration rates for

different memory-recall tasks as a function of FAS injury. We calculate deterioration

rates for a face-recognition task to account for highly correlated memories and also

for a discrimination task of random, uncorrelated memories with a size at the capacity

limit of the Hopfield network. While it is expected that the performance of any injured

network should decrease with injury, our results link, for the first time, the memory recall

ability to observed FAS statistics. This allows for plausible estimates of cognitive decline

for different stages of brain disorders within neuronal networks, bridging experimental

observations following neurodegeneration and TBI with compromised memory recall.

The work lends new insights to help close the gap between theory and experiment on

how biological signals are processed in damaged, high-dimensional functional networks,

and towards positing new diagnostic tools to measure cognitive deficits.

Keywords: neurodegenerative diseases, traumatic brain injuries, Hopfield neuronal network, associative memory

encoding, memory impairments, axonal swellings

1. INTRODUCTION

Neurodegenerative diseases and traumatic brain injuries (TBI) are responsible for an overwhelming
variety of functional deficits, both cognitive and behavioral, in animals and in humans. Memory
impairment, which is the focus of this work, is a particularly pernicious consequence for those
affected. The pathophysiology induced by these brain disorders is usually complex, with key
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effects of the injuries occurring at small spatial scales that are
currently inaccessible by non-invasive diagnostic techniques.
Indeed, a hallmark pathology is the abundance of diffuse,
Focal Axonal Swellings (FAS) which compromise spike train
encodings in neuronal networks. Thus, there is a broad need to
understand how neuronal pathologies which develop at a cellular
level compromise the functionality of a network of neurons
responsible for cognitive function. In this article, we extend a
well-established computational model of associative memory,
i.e., the Hopfield network model (Hopfield, 1982, 1984), to
incorporate FAS pathologies implicated in many brain disorders,
providing novel metrics for quantifying memory impairments
and functional deficits. While random neuron and synapse loss
have been studied previously in memory models, this work is
the first to integrate them with a recently developed theory of
impaired neuronal responses due to FAS and their effects to
spike train coding (Maia and Kutz, 2014a,b, 2017; Maia et al.,
2015). While it is obvious that damaging any network will lead
to compromised functionality, our quantification of memory
decline progression could lead to new metrics for understanding
memory impairments in a variety of leading neurodegenerative
diseases.

Our computational models have several limitations and
are of course only a simplified proxy for the original neural
circuity involved in memory tasks. Still, they can provide
an interesting tradeoff as we address questions that would
be otherwise impossible in a clinical or experimental setting.
We define unambiguously and in a precise mathematical
way quantities such as memory overlap, successful memory
recognition, memory confusion, significance of the memory
classification, and noise-handling ability. These variables are all
incorporated in our recognition score, a new metric that offers
a more complete description of the network’ s performance.
We can then systematically increment the injury level, the
noise level, randomize targeted neurons, change FAS parameter
distributions, and address either highly correlated memory sets
(faces) or random and uncorrelated ones. Consequently, we
are able to quantify the decline in memory performance as a
collective function of these variables. Moreover, we run enough
simulations to control for each variable, achieve statistically
significant results, and estimate the variability between different
realizations.We show that as the injury progress, the first affected
network functionality is its noise-handling ability, and that
explicit memory-confusion occurs only later on. In this regard,
the FAS parameters and distributions are crucial to determine
when and how fast confusion in associative-memory should be
expected.

The seminal work of John Hopfield is still largely used to
model memory association (Hopfield, 1982, 1984; Hopfield and
Tank, 1985). There, meaningful stimuli are encoded, stored,
and later recalled in response to some cue. And although
this process improves the interpretation of subsequent stimuli
that share common features with previously stored concepts,
what ultimately governs the memory recall abilities are the
coordinated exchanges of electrical signals between neurons in
network structures. Several pathological effects, most notably
FAS, can jeopardize this critical electrical activity in the brain,

making memory performance particularly sensitive to common
disorders. Given its ubiquity across many neurodegenerative
diseases and traumatic brain injury, understanding the role
of FAS in altering spike train encodings is of paramount
importance, particularly on a network level where cognitive
functionality occurs. The purpose of this work is to help close this
gap and study the effects of FAS to network models that exhibit
plausible memory retrieval capabilities.

2. RESULTS

Some of our contributions are theoretical and methodological as
we combine, for the first, time twomodels: (a) Hopfield’s network
model for associative memory (Hopfield, 1982, 1984) and (b) the
theory of impaired neuronal responses due to FAS (Maia and
Kutz, 2014a,b, 2017; Maia et al., 2015). Full details are provided
in the Materials and Methods section and in the supplemental
materials. It is important tomention that the previous FAS results
by Maia and Kutz concern individual swellings only. Given the
geometrical parameters of a particular swelling, they were able
to estimate the corresponding type of impaired neural response
(transmission, filtering, reflection, or blockage). In other hand,
Hopfield’s memory model is a network model. To study injuries
at its level, we must provide plausible distributions of swelling
effects to the injured population. Thus, the FAS parameters
(pie-charts) calibrated from the experiments of Wang et al.
and of Dikranian et al. (detailed ahead) are also important
methodological contributions of this work. In what follows, we
will illustrate these ideas for two differentmemory-retrieval tasks:
(i) a face recognition task for highly correlated memories, and (ii)
a memory retrieval task for random, uncorrelated memories. For
each task, we tried to justify our simulation parameters as much
biologically and statistically as possible, but since there were still
some arbitrary selections, wemade all our codes available to allow
further parameter explorations.

2.1. Face Recognition Decline on Impaired
Associative-Memory Networks
We calibrate a Hopfield-like neuronal network (Hopfield, 1982,
1984) to perform face recognition tasks. See Figure 1 for a
detailed schematics. Our sample memory space consists of five
human facial images (1, 044 × 1, 341 pixels), modified from the
MIT faces database (Weyrauch et al., 2004)1. In our setting,
neurons dynamically alternate between multiple activity states to
account for multiple shades of grey in the images. This higher-
dimensional feature space allows for the encoding and storing of
more complex images in the network. The neuronal connections
(re-weighted during an initial training phase) encode the desired
memories as fixed points of the system. We add Brownian noise
fluctuations to the dynamics as a proxy for natural stochastic
fluctuations. A single realization of the face recognition task
consists in presenting a different, noisy version of a memory

1Credit is hereby given to the Massachusetts Institute of Technology and to the

Center for Biological and Computational Learning for providing the database

of facial images. http://cbcl.mit.edu/software-datasets/heisele/facerecognition-

database.html

Frontiers in Neuroscience | www.frontiersin.org 2 November 2017 | Volume 11 | Article 623

http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html
http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Weber et al. Memory Deterioration Rates Following Neurodegeneration

FIGURE 1 | Schematics of our associative memory task (face-recognition) for a neuronal network under the influence of neurodegenerative diseases and traumatic

brain injury. (A) For a noisy input with 80% overlap (i.e., 20% initial noise shown in center), the healthy system (left) achieves an overlap of 90% with the correct face

(marked yellow). The chart presents the initial (blue) and final (green) Hamming distances between the current network state and the patterns corresponding to the

respective facial images. When the recognition task is performed with an injured system (right), we observe a severe decrease in accuracy (overlap significantly smaller

than in the healthy network) and confusion between two facial images. Both are characteristic injurious effects of memory impairments arising from FAS and are

quantified with a recognition score in our study. (B) Images of FAS—highlighting their morphometric features—adapted from experimental works used to calibrate our

model (Dikranian et al., 2008; Wang et al., 2011).

and assess if the system converges to the corresponding fixed
point. Our healthy network shown in Figure 1 converges to
the right fixed point approximately 90% of the time, does not
converge for the remaining 10%, and never converges to a
wrong fixed point. Note that there are two types of errors (non-
convergence and wrong-convergence). Our recognition score
R (see Supplementary Materials) is a metric that encapsulates
both types of errors and is better suited to account for deficits
in network performance as FAS injuries are introduced in the
simulations.

Figure 2 shows recognition scores (heatmaps) for the most
similar triplet of faces as we vary the noise level (from 0 to 30%)
and the injury level p (from 0 to 30%). Note that recognition is
always strong in the upper-left corner (low noise and low injury)
and always weak in the lower-right corner (high noise and high
injury). A careful examination of the heatmaps allow us to follow
(for each face) how the decline in noise-handling ability evolves
into memory confusion.

A key innovation of our model is that a swollen neuron
may operate in one of the following regimes: total transmission,
filtering, reflection, or blockage. The injury level p denotes the
percentage of randomly injured neurons in the network, but their
regimes are determined by a FAS distribution (pie-charts). The
FAS pie-charts change depending on how long it took for the
mice to be sacrificed. Figure 3A uses FAS pie-charts inferred
experimentally (Wang et al., 2011) for mice sacrificed 12 h after
TBI. Figure 3B uses pie-charts from mice sacrificed 24 and 48 h
after TBI. Finally, Figure 3C uses pie-charts from another source
(Dikranian et al., 2008), for mice sacrificed 30 min, 5, 16, and
24 h after TBI. This allowed us to quantify the rate at which the
system’s average recognition score R decrease as a function of
injury level p:

R(p) = A− Bep (1)

The functional form R(p) is produced from a linear regression
over N = 1,080 normalized data points obtained from
computational experiments. The values for the constants in
Equation (1) are [A = 1, B = 0.24] for pie-charts from Wang et
al. and [A = 1.21,B = 0.22] for pie-charts from Dikranian et al.
See section Materials and Methods and Supplementary Materials
for further details.

2.2. Deterioration Rates for
Sparsely-Encoded Uncorrelated Memories
After illustrating our model, injury protocols, and performance
metrics for a memory-recall task using highly-correlated faces,
we move on to a more abstract setup. Consider now a multi-state
Hopfield network withM sparse and uncorrelatedmemories (see
Figure 4), where M is now close to the theoretical capacity of
the system (M ≈ 0.14N, see Hopfield, 1984). It is obvious that
any plausible type of impairment to the individual neurons will
ultimately lead to deteriorated recognition scores R as a function
of p. In our experiments, for a fixed noise level, the normalized
decay rates take the functional form

R(p) = 1− Bep. (2)

Previous studies of injury studies in Hopfield networks where
done in a binary setup, i.e., a neuron was either fully functional
or fully impaired. See, for instance, Ruppin and Reggia (1995).
In our setup, this would correspond to having a pie-chart with
100% of the FAS in the blockage regime. To contrast past
approaches with our own, we vary the contributions of the two
most prevalent types of FAS mechanisms (filtering and blockage)
in our simulations. The distinct deterioration rates are shown
in Figure 4A and summarized in Table 1. The discrepancies are
significant and may lead to very different estimates regarding the
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FIGURE 2 | Effects of FAS on associative memory for a face recognition task. We measure recognition ability and accuracy for a sample set of three facial images

(Weyrauch et al., 2004) over a given range of parameters (injury: 0–30%, initial noise: 0–30%). As the degree of injury increases, the noise handling ability of the

system drops severely: The coloring of the heat maps change from yellow (significant recognition) in the upper left (small injury and initial noise) to dark orange and red

(confusion) in the lower right corner (high injury and initial noise). We observe confusion and a decline in recall accuracy for every image in the set of samples.

Regression over all N = 1,080 normalized data points indicates an exponentially declining relation between recognition scores and injury level as shown in the diagram.

FIGURE 3 | (A) Mean recognition scores are displayed in red, standard deviations are shaded in gray. The dashed line indicates the recognition function obtained by

linear regression. (B,C) We tested our model using experimental results from TBI studies by Wang et al. (2011) and Dikranian et al. (2008). Our results show a modest,

but unstable increase in memory performance for the adult brain during the first 24 h after the injury (B, Wang et al., 2011), that drops again to the initial level during

the following day. In the infant’s mouse brain, we observe a steadily decreasing performance in the first 24 h (C, Dikranian et al., 2008). The observations match the

long recovering times that are commonly observed in patients suffering from TBI.

stage of the disease or its progression.Wewill discuss this inmore
depth in the following sections.

3. MATERIALS AND METHODS

3.1. Modeling Dynamical Impacts of FAS
Focal Axonal Swellings (FAS) are an ubiquitous pathological
feature to several brain disorders (McArthur et al., 2004;
Coleman, 2005; Bayly, 2006b; Tang-Schomer et al., 2010, 2012;
Xiong et al., 2013). Their presence is known to distort neuronal
spike-train dynamics, but precise electrophysiological recordings
of pre- and post-FAS spike train dynamics are still unavailable.

The recent theoretical models of Maia and Kutz (Maia and Kutz,
2014a,b; Maia et al., 2015), however, provide important estimates
of spike train deterioration due to FAS. Using this model, we can
characterize the effect of injury on the firing rate activity through
a response function. The state variable of a Hopfield node, Si,
is equivalent to the firing rate of that node. The collection
of all nodes is denoted by the vector S. Injuries can then be
characterized by the transfer function

S̃ = F(S,β). (3)

where S̃ is the effective firing rate (state) after the FAS, S is the
firing rate (state) before the FAS, and β is a parameter vector
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FIGURE 4 | Estimated deterioration rates. We estimate deterioration rates for impairments in memory recognition subject to different distributions of FAS mechanisms

(f: filtering in %, b: blockage in %). The computational experiments use random, uncorrelated memories.

indicating one of three injury types applied to individual nodes
of the network (Maia and Kutz, 2014a,b). The function F(·)
maps the pre-injury to post-injury firing rates using biophysically
calibrated statistical distributions of injury in both frequency
and size (see Supplementary Materials). If no FAS occurs to
a given axon, then its state is unaffected (β0). This occurs
with probability 1 − p where p is the probability of injury
and what we term injury level, i.e., larger p implies more
injury. For those neurons with axonal swellings, the following
manifestation of spike train deformations have been observed:
unimpaired transmission (β1), filtered firing rates (β2), spike
reflection (β3), or blockage (β4). The injury type is dependent
upon the geometry of the swelling, with blockage being the
most severe injury type. From biophysical data collected on
injury statistics (Dikranian et al., 2008; Wang et al., 2011),
both in swelling size and frequency, we assign a prescribed
percentage of each type of injury (βj) to the network using
calibrated simulations of spike propagation dynamics (Maia
and Kutz, 2014a,b). For a blockage injury (β4), no signal
passes the swelling so the effective firing rate of the neuron
goes to zero. Thus, S̃ = 0 which prevents the neuron from
adapting to the collective dynamics. Filtering injuries were taken
to decrease the firing rate, with higher firing rates having a
stronger chance of decreasing due to pile-up effects in the
spike train (Maia and Kutz, 2014b). Reflection of spike trains
effectively filters the firing rate of an axon by a factor of two
so that S̃ = 0.5S. This is due to the fact that the reflected
spike annihilates an oncoming spike (Maia and Kutz, 2014a).
Overall then, the method for producing the filtering function
F(·) uses the most advanced experimental findings to date with
recent computational studies of spike train propagation through
FAS (Maia and Kutz, 2014a,b). See the Materials and Methods
section and the Supplementary Materials for details on how

TABLE 1 | Deterioration rates for sparsely-encoded uncorrelated memories.

FAS distribution Mean deterioration rates

Filtering = 60% ; Blockage = 40% R(p) = 1− 0.06 · ep

Filtering = 40% ; Blockage = 60% R(p) = 1− 0.09 · ep

Filtering = 20% ; Blockage = 80% R(p) = 1− 0.13 · ep

we compute the statistical distribution of injury types that are
parametrized by the parameter βj.

3.2. TBI/FAS Data from Adult Rats and
Infant Mice
As in Maia and Kutz (2017), we use TBI/FAS data of adult
rats from Wang et al. (2011) to calibrate the distributions
of FAS following TBI in our simulations. This allowed us
to reconstruct distributions of total area per swelling and
their functional deficits (blockage, reflection, and filtering).
See Supplementary Materials for details. Additionally, we use
Dikranian’s morphometric analysis of TBI experiments in infant
mice (Dikranian et al., 2008). See Table 2 for the experimental
parameters of the two studies.

3.3. Simulation Protocols and Parameters
For the simulations, we considered different calibrations of injury
mechanisms (see pie charts in Figures S1,S2): Three in the case
of Wang et al. and four in the case of Dikranian et al. The
distributions were derived by evaluating swelling parameters
at different times of sacrifices after the injury occurred (see
Supplementary Materials). For each distribution, we performed
multiple rounds of simulations, each running over a wide range
of injury and noise levels. Recognition scores resulting from the
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TABLE 2 | Experimental parameters in animal studies by Wang et al. (2011) and

Dikranian et al. (2008).

Study Wang et al. Dikranian et al.

Animal adult rats infant mice

Sample size (per time point) 5 4-6

Injury location optical nerve cortex

Time to sacrifice 12/ 24/ 48 h 30 min, 5/ 16/ 24 h

TABLE 3 | Experimental parameters used in simulations.

Face recognition Random patterns

N 1,080 900

Number of runs 12 per data point 7 per data point

Number of memories 3–5 126

Overlap of memories ∼65% ∼20− 25%

Injury parameters 0–30% (1 = 0.01) 0–50% (1 = 0.02)

Noise parameters 0–30% (1 = 0.01) 0–50% (1 = 0.02)

analysis of all simulation results were used to fit decay rates.
The analysis was performed for two recognition tasks, using (i)
highly-correlated facial images and (ii) sparse, random patterns.
The running times of the simulations strongly depend on the
type and amount of injury introduced into the network. For
larger numbers of neurons and significant levels of injury, the
simulations are computationally very expensive. The training
itself depends on the number of neurons as O(N2). Further
details on the model and its implementation can be found in the
Supplemental Material.

The choice of simulation parameters (see Table 3) was guided
by balancing between computational expenses and covering a
reasonably large parameter range. All code is publicly available
on GitHub for possible future studies.

4. DISCUSSION

Overwhelming experimental evidence suggests that FAS
is the hallmark manifestation of injuries on neuronal
networks. Moreover, there now exists a wealth of experiments
characterizing the statistical distribution of FAS as a function
of injury level, including size and frequency of swellings
(Coleman, 2005). Statistics can even be collected for specific
neurodegenerative diseases such as Alzheimer’s (Krstic and
Knuesel, 2012), Parkinson (Galvin et al., 1999), or Multiple
Sclerosis (Hauser et al., 2006), where the swellings occur as
a consequence of complicated biophysical and biochemical
deterioration of neurons. These neurodegenerative diseases
affect a large portion of adults, with Alzheimer’s disease alone
estimated to be the third leading cause of death, just behind heart
disease and cancer, for older people. Likewise, TBI is responsible
for millions of hospitalizations worldwide every year (especially
among contact-sport practitioners) and is the leading cause of
death among youngsters (Faul et al., 2010; Jorge et al., 2012;
Xiong et al., 2013).

In this work, we consider impairments caused by FAS in
a Hopfield-like computational model for associate memory. In
the face-recognition task, the presence of a significant number
of blocked neurons in the network blurs the reconstructed
concepts (faces) and decreases the accuracy of the recalled
information. Both filtering and reflection regimes lead to
confusion of correct states with their neighboring ones (in a
Hamming distance sense). This decreases the ability of the
network to perform denoising tasks. In most cases, all three
impaired regimes (filtering, reflection, and blockage) occur
simultaneously in the network (Maia and Kutz, 2014a). An
interesting consequence is that injured networks often produce
erroneous associations of memories. Specifically, it confuses
the concepts. Based on simulations of an uninjured network
with noise, it could easily be conjectured that the fixed points
associated with a given memory would disappear, with the
system’s dynamics simply preventing it from converging to the
correct pattern. Instead, we observe that the noise fluctuations
cause the dynamics to converge to an erroneous fixed point. For
modest amounts of initial noise (15–30%), the affected system
confuses the stored patterns and looses the ability to separate
them properly. Confusion of concepts is especially pronounced
when blockage and filtering account for the majority of FAS
effects.

We calibrate our FAS distributions (pie-charts) from two
experimental sources (Dikranian et al., 2008; Wang et al., 2011).
We believe that the distributions from Dikranian et al. (2008) are
more relevant since they damage the cingulum—recognized as
fundamental to memory association—instead of the optic nerve.
In addition to a TBI protocol better linked physiologically to
memory impairments, they provided a distribution plot for the
diameters of the spheroids, which allowed us to generate FAS in a
muchmore direct way. See the SupplementaryMaterials formore
details.

Our second associative-memory task was in a more abstract
setup, with memories being random and uncorrelated. Previous
studies investigated injuries in this kind of network, but in
a binary way, i.e., when neurons are either fully injured or
fully functional. Binary setups, however, cannot capture the
types of frequency-dependent errors demonstrated in current
FAS research (Maia and Kutz, 2014b). As a consequence,
they cannot handle the nuanced types of deficits observed
in TBI and neurodegenerative diseases, and clinicians would
likely underestimate p from the R scores of their patients
using the decay coefficient B derived from these sources. It is
unlikely that estimates obtained from binary injury protocols—
where the error produced by a single cell is always maximal—
could be applicable to concussions (milder and more common
forms of TBI) or early dementia, where successful diagnostics
are most needed. In fact, in all seven of our derived FAS
pie-charts, injured neurons in blocking regime are <50%,
whereas a significant percentage of impaired neurons retain
some activity level (reflection, filtering). Distinguishing FAS
distributions for different stages of neurodegenerative diseases
is especially important in the context of diagnostics, where
the focus lies on detecting early signs of a progressing
condition.
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5. CONCLUSION

Focal Axonal Swellings (FAS) are a hallmark feature of TBI and
neurodegenerative diseases such as Alzheimer’s, Parkinson’s and
Multiple Sclerosis. Our study characterizes a neural network’s
ability to handle noise and perform recognition tasks at different
levels of injury. Our model reproduces symptoms commonly
observed in patients suffering from brain disorders (Knutson,
2012) arising from the above discussed causes. In the face-
recognition task, the injured network loses accuracy in recalling
facial images and confuses faces with similar features. From
a Hopfield network viewpoint, less accuracy means that fixed
points encoding memories loose their stability. At higher
injury levels, the network’s dynamic is driven away from
the correct face encoding, settling closer to a fixed point
associated with another facial pattern. Instability of the fixed
points and emergence of wrong attractors results from a large
percentage of neurons manifesting FAS, leading ultimately
to confusion between previously stored images. Performance
decline was formalized through estimating deterioration rates.
for the recognition score. We tested the influence of different
distributions of FAS mechanisms on deterioration rates for a
set of random, uncorrelated memories. Our results show a
significant discrepancy between our proposed multi-mechanism
FAS model and compared to the previously studied binary lesion
models.

We calibrate FAS parameters in our simulations with
experimental TBI data; Dikranian et al. (2008) studied FAS in the
cortex of infant mice, whereas Wang et al. (2011) investigated
swellings in the optic nerve of adult rats. Although Dikranian
et al. (2008) provides detailed morphometric data for injured
axons in the infant mice, their functional assessments might
be still a distant proxy for memory development in human
children (McAllister, 2004). TBI experiments in adult rats (Xiong
et al., 2013) report functional impairments more analogous to
human patients—like deficits in tasks involving context memory
(Schacter, 1987), conditional associative learning (Petrides,
1985), planning (Shallice and Evans, 1978), and other cognitive
tasks (McDowell et al, 1997). Adult rats, however, may exhibit
memory deficits after mild TBI even without many signs of

axonal injury (Lyeth, 1990). In fact, recent studies demonstrate
that catecholamines play a central role in the neurochemical
activation and regulation of working memory (McAllister, 2004)
and such effects were not incorporated in themodel. Thus, axonal
structural damage may be sufficient but not necessary for the
production of neurological and cognitive symptoms associated
with TBI. This will be considered in future studies.

There is much room for improvement in our injury model,
especially given the variety of effects of different types of
brain disorders. The framework introduced in the present
article is limited to associate memory. While other forms of
memory impairment are also known to occur as a result
of neurodegenerative diseases and traumatic brain injury,
incorporating these into the model was beyond the scope of this
study. Furthermore, we only consider the three basic injurious
FAS mechanisms introduced in the Maia and Kutz model and
leave out additional physiological effects that might affect the
severity of memory impairments. These include the squeezing
of neighboring axons when swellings occur in densely connected
regions.

Although FAS are universal pathological features, our results
should be regarded as a first step towards integrating them into
functional neuronal networks and linking cellular impairments
to observable psychophysical deficits.
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