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Functional magnetic resonance imaging (fMRI) is one of the most useful methods to

generate functional connectivity networks of the brain. However, conventional network

generation methods ignore dynamic changes of functional connectivity between brain

regions. Previous studies proposed constructing high-order functional connectivity

networks that consider the time-varying characteristics of functional connectivity, and

a clustering method was performed to decrease computational cost. However, random

selection of the initial clustering centers and the number of clusters negatively affected

classification accuracy, and the network lost neurological interpretability. Here we

propose a novel method that introduces the minimum spanning tree method to

high-order functional connectivity networks. As an unbiased method, the minimum

spanning tree simplifies high-order network structure while preserving its core framework.

The dynamic characteristics of time series are not lost with this approach, and the

neurological interpretation of the network is guaranteed. Simultaneously, we propose a

multi-parameter optimization framework that involves extracting discriminative features

from the minimum spanning tree high-order functional connectivity networks. Compared

with the conventional methods, our resting-state fMRI classification method based on

minimum spanning tree high-order functional connectivity networks greatly improved the

diagnostic accuracy for Alzheimer’s disease.

Keywords: Alzheimer’s disease, fMRI, minimum spanning tree, high-order functional connectivity network, feature

selection, classification

INTRODUCTION

In recent years, complex brain network analyses from the whole-brain perspective have become
increasingly used to study neuropsychiatric diseases (van Diessen et al., 2013). Complex brain
network analysis helps clarify the mechanisms of neuropsychiatric disorders and has the potential
to provide relevant imaging markers that may offer new perspectives for the diagnosis and
evaluation of clinical brain diseases (Nixon et al., 2014).

Resting-state functional magnetic resonance imaging (rs-fMRI) using blood oxygenation level-
dependent (BOLD) signals as neurophysiological indicators can detect spontaneous low-frequency
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brain activity and has been successfully applied to the diagnosis
of Alzheimer’s disease (AD) (Sanz-Arigita et al., 2010; Khazaee
et al., 2015). Functional connectivity is defined as the “temporal
correlations between spatially remote neurophysiological events”
(Friston et al., 1993). Unlike anatomical connectivity that
describes the physical connections between two brain sites and
effective connectivity which characterizes the influence that a
neural system may exert over another, functional connectivity
examines regional interactions in the brain at a macro level.
Commonly, functional connectivity is measured by correlation
methods, including linear and non-linear, between BOLD
signals of distinct brain regions that has revealed meaningful
organization of spontaneous fluctuations in the resting brain. In
traditional functional connectivity network analysis, it is assumed
that the correlation between different brain regions does not
change with time during rs-fMRI scanning. Because these seed-
based correlation approaches represent the relationship between
two regions of interest as a single correlation coefficient that is
calculated from the time series of the entire scan; but, temporal
variations in this value will not be captured (Salvador et al., 2005;
Achard et al., 2006; Wang et al., 2010; Suk et al., 2013; Zhang
et al., 2013). These methods ignore the changes of neural activity
or interaction that may occur during the scan.

Given the known dynamic, condition-dependent nature of
brain activity1, it is natural to expect that functional connectivity
metrics computed on fMRI data will exhibit variation over time.
As recent studies both on animals and humans have highlighted
the non-stationary nature of functional connectivity in BOLD
fMRI data (Chang and Glover, 2010; Hutchison et al., 2013).
Recent studies have suggested that brain functional connectivity
is characterized by abundant temporal information (Chang et al.,
2013; Leonardi et al., 2013; Allen et al., 2014; Damaraju et al.,
2014; Tomasi et al., 2014; Calamante et al., 2017). Whether in a
resting or tasking state, the functional connectivity changes with
the time pattern of neural activity (Hutchison et al., 2013; Tomasi
et al., 2014).

Dynamic changes in neural interactions may affect the
topological structure and associated intensity of the temporally
related functional connectivity, and these subtle and transient
changes may be caused by disease (Chang et al., 2013;
Hutchison et al., 2013; Leonardi et al., 2013; Allen et al., 2014;
Damaraju et al., 2014; Tomasi et al., 2014). Damaraju et al.
(2014) analyzed patients with schizophrenia using the static
functional connectivity based on the entire time series and
the dynamic functional connectivity based on sliding windows,
and the results showed that dynamic analysis could deepen
our understanding of brain activity in schizophrenia. Leonardi
et al. (2013) assumed that dynamic functional connectivity
could provide more information about brain organization.
Moreover, Wee et al. (2016) used the sliding window method to
divide the entire rs-fMRI time series and established functional
connectivity networks of the whole brain. Using dynamic
functional connectivity analysis, they found abundant abnormal
features for the diagnosis of mild cognitive impairment (MCI)
and constructed a classification method based on a sparse

1Neuper and Klimesch Principles of Brain Dynamics: Global State Interactions.

temporal dynamic network. Increasing evidence shows that
functional connectivity change dynamically in the resting state,
and these dynamic functional connectivity reflect important
information. Rubinov et al. (Rubinov and Sporns, 2011) applied
to graphical representations of functional connectivity with
sliding window approach. The authors reported differences in
the “dwell time” within different sub-network configurations
of the default mode network between Alzheimer’s patients
and age-matched healthy controls. With the same method,
Quevenco et al. (2017) found that altered dynamic anterior-
posterior brain connectivity was a characteristic of low memory
performance and one of the important features in AD
discrimination.

Chen et al. (2016) used the sliding window to divide
the whole rs-fMRI time series, built a functional connectivity
network in each time window, stacked all the networks, and
used a clustering algorithm to divide all relevant time series
into several clusters. The average time series of each cluster
was then taken as a new node, and the Pearson correlation
coefficient between each node pair was calculated as the
weight of the connectivity. In this way, high-order functional
connectivity networks were constructed, and dynamic functional
connectivity analysis took the time-varying characteristic into
account. However, a clusteringmethod was employed to decrease
the associated computational costs, and the randomness of
the selection of initial clustering centers and the number of
clusters greatly influenced the classification accuracy. At the
same time, the time series of all connectivity within each
cluster were averaged, so that the network lost neurological
interpretability.

The minimum spanning tree (MST) (Vikas, 2010) is one
of the classic methods in graph theory that can obtain the
general information and index structure of the graph and remove
redundant information. Lee et al. (2006) was the first to apply a
method using the MST to analyze brain networks. This unbiased
method greatly simplifies the network structure but preserves
its core framework, which avoids the influences of network
sparseness and other parameters on network structure. It also
guarantees the neurological interpretability of the network and
has been widely used in neuroimaging. Recently, the MST has
been applied in psychiatric studies (Tewarie et al., 2014; van
Dellen et al., 2014). The edges in the network are simplified with
this method, which ensures that the selected spanning tree has
the smallest possible weight.

In the current study, the MST was used to construct a high-
order functional connectivity network to simplify the structure
while preserving its core framework. We also introduce the
Relief feature selection method based on pairwise redundancy
analysis and the multi-parameter optimization framework for
feature selection and classifier construction. The MST high-
order functional connectivity network (HON-MST) can reveal
higher-level and more complex interactive information than
conventional functional connectivity networks. Importantly,
HON-MSTs are derived from low-order functional connectivity
networks (the networks who constructed by the traditional
seed-based correlation approaches), which does not affect the
analysis of different subjects and also helps identifymore accurate
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AD biomarkers. Compared with the conventional method,
the rs-fMRI classification method based on HON-MST greatly
improved the diagnostic accuracy of AD.

MATERIALS AND METHODS

Proposed Framework
The data classification methods of rs-fMRI based on HON-MST
usually include data preprocessing, construction of low-order
and high-order functional connectivity networks, HON-MST
construction, feature selection, and classification. Specifically, the
framework consists of the following five steps (Figure 1):

1. Data acquisition and preprocessing.
2. Constructing low-order functional connectivity networks.

2.1 Selecting a fixed sliding window to segment the average
time series of each brain region.

2.2 Using the Pearson correlation approach, calculating the
degree of correlation of the average time series of each
region under each time window and obtaining the low-
order functional connectivity matrices.

3. Constructing high-order networks.

3.1 Stacking all low-order functional connectivity matrices,
i.e., extracting the values of the corresponding elements
in the low-order functional connectivity matrices of each
time window.

3.2 Constructing a high-order network by calculating the
Pearson correlation coefficient between each pair for the
entire time series.

4. HON-MST construction.

This high-order network is pruned by the MST method to
construct the HON-MST.

5. Feature selection and classification model construction.

5.1 Calculating weighted-graph local clustering coefficients
(Rubinov and Sporns, 2010) for each node.

5.2 Using the multi-parameter optimization framework,
defining the weighted-graph local clustering coefficients
of each node as classification features, and constructing
the classifier.

5.3 Using the cross-validation method to test the constructed
classifiers and obtain the final classification results.

In addition, to compare the effect of network pruning using
the MST method, after the high-order networks are obtained,
they are filtered according to the statistical significance of the
connectivity to construct high-order functional connectivity
networks. The feature selection and classification models are
constructed according to the fifth step to identify differences in
the classification results obtained by the two methods.

Data Acquisition and Preprocessing
This study was approved by the medical ethics committee
of Shanxi Province (approved certification number 2012013).
Twenty-eight healthy right-handed volunteers and 38 subjects

with AD underwent rs-fMRI in a 3T MR scanner (Trio 3-
Tesla scanner; Siemens, Erlangen, Germany). The subjects’
demographics and clinical characteristics are shown in Table 1.
All AD patients underwent a complete physical and neurological
examination, standard laboratory tests, and an extensive battery
of neuropsychological assessments. All AD patients met the
criteria for a diagnosis of probable AD according to the National
Institute on Aging Alzheimer’s Association guidelines (McKhann
et al., 2011). Data collection was performed by radiologists
familiar with MRI at the First Hospital of Shanxi Medical
University. During the scans, participants were asked to relax,
close their eyes, and stay awake. The parameter settings were as
follows: 33 axial slices, repetition time (TR)= 2000ms, echo time
(TE) = 30ms, thickness/skip = 4/0mm, field of view (FOV) =
192 × 192mm, matrix = 64 × 64mm, flip angle = 90◦, and 248
volumes. The first 10 volumes of time series were discarded for
magnetization stabilization. See Supplemental Text S1 for details
on the scanning parameters.

Image preprocessing was carried out using SPM8 software
(http://www.fil.ion.ucl.ac.uk/spm). First, slice-timing correction
and head-movement correction were carried out. Two samples
exhibiting more than 3.0mm of translation and 3.0◦ of rotation
were discarded (Bansal et al., 2009; Abrams et al., 2013; Wilke,
2014). Then, the images were subjected to 12-dimensionally
optimized affine transformation, which was normalized to the
Montreal Neurological Institute (MNI) standard voxel space of
3 × 3 × 3mm. Finally, linear detrending and band-pass filtering
(0.01–0.10Hz) were performed to reduce low-frequency drift and
high-frequency physiological noise.

Low-Order Functional Connectivity
Network Construction
The whole brain was divided into 90 regions (45 per hemisphere)
using an automated anatomical labeling (AAL) template
(Tzourio-Mazoyer et al., 2002). For the AAL template, the whole
brain is divided into 116 regions, but only 90 are considered by
excluding the cerebellum (see Supplemental Text S2 for brain
region names and abbreviations). Each regional mean time series
was regressed against the average cerebral spinal fluid (CSF) and
white matter signals, as well as the six parameters from motion
correction. The arithmetic mean of the BOLD signals of all voxels
included in each brain region was calculated to represent the
signal value of the node. The BOLD signals of all voxels included
in each brain region were extracted at different time points and
averaged to obtain the average time series of brain regions.

Next, a sliding window with a fixed length was selected,
and the average time series extracted from each brain area was
segmented by time window according to a fixed step size (see
Supplemental Figure S1 for the time window division diagram
and Supplemental Text S3 for an illustration of the dynamical
variations of the functional connectivity strength at different
time windows). Suppose the regional mean rs-fMRI time series
associated with the i-th region of interest (ROI) of the l-th subject
is expressed asxi(l), then, xi(l)can be divided into K overlapping
parts, where the value of K is given by the following formula:

K =
⌊

(M − N)/S+ 1
⌋

. (1)
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FIGURE 1 | Construction and classification process of HON-MSTs. FC, functional connectivity; SVM, support vector machine.

TABLE 1 | Demographics and clinical characteristics of the subjects.

NC AD P-value

Age 72.6 ± 3.42 71.4 ± 4.68 0.44a

Gender(Male/Female) 13/15 15/23 0.57b

Handedness (Right/Left) 28/0 38/0

MMSE 26.1 ± 3.2 22.8 ± 2.1 <0.0001a

Values are mean ± standard deviation; AD, Alzheimer’s disease; NC, normal controls;

MMSE, Mini-Mental State Examination.
aTwo-sample t-test.
bPearson Chi-square test.

Here, M represents the xi(l) length, N represents the length of
the sliding window, and S represents the step size of each sliding
window. The interval of step size is set as 1 TR. In processing, TR
is 2 s so one step is 2 s. In the K parts, each part is represented by
xi(l)(k)1 ≤ k ≤ K, which represents the rs-fMRI time series in a
relatively short period of time.

The k-th part of all theR brain regions of the l-th subject can be

expressed as a matrix X(l)(k) =
[

x1
(l)(k), x2

(l)(k), · · · , xR
(l)(k)

]

∈

RN×R, where R represents a total of R brain regions. For each of
these R sequences, the pairwise correlation degree was calculated,
and a temporal functional connectivity matrix consisting of the

k-th part of all R brain regions of the l-th subject can be obtained.
The degree of correlation between xi(l)(k) and xj(l)(k) was given
by the following equation:

Cij(l)(k) = corr(xi(l)(k), xj(l)(k)). (2)

Here, xi(l)(k) represents the k-th part of the i-th brain region of
the l-th subject, and xj(l)(k) represents the k-th part of the j-th
brain region of the l-th subject. Taking {xi

(l)(k)} as vertices and
{Cij(l)(k)} as the weights of edges for each subject, K temporal
low-order functional connectivity networks can be established.
Here, {Cij(l)(k)} is called low-order functional connectivity. The
k-th temporal low-order functional connectivity network of the
l-th subject is represented by G(l)(k), which reflects the change in
connectivity intensity between all brain regions over time.

Since K temporal low-order functional connectivity networks
were established for each subject, all Cij

(l)(k) can be combined
for the connection (i, j) between each pair of brain regions of the
l-th subject, and a new correlation time series can be obtained:

yij
(l) =

[

Cij
(l)(1),Cij

(l)(2), · · · ,Cij
(l)(K)

]

∈ RK . Considering

correlation coefficient matrix symmetry, the total number of
correlation time series {yij

(l)|1 ≤ i ≤ R − 1, i + 1 ≤ j ≤ R}
was [R(R − 1)]/2. It should be emphasized that the correlation
time series yij

(l) obtained is different from the average time series
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of each brain region extracted in the first step. The former reflects
the time-dependent nature of functional connectivity over time,
while the latter only records changes in themean BOLD signal for
each ROI during the rs-fMRI scan. In summary, the correlation
time series yij

(l) reflects dynamic functional connectivity with
abundant temporal properties, which may be due to the effect of
dynamic neural interaction changes on functional connectivity
strength. It is therefore possible to reveal temporal variation
of functional connectivity between different brain regions and
produce more detailed interactive information.

Construction of High-Order Functional
Connectivity Network
The main purpose of this paper was to reveal the intrinsic

relationship between the relevant time series {y
(l)
ij } and the

abundant temporal properties it contains, so the Pearson
correlation coefficient was also calculated between each pair of
correlated time series for each subject, in which this correlation

coefficient between a pair of correlated time series {y
(l)
ij } and {y

(l)
pq}

of the l-th subject can be expressed as:

H
(l)
ij,pq = corr(y

(l)
ij , y

(l)
pq). (3)

Here, {y
(l)
ij } is the dynamic functional connectivity between the

i-th and j-th brain regions of the l-th subject, and {y
(l)
pq} is the

dynamic functional connectivity between the p-th brain region

and the q-th brain region of the l-th subject. H
(l)
ij,pq, the high-

order correlation, indicates functional connectivity between the
i-th and j-th brain regions of the l-th subject and the degree of
functional association between the p-th and q-th brain regions. It
reflects the impact of a functional connectivity on the strength
of other functional connectivity. It describes a more complex
and abstract interaction pattern, reflects the interaction of up
to four brain regions, and reveals more brain regions with time
changes in the interaction of more detailed information. In other
words, constructing high-order functional connectivity considers
the characteristics of time-varying features and describes more
interactive information between more brain regions compared
to the conventional approach. Thus, a new network could be

constructed by taking {y
(l)
ij } as new vertices and {H

(l)
ij,pq} as the

weights of new edges between node {y
(l)
ij } and node {y

(l)
pq}.

In the conventional approach of brain network construction,
the strength of connectivity between two brain regions is
indicated by the value of correlation coefficient. When it
reaches a certain threshold, the regions are considered to
have functional connectivity. At the same time, the correlation
coefficient reflects functional connectivity strength. Therefore,
it is necessary to filter the connectivity of the new network,
remove edges that are not significant, and maintain edges
that are statistically significant (P < 0.05, false-discovery rate
method-corrected, seven comparisons). Significant high-order
correlations were termed high-order functional connectivity

{H̄
(l)
ij,pq}. Finally, the high-order functional connectivity networks

G
(l)
H = ({y

(l)
ij }, {H̄

(l)
ij,pq}) could be obtained.

Construction of the MST High-Order
Functional Connectivity Network
Using the MST method, all nodes were reserved, the edges were
pruned, and the trees with the smallest total weight among

all spanning trees were obtained. With {y
(l)
ij } as the node, and

{H
(l)
ij,pq} as the weight between node {y

(l)
ij } and node {y

(l)
pq}, a

new undirected weighted functional connectivity network was
constructed.

To prune the network and improve its performance, the MST
method based on the Kruskal algorithmwas used to search for the
MST in undirected weighted networks and remove useless and
redundant edges. The network was simplified, but the impact of
the larger edges on the network performance was retained. Thus,
a HON-MST could be established (see Supplemental Text S4 for
details of the algorithm).

Feature Selection and Classification
Feature Definition

After constructing the functional connectivity networks, the
weighted-graph local clustering coefficient (Rubinov and Sporns,
2010) was defined as the feature, and then the weighted-
graph local clustering coefficients of each node in the HON-
MST were calculated. The weighted-graph local clustering
coefficients represent the degree of node aggregation in complex
networks. This indicator better reflects the prevalence of cluster
connectivity around individual nodes (Rubinov and Sporns,
2010), which were widely used in previous studies (Chen et al.,
2016). The mathematical definition of weighted-graph local
clustering coefficients is as follows:

fi =
2
∑

j : j∈1i(wij)
1
3

|1i| (|1i| − 1)
(4)

where1i represents the set of vertices directly connected to node
i, |1i| represents the number of all vertices connected to node i,
and wij denotes the weight of the edge connecting nodes i and j.

Multiple linear regression analyses were applied to remove
the confounding effects of age, gender, and education level
(independent variable: the area under the curve [AUC] of
each network property; dependent variables: age, gender, and
educational attainment). The results did not reveal significant
correlation between the weighted-graph local clustering
coefficient and confounding variables (see Supplemental Table
S1 for detailed results).

Feature selection involves choosing the most representative
optimal feature sets from a set of features. The feature vector
extracted from the functional connectivity network may contain
some features that are not related to or redundant for the
diagnosis of AD. A useful tool in this context is the Relief
algorithm, which was first proposed by Kira (Kira and Rendell,
1992) and was primarily used to classify two types of data. This
method is suitable for classifying patients with AD and normal
subjects. To reduce the influence of irrelevant or redundant
features and improve generalization performance, we used
the Relief feature selection method to obtain the weight of
each feature according to the correlation of each feature and
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category, and then the features were filtered according to the
set threshold, thereby obtaining a new feature set. Since the
Relief feature selection method could not remove the redundant
features, the extracted feature sets were thus subjected to by
pairwise redundancy analysis. By calculating Pearson correlation
coefficients, the features with low weighting were removed to
obtain the final feature set. In this way, the key features associated
with AD could be identified.

Multi-parameter Optimization Framework

This paper prevents a multi-parameter optimization framework
that obtains the optimal combination of parameters. It can
prevent overfitting and improve the generalization performance
of the classifier, which makes feature selection and classification
more accurate and effective. The feature selection method,
classifier, and framework are illustrated in Figure 2. It includes
the following three steps:

(1) The entire datasets were randomly divided into 10 parts; 1
of these was used as the test set (Sn), and the other 9 were
used as the training set (S−n). Then, the input dataset S−n

was divided into 2 groups (training set B and test set C) at a
ratio of about 3:1.

(2) In training set B obtained in step 1, the different feature
selection parameters and the support vector machine (SVM)
parameter combination were selected to construct the
classifier. Based on the performance of each set of parameters
in test set C, the optimal combination of parameters was
obtained.

(3) The entire datasets were randomly divided into 10 parts; 1
of these was used as the test set (Sn), and the other 9 were
used as the training set (S−n). Then, the input dataset S−n

was divided into 2 groups, that is, training set B and test set
C, at a ratio of about 3:1.

Classification

SVM transforms the original data into a high-dimensional
feature space by nonlinear change and seeks a hyperplane that
maximizes the interval between classes, separating the samples
of one class from those of the others. It has a unique advantage
in dealing with high-dimensional, nonlinear, and small sample
data. In the multi-parameter optimization framework, we used
the LIBSVM toolkit (Chang and Lin, 2011) (http://www.csie.ntu.
edu.tw/~cjlin/libsvm/) based on MATLAB.

The 10-fold cross-validation method (Chang and Lin, 2011)
was used to evaluate the generalization performance of the

FIGURE 2 | Multi-parameter optimization framework. SVM, support vector machine.
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classifier. Specifically, the subjects were randomly divided into
10 parts; 1 of these was used as the test set Sn(n=1,2......10), and
the other 9 were used as the training set S−n(n=1,2......10).
Among them, the SVM classifiers were constructed on
the training set using the multi-parameter optimization
framework, taking the mean of the 10 results to assess classifier
performance. At the same time, 10-fold cross-validation that
was repeated 100 times was carried out to obtain more accurate
results.

RESULTS

Discriminative Functional Connectivity and
Brain Regions
The classification method based on the HON-MST had
51 discriminative functional connectivity (Table 2). A
comprehensive and detailed analysis of the results from the
brain regions, functional connectivity, and other aspects of the
analysis is presented. Figure 3 shows the 51 connectivity selected
by feature selection and their weights (each feature was assigned
a different weight with the Relief feature selection algorithm).
Among them, the largest functional connectivity weight was
between the left precuneus and right posterior cingulate gyrus.
The distribution of these 51 functional connectivity in the
brain is shown in Figure 3A. Figure 3B shows the weights of
all functional connectivity. Figure 4 was generated to identify
which brain regions can discriminate AD patients based
on the major discriminatory brain regions and their mean
weights. The average weight of each region is the average of
the weights of all its functional connectivity. According to the
weight value of each feature (i.e., each functional connectivity),
the average weight of all functional connectivity involved in
each brain area is shown in Figure 4A. These weight values
were sorted to identify abnormal brain regions, and some
of the higher weighted regions were selected for the key
analysis.

Ten discriminatory brain regions with the largest weights
(descending order) were selected: the left hippocampus, left
precuneus, left amygdala, right cuneus, left middle temporal
gyrus, right insula, left superior parietal gyrus, left superior
frontal gyrus, medial, left caudate nucleus, and right posterior
cingulate gyrus, where the weight of the left hippocampus
was significantly higher than that of other brain regions. To
analyze the abnormal interactions between different modules,
the 90 brain regions were divided into 5 modules: frontal,
occipital, parietal, subcortical, and temporal (Mears and Pollard,
2016). Figure 5 shows the abnormal interactions between these
modules. Figure 5A shows the interaction matrix between two
modules, that is, the average of the functional connectivity
weights between all of the brain regions in one module and
all of the brain regions in the other modules. The interaction
weight between the frontal and parietal, frontal and temporal,
and parietal and occipital modules were significantly higher than
those of other modules. Figure 5B shows the distribution of the
51 discriminative functional connectivity in these 5 modules;
those with greater weights mainly connect the temporal and
subcutaneous modules and the frontal and parietal modules.

TABLE 2 | Discriminative functional connectivity.

Functional Connectivity Properties

ROI A ROI B Weights Ave. CC in ADs Ave. CC in NCs

PCUN.L PCG.R 3,110.48 1.25 1.23

HIP.L ITG.R 2,878.38 1.28 1.26

SFGmed.R SFGdor.R 2,730.09 0.63 0.62

AMYG.L STG.R 2,512.89 0.61 0.63

AMYG.L CAU.L 2,430.84 1.32 1.30

IPL.R PreCG.R 2,393.80 0.35 0.34

SOG.L PHG.R 2,386.57 1.06 1.05

CAU.L SPG.R 2,342.50 0.71 0.72

PCUN.L ORBsup.R 2,322.26 0.76 0.74

SPG.L PHG.L 2,292.41 0.33 0.30

CUN.R HIP.R 2,256.38 0.71 0.73

PCUN.R HIP.R 2,210.56 1.10 1.11

PCUN.L ANG.R 2,200.40 0.81 0.80

ORBmid.L IOG.L 2,197.00 1.17 1.15

ROL.L ACG.R 2,150.74 1.08 1.07

LING.L PCUN.R 2,086.05 0.75 0.71

HIP.L PoCG.R 1,951.98 1.17 1.18

OLF.L ORBsupmed.L 1,932.64 1.15 1.15

SFGdor.L ORBmid.R 1,889.15 0.60 0.60

CAL.R IOG.R 1,854.08 1.18 1.16

SOG.L ROL.R 1,837.50 0.73 0.73

REC.L PoCG.L 1,834.27 0.59 0.58

HES.L OLF.R 1,763.97 0.80 0.80

SPG.L ITG.R 1,747.43 0.40 0.41

SMG.L TPOmid.R 1,740.55 0.53 0.51

ORBmid.R MTG.R 1,694.61 1.30 1.30

PUT.R HES.R 1,694.25 0.41 0.40

INS.R CUN.R 1,640.92 0.91 0.90

CUN.L PreCG.R 1,623.96 0.61 0.59

INS.R SPG.R 1,623.64 0.69 0.67

STG.L SPG.R 1,622.53 1.06 1.05

STG.L IPL.R 1,621.21 0.67 0.68

CAU.L LING.R 1,596.39 0.83 0.81

PreCG.L ROL.L 1,550.66 0.51 0.50

SMA.R IPL.R 1,530.66 0.63 0.62

STG.L FFG.R 1,526.44 1.14 1.14

ORBmid.L IPL.L 1,513.33 0.41 0.40

TPOsup.L PAL.R 1,496.92 0.62 0.61

THA.L OLF.R 1,496.23 1.04 1.04

DCG.R TPOmid.R 1,488.46 1.18 1.16

LING.L IFGoperc.R 1,478.87 0.90 0.90

SMA.L PreCG.R 1,458.01 0.54 0.54

SMA.L IFGtriang.R 1,457.45 0.94 0.92

SMA.L IPL.L 1,453.08 0.62 0.62

INS.R DCG.R 1,448.98 1.09 1.08

PreCG.R IFGtriang.L 1,447.17 0.65 0.65

IOG.L REC.R 1,442.83 0.51 0.50

TPOmid.L ACG.R 1,429.63 1.15 1.11

IOG.L ANG.L 1,422.53 1.14 1.10

SMA.L STG.R 1,408.45 1.13 1.16

SFGmed.L TPOmid.L 1,403.93 0.53 0.51

Weight refers to the weight value assigned to each feature in the Relief feature selection

algorithm. Ave. CC in ADs refers to the average local clustering coefficient (see formula (4))

of each node in AD group. Ave. CC in NCs refers to the average local clustering coefficient

of each node in NC group. L, the left brain region; R, the right brain region.
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FIGURE 3 | Fifty-one discriminative functional connectivity are selected by feature selection. (A) The distribution of 51 discriminative functional connectivity in the

brain. (B) All discriminative functional connectivity weight graphs. The color of the node in (A) represents the module to which the node belongs. Blue represents

frontal, yellow represents occipital, red represents parietal, green represents subcortical and purple represents temporal. The color and thickness of the connectivity

represent the weight of the connectivity. The weight refers to the weight value assigned to each feature in the Relief feature selection method.

FIGURE 4 | Abnormal brain regions. (A) All brain regions weights graph. (B) 10 abnormal brain regions whose weight values are greatest. (B) Selects the largest

weight of the 10 abnormal brain regions for further analysis, and the size of the nodes represents the weight values of the nodes. The weight value in the figure is the

average weight of all functional connectivity connected to each brain region.

Classification Results
The high-order functional connectivity network and the
HON-MST were constructed using the same subjects’ data.

The weighted local clustering coefficient of the node was
defined as the feature, while the multi-parameter optimization
framework was used for feature selection and classification. The
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FIGURE 5 | Analysis of the interaction between the five modules. (A) The interaction matrix between different brain modules. (B) Modular analysis 51 discriminative

functional connectivity. The 90 brain regions were divided into 5 modules: frontal, occipital, parietal, subcortical and temporal, and discriminative interaction

information between five different brain modules was analyzed. (A) Shows the interaction matrix between the five modules, that is, the average of the functional

connectivity weights between all the brain regions in one module and all the brain regions in the other modules. The color of the circle in (B) represents the average

weight of all functional connectivity to which each brain region is connected. The color and thickness of the connectivity line indicate the weight value of each

functional connectivity.

TABLE 3 | Classification results for different functional connectivity networks.

Method Research Disease Accuracy

(%)

Specificity

(%)

Sensitivity

(%)

PAN Guo et al., 2012 MDD 83.00 – –

Rosa et al., 2015 MDD 48.33 53.33 43.33

Wee et al., 2016 eMCI 62.71 60.00 65.52

This study AD 63.06 50.56 87.37

PEN Yu et al., 2013 MDD 84.20 – –

Chen et al., 2011 AD 82.00 80.00 85.00

Wee et al., 2016 eMCI 66.10 76.67 55.17

This study AD 66.67 46.43 81.58

HON Chen et al., 2016 eMCI 88.14 90.00 86.21

This study AD 92.51 88.51 93.19

HON-MST This study AD 98.16 96.68 98.92

AD, Alzheimer’s disease; eMCI, early mild cognitive impairment; MDD, Major Depressive

Disorder; PAN, partial correlation functional connectivity network. PEN, pearson

correlation functional connectivity network. HON, high-order functional connectivity

network. HON-MST, minimum spanning tree high-order functional connectivity network.

accuracy, specificity, and sensitivity of the rs-fMRI classification
method based on the HON-MST were 98.16, 96.68, and
98.92%, respectively (Table 3). The results showed that the
rs-fMRI classification method of AD based on the HON-
MST could accurately distinguish between control and AD
subjects.

DISCUSSION

Discriminative Functional Connectivity and
Brain Regions
The weighted-graph local clustering coefficients of HON-
MSTs were calculated. A total of 51 discriminative functional
connectivity were obtained by the Relief feature selection
approach with pairwise redundancy analysis. Among them,
the largest functional connectivity weight was between the
left precuneus and right posterior cingulate gyrus. These
discriminative functional connectivity are important for the
diagnosis of AD and are the same as those obtained in
previous studies. For example, Toussaint et al. (2014) investigated
functional connectivity within the default mode network in
normal subjects and AD using rs-fMRI. They found that
the functional connectivity between the left precuneus and
right posterior cingulate gyrus was an important biomarker
for distinguishing AD and normal subjects. In addition, Kim
et al. (Kim and Pan, 2015) proposed two highly adaptive
tests for group differences in functional connectivity between
patients with AD and normal subjects. They found that
functional connectivity between the right superior frontal
gyrus, dorsolateral and the right superior frontal gyrus,
medial was significantly different between the AD and control
groups.

In the 51 discriminative functional connectivity, the weights
of functional connectivity related to the hippocampus and
amygdala were greater. The hippocampus is the core region
of atrophy in AD and is associated with episodic memory
deficits. Previous studies have found a number of discriminative

Frontiers in Neuroscience | www.frontiersin.org 9 December 2017 | Volume 11 | Article 639

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Guo et al. Brain Functional Network Classification

functional connectivity associated with the hippocampus,
including between the left hippocampus and right inferior
temporal gyrus (Wang et al., 2006), the right hippocampus and
right precuneus (Kim et al., 2012), and the right hippocampus
and right cuneus (Zhou et al., 2015). For example, Wang
et al. (2006) used rs-fMRI to examine hippocampal connectivity
changes comparing 13 patients with mild AD and 13 healthy
age-matched controls. They found that functional connectivity
between the left hippocampus and right inferior temporal gyrus
was significantly different between patients with AD and normal
subjects. The amygdala plays an important role in emotional
regulation and processing. This is supported by previous studies
of AD that identified a number of discriminative functional
connectivity associated with the amygdala, including between
the left amygdala and the right superior temporal gyrus (Yao
et al., 2013) and between the left amygdala and left caudate
nucleus (Yao et al., 2013) obtained in this study. In addition,
the relatively large weights obtained in this investigation were
found to be associated with AD in previous studies, such as
the functional connectivity between the right precentral gyrus
and right inferior parietal, the supramarginal and angular gyri
(Kim and Pan, 2015), the left superior occipital gyrus and right
parahippocampal gyrus (Zhou et al., 2015), the left caudate
nucleus and right superior parietal gyrus (Wang et al., 2007), the
left superior parietal gyrus and left parahippocampal gyrus (Zhou
et al., 2015) and the left precuneus and right angular gyrus (Liu
et al., 2014).

In the Relief feature selection algorithm, all functional
connectivity in the HON-MST were given different weights.
Figure 4A shows the results of the average weights of all
functional connectivity for each brain region; a number of
abnormal brain regions with higher weights were found
(Figure 4B), including the left hippocampus, left precuneus, left
amygdala, right cuneus, left middle temporal gyrus, right insula,
left superior parietal gyrus, left superior frontal gyrus, medial,
left caudate nucleus, and right posterior cingulate gyrus. These
abnormal brain regions were associated with AD in previous
studies. Among them, the weight of the left hippocampus was
significantly higher than that of other brain regions. AD is
characterized by severe atrophy in the hippocampus, a brain
region involved in episodic memory. In AD, the hippocampus
is also among the first areas to be damaged, leading to memory
impairment and severe cognitive dysfunction. It has been argued
that an amnesic syndrome of the hippocampus is an essential core
feature for the diagnosis of AD. Previous studies (Zamboni et al.,
2013; Aggleton et al., 2016) showed that the left hippocampus
plays an important role in AD pathogenesis. The precuneus is
part of the brain default network, which is also an important
biomarker in AD research (Zamboni et al., 2013). In addition,
Grady et al. (2001) found a positive association between left
amygdala activity and memory performance in AD patients.
They also found that the right cuneus was also an important
brain region in AD. Sun et al. (2014) investigated organizational
alternations in functional connectivity networks in AD patients
using rs-fMRI and identified abnormal brain regions including
the left superior parietal gyrus and left caudate nucleus. The
other major abnormal brain regions we identified, also in

agreement with previous studies, were the right insula (Maxim
et al., 2005) and right posterior cingulate gyrus (Zamboni et al.,
2013).

The 90 brain regions were divided into 5 modules: frontal,
occipital, parietal, subcortical, and temporal. The mean weight
values of the functional connectivity between all brain regions
in one module and those in the other modules were calculated
and used as an interactive weight between the two modules.
As depicted in Figure 5A, the interaction weights between
frontal and parietal, frontal and temporal, and parietal and
occipital were significantly higher than those between the
other modules. Moreover, Figure 5B shows the larger weights
of discriminative functional connectivity are mainly between
temporal and subcutaneous modules, and frontal and parietal
modules. Interaction between the frontal and parietal plays an
important role in cognitive and memory processing. pathways
can lead to memory impairment and executive dysfunction
(Grady et al., 2001; Toussaint et al., 2014).

Using magnetic resonance imaging and clinical diagnosis,
Grady et al. (2001) showed that interaction between the frontal
and temporal lobes play important roles in memory and
cognition, and changes in the degree of interaction is one of
the most important causes of AD. Figure 5 shows that the
interaction weight between the temporal and subcutaneous
regions is greater, mainly because of the higher weight of the
functional connectivity between the hippocampus and temporal
lobe. Notably, this the circuit has an important correlation
with AD (Salat et al., 2011). Stam et al. (2006) investigated
topographic characteristics of disturbed resting-state networks
in AD patients in different frequency bands. They found that
the degree of association between the parietal and occipital
lobes was related to AD. This is consistent with the present
results. Figure 5A shows that the average weights of functional
connectivity within the frontal, temporal, and parietal modules
are significantly higher than the average weight of the functional
connectivity within the other modules. The frontal module
is important for the diagnosis of AD (Woodward et al.,
2010). The temporal module also participates in spontaneous
perception changes (Fraser et al., 2010). Studies have also
shown that the parietal module is closely related to AD onset
(Jacobs et al., 2012).

Collectively, the results show that the HON-MST can help
identify more accurate biomarkers for AD diagnosis, and these
findings are consistent with previous studies.

Classification Results
The conventional methods of constructing functional
connectivity networks include partial and Pearson correlation
functional connectivity networks, both of which are static.
To improve the study of functional connectivity dynamics
between brain regions, Wee et al. (Wee et al., 2016) used the
sliding window method to divide the whole rs-fMRI time
series and established a sparse time dynamic network. Using
dynamic functional connectivity analysis, they found abundant
discriminative information for the diagnosis of MCI and
constructed a classification method based on a sparse temporal
dynamic network. Chen et al. (2016) constructed a classification
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method based on a high-order functional connectivity network
and found it had high accuracy in diagnosing MCI. The high-
order functional connectivity network constructed by Chen et al.
is different from the one described in this study. The former used
a clustering method to reduce network dimensions, which were
related to the number of clusters. In contrast, we constructed a
network with fixed dimensions and simplified it with a statistical
method.

Table 3 compares the accuracies, specificities, and sensitivities
of these classification methods. Existing studies also have
differences in feature selection and classification methods. In
addition, the investigations were performed using different
datasets. In order to avoid effects from different datasets
and preprocessing parameter settings, the partial and Pearson
correlation functional connectivity networks were constructed
with the same dataset and classified using the same feature
selectionmethod and classification framework (see Supplemental
Text S5 for network construction). The results showed that
the performance of the time-varying network constructed
by different methods is superior to the static network
established with the conventional method. The dynamic
functional connectivity network can distinguish AD and normal
subjects. Classification performance of the HON-MST is better
than those of the high-order functional connectivity network
and sparse time dynamic network. Compared with the high-
order functional connectivity network proposed by Chen et al.,
the diagnostic accuracy of the network proposed in this study
is improved by about 4%, and the diagnostic accuracy rate
of the HON-MST is improved by about 10%. In addition,
the classification results show that the HON-MST might be
simpler, remove the redundant connectivity effectively, and
obtain the key networks, leading to more accurate classification
results.

The partial and Pearson correlation functional connectivity
networks were constructed using the same dataset and
classified using the same feature selection method and
classification framework. Figure 6 compares the results of
the different classification methods. The AUCs of the high-order
functional connectivity network and HON-MST were 0.987 and
0.998, respectively, which are superior to the traditional
partial and Pearson correlation functional connectivity
networks.

In conclusion, the experimental results suggest that high-
order functional connectivity networks and HON-MSTs might
reveal more high-level and complex interactions between brain
regions, which might significantly improve the accuracy of
diagnosing AD compared with conventional methods. At the
same time, constructing high-order functional connectivity
networks and HON-MSTs may help extract valuable brain
regions from the original rs-fMRI time series. In addition,
compared with high-order functional connectivity networks,
the MST method can effectively reduce network complexity,
optimize the network structure, remove redundant and
invalid functional connectivity, and identify more efficient
key functional connectivity networks. Therefore, the rs-fMRI
classification method based on the HON-MST greatly improved
AD diagnostic accuracy.

FIGURE 6 | ROC curve of SVM classification of four different methods.

HON-MST, minimum spanning tree high-order functional connectivity network;

HON, high-order functional connectivity network; PEN, Pearson correlation

functional connectivity network; PAN, partial correlation functional connectivity

network. PEN and PAN are static networks, HON and HON-MST are dynamic

networks. The AUC of the high-order functional connectivity network was

0.987 and the AUC of the HON-MST was 0.998, which were superior to the

partial correlation functional connectivity network and Pearson correlation

functional connectivity network.

METHODOLOGY

The performance of the classification method depends on the
selection of parameters and algorithms such as the MST method,
sliding window length N, step size s of the sliding window
movement, weight threshold δ, and correlation coefficient
threshold λ in the feature selection and the penalty factor C
and kernel parameter γ in the SVM model. The choice of
these parameters significantly impacts the results. This section
describes an analysis of the effect of different parameters and
algorithms on the classification results.

Different MST Algorithms
After obtaining the undirected weighted high-order networks,
the networks were simplified by the MST method. There are
two well-known algorithms to solve the MST: Prim and Kruskal
(see Supplemental Text S4 for details). These two algorithms
can solve the undirected weighted graphs of the MST. The Prim
algorithm starts at the node of the graph, selecting the nearest
node each time until all nodes are united. In contrast, the Kruskal
algorithm starts from the edge and always chooses the edge with
the least weight. To verify the effect of these two algorithms
on the experimental results, the length of the sliding window
was set as 60 steps and the step size was 1 TR (2 s). Then, the
HON-MSTs based on the Prim and Kruskal algorithms were
constructed, and the multi-parameter optimization framework
was used for feature selection and classification. Figure 7 shows
that the result of the HON-MST based on the Kruskal algorithm
is superior. Therefore, this algorithm was used to remove
redundant connectivity in the high-order networks.
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FIGURE 7 | Comparison of Prim algorithm and Kruskal algorithm. The

HON-MST based on Prim algorithm and the HON-MST based on Kruskal

algorithm were constructed, and the same methods were used for feature

selection and classification. The classification accuracy of the HON-MST

based on Kruskal algorithm was 98.16%. The classification accuracy of the

HON-MST based on Prim algorithm was 95.18%. The classification result of

the HON-MST based on Kruskal algorithm was superior to that of the

HON-MST based on Prim algorithm.

Sliding Window Length
From formula (1) it can be seen that changing the sliding window
length alters the number of time windows. At the same time,
the number of low-order functional connectivity networks will
also be different. In this experiment, the step size was chosen
to be 40, 50, 60, 70, 80, and 90 steps. In preprocessing, TR
is 2 s (i.e., 1 step is 2 s). The influence of the sliding window
length on the classification results was studied while keeping the
remaining parameter unchanged. As can be seen from Figure 8,
the best results were achieved when the sliding window was
60 s. Diagnostic accuracy is reduced when the sliding window
length is too small or large. This can be understood from
two aspects. On the one hand, when the value of the sliding
window is too large, the number of divided time windows will
be smaller, which means that the time-varying characteristics are
reduced, which seriously hampers classification accuracy, so the
generated networks become unreliable. On the other hand, when
the sliding window is too small, similar correlated time series
may be divided into different windows, which will increase the
number of features extracted from the networks, resulting in
more redundant features, making feature selection difficult, and
seriously affecting classification accuracy.

Figures 9A–C compares the accuracies, specificities, and
sensitivities of the two methods under different sliding window
lengths. The performance of the HON-MST is better than that
of the high-order functional connectivity network, regardless of
the sliding window length, which indicates that the classification
method based on the HON-MST is more accurate and reliable.

Sliding Window Step Size
From formula (1), when the length of the average time series of
each brain region is constant, the sliding window length affects
the number of time windows, and step size s for each sliding
window move also impacts the number of time windows. In this

experiment, sliding window moving steps of 1, 2, 3, 4, and 5
were selected, while other parameters were kept unchanged, and
the length of the sliding window N was set to 60 s. The results
show that classification accuracy, specificity, and sensitivity were
highest when the step size was 1. Figure 10 shows that a larger
step size led to poorer classification results, mainly because it
reduced the number of time windows. As can be seen from
formula (1), the change of the step size has more influence on the
number of time windows than does altering the sliding window
length. The number of time windows is smaller, which means
that the time-varying characteristic is reduced as is classification
accuracy, so the generated networks become unreliable.

Figures 11A–C compares the accuracies, specificities, and
sensitivities of the two methods under different step sizes.
Although the step size is longer, the classification performances
of the two methods decline, but the performance of the HON-
MST is superior to that of the high-order functional connectivity
network.

Feature Selection Parameters
In this paper, the multi-parameter optimization framework was
used for feature selection and classification. The Relief feature
selection method was used for feature selection, the weight of
each feature was calculated, the feature was filtered according to
the threshold, and the new feature set was obtained. However,
this approach could not remove redundant features. The feature
set was thus also analyzed by pairwise redundancy analysis,
and the Pearson correlation coefficient was calculated to remove
features with small weights in the strong correlation feature and
obtain the final feature set. Two feature selection parameters
are used in this process: the weight threshold δ in the Relief
feature selection and the correlation coefficient threshold λ in the
redundancy analysis. The choices of these two parameters also
impact the classification results.

To select a more accurate weight threshold according to the
weighted distribution of all vertices in the network, se selected the
weight threshold δ ∈ [1000, 1100, · · · , 1600], and the influence
of different weight thresholds on the classification results was
studied while other parameters were left unchanged.

With a weight threshold of 1400, the classification accuracy
is the highest for the method based on the HON-MST.
Figure 12A shows that under the different weight thresholds,
the classification method based on the HON-MST is superior to
that based on the high-order functional connectivity network. In
addition, if the selected weight threshold is small, the features that
have less influence are filtered out. Alternatively, if the selected
weight threshold is large, the features with larger contributions
to the classification are removed. In both cases, classification
accuracy decreases.

The Relief feature selection approach is simple and highly
efficient. However, a limitation of this method is that it
cannot effectively remove redundant features. To overcome this
shortcoming, the correlation analysis approach was used to
analyze the feature sets extracted by the Relief feature, and then
the pairwise Pearson correlation coefficient was calculated to
remove redundant features and obtain the final feature set. In
this process, a correlation coefficient threshold λ is selected. In
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FIGURE 8 | Effect of sliding window length on classification results. (A) The effect of different sliding window lengths on the classification results based on high-order

functional connectivity network classification method. (B) The effect of different sliding window lengths on the classification results based on HON-MST classification

method. (A) Shows the curve of the accuracy, specificity, and sensitivity of the high-order functional connectivity network classification method of sliding windows with

different lengths of 40, 50, 60, 70, 80, and 90 steps, respectively. (B) Shows the curve of the accuracy, specificity, and sensitivity of the HON-MST classification

method of sliding windows with different lengths of 40, 50, 60, 70, 80, and 90 steps, respectively.

FIGURE 9 | Comparison of the two classification methods of different sliding window lengths. (A) Comparison of the accuracy of the two classification methods under

different sliding window lengths. (B) Comparison of the specificity of the two classification methods under different sliding window lengths. (C) Comparison of the

sensitivity of the two classification methods under different sliding window lengths. HON, the high-order functional connectivity network; HON-MST, minimum

spanning tree high-order functional connectivity networks.

this experiment, we chose λ ∈ [0.75, 0.8, · · · 0.95] and studied the
influence of different correlation thresholds on the classification
results while keeping the other parameters unchanged.

Figure 12B shows that when the correlation coefficient
threshold is 0.9, the classification accuracy is highest in
the classification method based on the high-order functional
connectivity network. This can be understood from two aspects.
On one hand, when the threshold is small, redundant features in
the feature set cannot be removed, which reduces classification
accuracy. On the other hand, when the threshold is large, key
features that have a greater impact on the classification result ae
removed, which also decreasing the accuracy of the classification.
In the classification method based on the HON-MST, the
correlation coefficient threshold has little effect on classification
accuracy. This is mainly because the goal of pairwise redundancy
analysis is to remove redundant features, and the method using
the MST can prune the network. For the feature set obtained

with the Relief feature selection method, there are few redundant
features, so different correlation coefficient thresholds have less
influence on the classification accuracy. This also confirms that
compared with high-order functional connectivity networks,
HON-MSTs have fewer redundant functional connectivity and
can be better used for distinguishing between patients with AD
and normal subjects.

SVM Parameter Optimization
There are two very important parameters in the SVM
classification model, namely the penalty factor C and kernel
parameter γ in the RBF kernel function. These are the key
factors affecting SVM performance (Chapelle et al., 2002; Liu
et al., 2006). The penalty factor C may adjust the range of
the confidence interval in the data subspace. When factor C is
too large, the tolerance for error is low, leading to a tendency
for overfitting. Avoiding overfitting is thus a core goal when
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FIGURE 10 | Effect of different step sizes on classification results. (A) The effect of different step sizes on the classification results based on high-order functional

connectivity network classification method. (B) The effect of different step sizes on the classification results based on HON-MST classification method. (A) Shows the

curve of the accuracy, specificity, and sensitivity of the high-order functional connectivity network classification method of sliding windows with different step sizes of 1

step, 2 steps, 3 steps, 4 steps, and 5 steps, respectively. (B) Shows the curve of the accuracy, specificity, and sensitivity of the HON-MST classification method of

sliding windows with different step sizes of 1, 2, 3, 4, and 5 steps, respectively.

FIGURE 11 | Comparison of the two classification methods of different step sizes. (A) Comparison of the accuracy of the two classification methods under different

step sizes. (B) Comparison of the specificity of the two classification methods under different step sizes. (C) Comparison of the sensitivity of the two classification

methods under different step sizes. HON, high-order functional connectivity network; HON-MST, minimum spanning tree high-order functional connectivity network.

designing the classifier. In contrast, when C is too small, the
tolerance for error is high, leading to underfitting. If either over-
or underfitting occurs, the generalization ability of the classifier
will be reduced, which will affect classification accuracy. The
kernel parameter γ is important in the RBF kernel function,
which determines the mapping function of the data to the high-
dimensional feature space.

The present study used an SVM classifier based on RBF
kernel function. Its performance is determined by the parameters
C and γ . For different datasets, the default parameter setting
using LIBSVM does not give the best classification performance.
In other words, different parameter settings should be used
for different datasets to obtain the best classification results.
We employed the SVM parameter optimization method (Liu
et al., 2006) based on a grid search to select different
parameter combinations, as follows: C ∈ [1, 2, · · · , 9, 10], γ ∈

[0, 0.05, 1 · · · , 0.40, 0.45]. Classifier performance with different

parameter combinations was evaluated by cross-validation.
Figure 13 shows the obtained classification accuracies. Under
the current dataset, when C = 3 and γ = 0.2, the high-order
functional connectivity network classification accuracy was the
highest. HON-MST classification accuracy was highest for C = 3
and γ = 0.05.

LIMITATIONS OF SLIDING WINDOWS
METHOD

The sliding window method has been widely applied to discover
dynamic changes in neural interactions (Deng et al., 2016; Nomi
et al., 2016; Zhu et al., 2016). However, we could not completely
avoid the effect of noise signals. This effect is reflected in the
sliding window length. A previous study was cautious in setting
the length because short windows increase the risk of spurious
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FIGURE 12 | Effect of feature selection parameters on classification results. (A) Comparison of the accuracy of the two classification methods under different weight

threshold δ. (B) Comparison of the accuracy of the two classification methods under different correlation coefficient threshold λ. (A) Reflects the effect of different

weight thresholds on classification accuracy. When the weight threshold of 1,300, the classification accuracy was the highest in the classification method based on

the high-order functional connectivity network. When the weight threshold of 1,400, the classification accuracy was the highest in the classification method based on

the HON-MST. (B) Reflects the effect of different correlation coefficient thresholds on classification accuracy. When the correlation coefficient threshold of 0.9, the

classification accuracy was the highest in the two methods.

FIGURE 13 | SVM parameter optimization results. (A) SVM parameter optimization results of the classification method based on the high-order functional connectivity

network. (B) SVM parameter optimization results of the classification method based on the HON-MST. (A) Shows the change in the accuracy of the classification

using different combinations of parameters in the classification method based on the high-order functional connectivity network. Under the current dataset, when C =

3 and γ = 0.2, the classification accuracy was the highest. (B) Shows the change in the accuracy of the classification using different combinations of parameters in

the classification method based on the HON-MST. Under the current dataset, when C = 3 and γ = 0.05, the classification accuracy was the highest.

fluctuations in the observed dynamic functional connectivity,
while long windows impede the detection of temporal variations
of interest (Preti et al., 2017). Under the premise that we cannot
completely remove noise signals, an appropriate sliding window
length could limit their effects. Conversely, an unsuitable setting
would cause fake connectivity or reduce instantaneity.

Similar studies also demonstrated the importance of sliding
window length. Lindquist et al. (2014) indicated that although
the sliding window method could explore dynamic changes in
functional connectivity, the choice of length was usually arbitrary
in previous studies. According to Shakil et al. (2016), the effect
on the correlation between the given two time courses, which

is a result of the sliding window length, is more serious than
other factors including step size, filter parameters, and sampling
rate. In addition, Lindquist et al. (2014) stated that “the removal
of a highly influential outlying data point will cause a sudden
change in the dynamic correlation that may be mistaken for
an important aspect of brain connectivity.” Shakil et al. (2016)
indicated that this problem was attributable to improper length
selection, so it can be avoided when the sliding window is large
enough.

Earlier work arbitrarily selected the sliding windows length
as 50 steps (Jones et al., 2012; Keilholz et al., 2013). Hindriks
et al. (2016) proved that the setting was not convincing because a
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subset of the real correlations was not observed at these settings.
Hindriks and colleagues indicated that it was largely determined
by sliding window length if a dynamic function connection
could be detected. The authors proposed a corresponding model
to appropriately select sliding window length based on the
simulation, but it could not be applied because some model
parameters were hardly quantified in the real data.

Fortunately, a valuable conclusion on the selection of the
length of sliding windows was reached in a previous study.
Leonardi et al. (Leonardi and Van De Ville, 2015) found that
the minimum window length should be equal to 1/fmin to
avoid spurious fluctuations, where fmin represents the cut-off
frequency of the high-pass filter to remove frequencies in data
preprocessing. This has been proved in other similar reports
(Kaiser et al., 2016; Lehmann et al., 2017).

In summary, an appropriate window length could ensure
the reliability of dynamic connectivity. We obeyed the above
standard to set the minimum sliding window length to avoid
false connectivity caused by noise to the greatest possible extent.
Because there is a lack of consensus on the upper value of the
sliding window length, a series of different values were selected to
avoid reducing the instantaneity of dynamic connectivity caused
by an overly long window. An optimal setting was evaluated
according to the classification results.

Although it has some limitations, a recent study reported that
the sliding window method with a series of suitable parameters
can reveal the real time-varying fluctuation of functional
connectivity while avoiding spurious fluctuations (Baczkowski
et al., 2017).

CONCLUSION

Functional connectivity reflects the interaction between different
brain regions, and some functional connectivity are important
biomarkers for diagnosing AD. However, existing methods have
neglected two aspects. First, previous studies have suggested
that the pattern of intrinsic interaction between different brain
regions changes over time. If we only study the correlation
of the entire rs-fMRI time series, abundant information in
each time period would be neglected. On the other hand,
functional connectivity between different brain regions are
related to each other and may contain important information
for diagnosing disease. To overcome the current obstacles,
this paper presents an rs-fMRI method of classifying AD
based on the HON-MST. The most discriminative functional
connectivity of AD patients were also elucidated in this work.
The influence of different parameters on classification results
was also examined. Compared with existing methods, the results
showed the following advantages of HON-MSTs. First, the
HON-MST can reflect dynamic functional connectivity that
consider time-varying characteristics. Second, the HON-MST
can show higher-level and complex interactions between brain
regions and enables studying disease-related associations of
changes in deeper brain regions. Finally, compared with the
conventional method, the rs-fMRI classification method based

on the HON-MST greatly improved AD diagnostic accuracy.
Compared with the high-order functional connectivity network,
the HON-MST has fewer redundant functional connectivity.
However, this study has some limitations. The constructed
networks reflect the correlation between functional connectivity
in the conventional network, but the possibility of false
connectivity cannot be ruled out, In addition, associations
between two brain regions may be affected by the greater
number of functional connectivity. Owing to the large scale of
the network, it is not advisable to use the partial correlation
method for construction in view of the complexity of the
calculation. To solve this problem, we can introduce tools
such as hypergraphs for further research and experimental
analysis.
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