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Antipsychotic drugs (APDs) are widely prescribed to control various mental disorders.

As mental disorders are chronic diseases, these drugs are often used over a life-time.

However, APDs can cause serious glucometabolic side-effects including type 2 diabetes

and hyperglycaemic emergency, leading to medication non-compliance. At present,

there is no effective approach to overcome these side-effects. Understanding the

mechanisms for APD-induced diabetes should be helpful in prevention and treatment

of these side-effects of APDs and thus improve the clinical outcomes of APDs. In this

review, the potential mechanisms for APD-induced diabetes are summarized so that

novel approaches can be considered to relieve APD-induced diabetes. APD-induced

diabetes could be mediated by multiple mechanisms: (1) APDs can inhibit the insulin

signaling pathway in the target cells such as muscle cells, hepatocytes and adipocytes

to cause insulin resistance; (2) APD-induced obesity can result in high levels of free fatty

acids (FFA) and inflammation, which can also cause insulin resistance. (3) APDs can

cause direct damage to β-cells, leading to dysfunction and apoptosis of β-cells. A recent

theory considers that both β-cell damage and insulin resistance are necessary factors for

the development of diabetes. In high-fat diet-induced diabetes, the compensatory ability

of β-cells is gradually damaged, while APDs cause direct β-cell damage, accounting

for the severe form of APD-induced diabetes. Based on these mechanisms, effective

prevention of APD-induced diabetesmay need an integrated approach to combat various

effects of APDs on multiple pathways.

Keywords: antipsychotics, diabetes mellitus, metabolic disorders, insulin resistance, obesity, pancreatic beta cell,

apoptosis

INTRODUCTION

Antipsychotic drugs (APDs) are widely prescribed to control schizophrenia and bipolar disorders,
as well as other mental disorders including dementia, major depression, and even drug addiction
(Fraguas et al., 2011; Leucht et al., 2013; Zhang J.-P. et al., 2013; Samara et al., 2016). Typical APDs
(also called first generation APDs) such as chlorpromazine, perphenazine and haloperidol were
introduced to clinics more than 60 years ago. Therapeutic effects of typical APDs are mediated
largely through potent blockage of dopamine D2 receptors (Ginovart and Kapur, 2012), which also
cause extra-pyramidal symptoms (EPS) side-effects (Stahl, 2003). Since the 1990s, a number of
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atypical APDs (also called 2nd generation APDs) including
olanzapine, clozapine and risperidone have been approved by
the FDA, and are now widely used as first line APDs due
to their improved tolerability and reduced EPS compared
with typical APDs (Leucht et al., 2009; Zhang J.-P. et al.,
2013). In addition, clozapine has better outcomes in treatment-
resistant schizophrenia (Lewis et al., 2006; Samara et al.,
2016). Besides blockage of D2 receptors, atypical APDs target
multiple neuroreceptors such as serotoninergic 5-HT2A/5-
HT2C, histaminergic H1 and muscarinic M3 receptors (Correll,
2010). Although typical APDs have been reported causing a
certain degree of metabolic disorders, atypical APDs, particularly
clozapine and olanzapine, can cause much worse metabolic side-
effects including body weight gain, obesity, hyperlipidaemia,
insulin resistance, hyperglycaemia and diabetes (Foley and
Morley, 2011; De Hert et al., 2012; Deng, 2013; Lipscombe et al.,
2014; Stubbs et al., 2015). Since psychiatric patients often face
chronic and even life-time APD treatment, these side-effects are
major considerations in APD medication (De Hert et al., 2012;
Deng, 2013). Schizophrenia patients with APD treatment have
2.5 times higher risk of developing type 2 diabetes according
to a recent meta-analysis which examined 25 studies, including
145,718 individuals with schizophrenia (22.5–54.4 years) and
4,343,407 controls (Stubbs et al., 2015). It is noteworthy that over
the last decade APD prescriptions in children and adolescents
have sharply increased (Memarzia et al., 2014; Steinhausen,
2015). Recent studies have shown that APDs cause not only
greater weight gain in children/adolescents than in adults but
also significant risk of type 2 diabetes, which has been largely
underestimated (Maayan and Correll, 2011; Samaras et al., 2014;
Pramyothin and Khaodhiar, 2015; Sohn et al., 2015). These
severe side-effects have a devastating impact on life quality,
and is a key risk for severe health complications, including
cardiovascular disease, stroke, and premature death (Foley and
Morley, 2011; Lin et al., 2014; Wu et al., 2015). Understanding
how diabetes develops in patients treated with APDs and
preventing APD-induced diabetes will improve medication
compliance.

ANTIPSYCHOTIC-INDUCED DIABETES

Diabetes is characterized by hyperglycaemia (fasting plasma
glucose ≥126 mg/dL [7 mmol/L]) due to insufficient insulin
production or insulin resistance (Kahn et al., 2014). Insulin is
well known to promote glucose metabolism to produce energy.
Diabetes is commonly classified into two types; type 1 is due to
auto-immune damage to pancreatic β-cells, leading to a complete
deficiency of insulin; type 2 is caused by insulin resistance, i.e.,
the cells do not respond to insulin stimulation, as well as β-cell
dysfunction (Kahn et al., 2014). There is a chronic development
from insulin resistance to diabetes. In the case of insulin
resistance, insulin secretion from β-cells can increase 4-fold while
β-cell mass can increase 2-fold (Kahn et al., 2006). Therefore,
blood glucose levels can still be maintained at normal levels,
however, if β-cells fail to increase insulin secretion, diabetes will
occur.

APDs have been shown to cause both diabetes and
hyperglycaemic emergencies. Chronic administration of APDs
is known to cause diabetes, which has been demonstrated in
both epidemiological investigations in patients and in animal
studies (Boyda et al., 2010a; Sohn et al., 2015; Stubbs et al.,
2015). A recent study of 307 patients with psychotic illnesses
showed that olanzapine caused type 2 diabetes (17%), obesity
(48%), dyslipidaemia (35%) and hypertension (32%) with mean
treatment duration of 7.6 years, while other APDs also induced
similar side-effects (Reed et al., 2014). Another study has
shown that APDs caused 37% prediabetes and 10% diabetes
(Manu et al., 2012). Furthermore, the European First-Episode
Schizophrenia Trial (EUFEST) reported a 20–30% incidence rate
of hyperglycemia after 1 year of treatment with olanzapine,
quetiapine and ziprasidone, but no significant differences
between these APDs (Fleischhacker et al., 2013). Comparison
of 28,858 APD users with 14,429 controls showed that the risk
of diabetes increased 3-fold in children and adolescents treated
with APDs (Bobo et al., 2013). This APD-induced diabetes has
been confirmed in animal models; olanzapine and clozapine have
been shown to decrease the plasma level of insulin and to cause
hyperglycaemia and insulin resistance in rats (Chintoh et al.,
2009; Boyda et al., 2010a; Liu et al., 2017).

The major complication of diabetes is heart disease.
APDs significantly increased acute myocardial infarction with
adjusted odds ratio of the risk 2.52 (95% CI = 2.37–2.68)
(Lin et al., 2014). Citrome et al. examined diabetes and
cardiovascular disease incidence in a large number of patients
who used APDs including aripiprazole, olanzapine, risperidone,
quetiapine, and ziprasidone (Citrome et al., 2013). It was
found that these drugs caused diabetes at similar rates but
olanzapine, risperidone and quetiapine caused more cases
of cardiovascular disease than aripiprazole and ziprasidone
(Citrome et al., 2013).

Recent attention has also been focused on APD-induced
hyperglycaemic emergencies. Patients treated with atypical APDs
have ∼10 times higher risk in developing diabetic ketoacidosis
(Polcwiartek et al., 2016). Lipscombe and colleagues conducted a
multicenter retrospective cohort study including 725,489 patients
to investigate hyperglycaemic emergencies (hyperglycaemia,
diabetic ketoacidosis, hyperosmolar hyperglycaemic state)
experienced by new users of risperidone, olanzapine, and other
typical and atypical APDs (Lipscombe et al., 2014). The results
showed that hyperglycaemic emergencies were 1 per 1,000
persons in patients aged 18–65 and 2 per 1,000 persons in those
older than 65. The events were much more frequent in patients
with pre-existing diabetes (6–12 per 1,000 persons) (Lipscombe
et al., 2014). It was similar in the risk of hyperglycaemic
emergencies with initiation of olanzapine vs. risperidone.

In brief, both clinical and animal studies have shown that
APDs can cause serious glucometabolic side-effects including
hyperglycaemic emergency, insulin resistance, hyperglycaemia
and type 2 diabetes, which is a major risk for cardiovascular
disease and premature death. It is worth to note that the risk
of type 2 diabetes in children and youths treated with APDs
has been underestimated (Samaras et al., 2014). Understanding
the underlying mechanisms will be important for preventing
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and treating these side-effects and thus improving the clinical
outcomes of APDs.

MECHANISMS FOR
ANTIPSYCHOTIC-INDUCED DIABETES

Over the past 10 years, a number of studies have aimed to explore
the potential mechanisms underlying APD-induced diabetes.
Based on recent progress, we summarized the findings into three
molecular mechanisms for explaining APD-induced diabetes: (1)
insulin resistance due to the direct effect of APDs, (2) APD-
caused insulin resistance through obesity, and (3) APD-induced
β-cell dysfunction and apoptosis.

Mechanism 1: Insulin Resistance Due to
Direct Effect of Antipsychotics
Insulin, secreted by pancreatic β-cells, is the key hormone in
promotion of glucose metabolism (Kahn et al., 2014). It increases
the uptake of glucose by cells and thus maintains the homeostasis
of blood glucose levels. Insulin resistance refers to the situation
where the target cells lose response to insulin stimulation and
thus reduce glucose uptake (Kahn et al., 2014). Increased blood
glucose level are mainly caused by insulin resistance in the
skeletal muscles, and also in the hepatic, renal and adipose tissue
(Kahn et al., 2014). Of these, the main site for glucose utilization
is muscle tissue, and represents ∼80% of glucose consumption
(Fujii et al., 2005).

APD-induced insulin resistance could be independent of
weight gain and increased food intake. It has been reported
that, in patients within 3 months after initiation or switch to
atypical APDs, new-onset gluco-metabolic abnormalities and
diabetes was not associated with weight change and BMI (van
Winkel et al., 2008). A recent study has shown that a single
administration of olanzapine caused glucose metabolism change
independent of obesity in healthy human subjects (Hahn et al.,
2013). Aripiprazole has been shown to induce insulin resistance
with metabolic changes where there is no weight gain or increase
in food intake (Teff et al., 2013). Boyda et al. examined the
acute effects (60, 180, or 360min) of olanzapine, clozapine,
risperidone and haloperidol on insulin resistance in rats at
both low and high concentrations of clozapine (2 mg/kg; 20
mg/kg), olanzapine (1.5 mg/kg vs. 15 mg/kg), risperidone (0.5
mg/kg vs. 2.5 mg/kg) and haloperidol (0.1 mg/kg vs. 1.0 mg/kg)
(Boyda et al., 2010b). Insulin resistance was evaluated through
HOMA-IR (homeostasis model assessment index for insulin
resistance) values in fasted rats and glucose clearance during a
glucose tolerance test. Both olanzapine and clozapine produced
significant dose and time dependent effects on fasting plasma
glucose and insulin concentrations, HOMA-IR values, insulin
resistance and glucose intolerance (Boyda et al., 2010b; Liu
et al., 2017). However, risperidone and haloperidol also caused
significant increases in fasting glucose and/or insulin levels at the
high dose, 60min post-drug administration (Boyda et al., 2010b).

Insulin plays an important role in glucose consumable cells
via the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB,
also known as Akt) pathway (Figure 1). Insulin can bind to

insulin receptors, leading to receptor autophosphorylation which
in turn activates receptor tyrosine kinases that phosphorylate
insulin receptor substrates (IRSs) including IRS1, IRS2, IRS3,
IRS4, Gab1 (a member of the IRS1-like multisubstrate docking
protein family) and Shc protein (Boucher et al., 2014).
Phosphorylated IRSs activate PI3K by binding to its regulatory
subunit via Src homology 2 (SH2) domains, increasing the
conversion of phosphatidylinositol (3,4)-bisphosphate (PIP2)
into phosphatidylinositol (3,4,5)-trisphosphate (PIP3). PIP3
can increase the activities of 3-phosphoinositide-dependent
protein kinases 1/2 (PDK1/2). PIP3 also binds to Akt and
this leads to translocation of Akt to the membrane, where
Akt is phosphorylated by PDK1/2 and mammalian target of
rapamycin complex 2 (mTORC2) and activated. Activated Akt
increases glucose transporter type 4 (GLUT4) translocation to
the membrane to increase glucose uptake via Akt substrate
AS160 (Boucher et al., 2014). There are three Akt isoforms; 1,
2, and 3. The isoform regulating GLUT4 is Akt 2. GLUT4 is
mainly located in adipose tissue and striated muscle (skeletal and
cardiac) as well as the neurons of the hippocampus. Inhibition
of Akt by siRNA has been shown to abolish the effect of insulin
on glucose transport in 3T3-L1 adipocytes (Jiang et al., 2003).
Insulin action is impaired in the liver, adipose tissue and muscle
of Akt2 knockout mice (Cho et al., 2001). There are also two
natural negative regulators in the pathway: protein tyrosine
phosphatases (PTPs) and phosphatise and tension homolog
deleted on chromosome 10 (PTEN); PTPs dephosphorylate
insulin receptors and PTEN converts PIP3 into PIP2 (Boucher
et al., 2014). Deficiencies in PTPs and PTEN have been shown to
increase insulin sensitivity in mice (Boucher et al., 2014).

In type 2 diabetes patients, it has been shown that insulin-
induced IRS-1 tyrosine phosphorylation, PI3K and Akt activities
are decreased in skeletal muscles (Fröjdö et al., 2009). In
adipose tissue, Akt2 phosphorylation is impaired in obese type
2 diabetes (Rondinone et al., 1999). In animal models, high fat-
diet rats have defective insulin-induced GLUT-4 translocation in
skeletal muscle which has been associated with decreased Akt
activity (Tremblay et al., 2001). Therefore, abnormality of the
insulin pathway in insulin target cells could be critical for the
pathogenesis of diabetes.

APDs have been shown to inhibit Akt activity and thus
cause insulin resistance in muscle cells (Engl et al., 2005). In L6
myotubes, olanzapine was shown to decrease glycogen content
in a dose- and time- dependent fashion. Olanzapine diminished
insulin-induced IRS-1 phosphorylation and abolished insulin-
induced pPI3K, pAkt, and pGSK-3, while amisulpride, which
does not cause diabetes, did not result in the above changes,
indicating the importance of the insulin pathway in APD-
induced diabetes (Engl et al., 2005). Olanzapine has been found to
attenuate phosphorylation of insulin-like growth factor receptor
(IGF-R) and IRS1 stimulated by insulin in wild-type fibroblast
cells (Alghamdi et al., 2014). Themechanism has been considered
to be olanzapine-induced membrane associated mammalian
neuraminidase-3 (Neu3) and Neu 1 sialidase activity reduction.
Alghamdi reported that Neu1 and matrix metalloproteinase-
9 (MMP-9) could cross-talk in alliance with the neuromedin
B G-protein coupled receptor (GPCR) to promote the insulin
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FIGURE 1 | Insulin signaling pathways and antipsychotic effects. Insulin binds to insulin receptors to activate IRS1, leading to activation of PI3K, which converts PIP2

into PIP3, PIP3 brings Akt2 on to the membrane where PDK1/2 and mTORC2 phosphorylate Akt2. Akt2 activates AS160, which blocks Rab-GAP, leading to

increased Rab-GTP, causing translocation of GLUT4 to the membrane for glucose transportation. Antipsychotics can diminish insulin-induced IRS-1 phosphorylation

and inhibit Akt activity causing insulin resistance. Akt2, protein kinase 2; pAMPK, phosphor-AMP-activated protein kinase; APDs, antipsychotic drugs; GLUT4; glucose

transporter type 4; IRS1, insulin receptor substrate 1; PI3K, phosphoinositide 3-kinase; PIP2, phosphatidylinositol (3,4)-bisphosphate; PIP3, phosphatidylinositol

(3,4,5)-trisphosphate; PDK1/2, phosphoinositide-dependent kinase-1; mTORC2 mammalian target of rapamycin complex 2 and SH2, Src homology 2.

signaling pathway (Alghamdi et al., 2014). Clozapine has been
reported to reduce insulin-stimulated glucose uptake in PC12
and in L6 cells, which was companioned with 40% decreased
insulin effect on insulin receptor, 60% decrease in IRS1 tyrosine
phosphorylation, and 40% decrease in insulin-stimulated Akt
phosphorylation (Panariello et al., 2012). The inhibitory effect
of APDs on Akt activity has also been reported in T-cells and
glioblastoma cells (Shin et al., 2006; Chen M.-L. et al., 2011).
However, the effects of APDs on the other elements of the insulin
pathway such as PTPs and PTEN have not been studied and
warrant further investigation.

Mechanism 2: Antipsychotic-Caused
Insulin Resistance through Obesity
APDs are a well-known cause of obesity which is closely
associated with diabetes. It has been repeatedly reported that
APD-induced insulin resistance and diabetes are associated
the increased weight gain, BMI and intra-abdominal adiposity,
particularly in patients with chronic APD treatment (Bou Khalil,
2012; Manu et al., 2012). As many as 20–50% of APD treated
patients are obese and have diabetes (Deng, 2013). Animal
experiments also demonstrated that APDs can cause obesity,
although there are some limitations (Boyda et al., 2010a;Weston-
Green et al., 2011; van der Zwaal et al., 2014). One limitation
is a failure to induce weight gain by clozapine in rodents in the
majority of studies, although clozapine has been well established

to cause dyslipidaemia, hyperglycaemia and insulin resistance in
rodents (Boyda et al., 2010a; Liu et al., 2017), which provides
a model to investigate the direct effects of clozapine on these
metabolic parameters in rats without weight gain (Cooper et al.,
2008; Liu et al., 2017). However, a recent study has reported
that chronic clozapine treatment induced weight gain and fasting
glucose levels in male rats (von Wilmsdorff et al., 2013). The
most successfully established rodent model for APD-induced
weight gain/obesity is by olanzapine (Weston-Green et al., 2011;
van der Zwaal et al., 2014; Lord et al., 2017). Other APDs such
as risperidone, sulpiride, haloperidol, and chlorpromazine have
also been established to cause some degree of weight gain in
rats and mice (Boyda et al., 2010a; Lian et al., 2015). There is
also a sexual dimorphism in the obesogenic response to APDs,
which is particularly clear in rodent models with male rats
repeatedly reported less sensitive to APD-induced weight gain
than females (Minet-Ringuet et al., 2006; Weston-Green et al.,
2010; von Wilmsdorff et al., 2013). Although sex differences are
less established in humans, females have been often observed
with higher risks for weight gain and other metabolic side-
effects (including increased insulin-resistance and higher plasma
triglycerides) caused by APDs (Wu et al., 2007; Seeman, 2009;
Weston-Green et al., 2010). Based on data from both clinical
and animal studies, there are three stages in APD-caused obesity:
during the first few months treatment in schizophrenia patients,
APDs cause rapid weight gain (stage 1) followed by a steady
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weight gain for about 1 year (stage 2) to reach a plateau and then
a stage (stage 3) for maintaining heavy weight (Zipursky et al.,
2005; Pai et al., 2012; Deng, 2013). Similar developmental stages
of APD-induced obesity have also been observed in rat models
(Huang et al., 2006; He et al., 2014). Therefore, APD-caused
obesity is a chronic process.

The mechanism for APD-caused obesity is considered to be
increased appetite and food intake rather than decreased energy
expenditure in the early stage of obesity development (Deng,
2013). APDs can act as an antagonist on serotonin 5-HT2C,
histamine H1, and dopamine D2 receptors to increase appetite
and thus increase food intake, leading to obesity (Figure 2;
Matsui-Sakata et al., 2005; Han et al., 2008; Nasrallah, 2008;
Kirk et al., 2009; Deng et al., 2010; Lian et al., 2016). It has
been found that inhibition of 5-HT2C by olanzapine contributes
to olanzapine-induced weight gain and hyperphagia in rodents
(Kirk et al., 2009; Lord et al., 2017), while these effects were
blunted in mice lacking 5-HT2C (htr2c-null mice) (Lord et al.,
2017). 5-HT2C can promote anorexigenic proopiomelanocortin
(POMC) neurons to decrease appetite (Lam et al., 2008, 2010;
Lian et al., 2016). Indeed, olanzapine has been shown to decrease
POMC expression in rats (Ferno et al., 2011; Weston-Green
et al., 2012a; Lian et al., 2014a; Zhang et al., 2014a). Matsui-
Sakata showed that H1 receptor blockage is the main reason
for APD-induced obesity (Matsui-Sakata et al., 2005). APDs
block H1 receptors and thus activate hypothalamic 5’ AMP-
activated protein kinase (AMPK), which stimulates appetite in
rats (Kim et al., 2007; Han et al., 2008; Deng et al., 2010; He
et al., 2013). It is interesting that an histamine H1 agonist (2-
(3-trifluoromethylphenyl) histamine) is able to reverse increased
hypothalamic AMPK activation and hyperphagia induced by
olanzapine in rats (He et al., 2014). Fernø and colleagues have
reported a decreased hypothalamic AMPK phosphorylation by
subchronic olanzapine treatment and no effects after acute
treatment of olanzapine or clozapine in rats (Ferno et al., 2011),
however they measured AMPK phosphorylation 20 h after the
final drug treatment that might explain their failures to detect
the increased AMPK activation by APDs in this study. In fact,
a further study by the same research group has proven the
important role of hypothalamic AMPK activation in olanzapine-
induced weight gain bymeans of adenovirus-mediated inhibition
of AMPK in the arcuate nuclei of female rats with olanzapine
depot exposure (Skrede et al., 2014). Furthermore, direct
intracerebroventricular infusion of olanzapinehas been reported
to induce hypothalamic AMPK activation and hepatic insulin
resistance in rats (Martins et al., 2010). APDs have also been
found to increase neuropeptide Y (NPY) expression (Lian et al.,
2014a; Zhang et al., 2014a), which could be partially through
blocking H1 receptors and reversed by H1 agonist (Lian et al.,
2014a,b, 2016). The D2 receptor is associated with the reward
system and thus appetite (Deng, 2013). APDs can bind and
block D2 receptors to increase appetite (Nasrallah, 2008; Deng,
2013). Recently a study has shown that the gut microbiome
plays an important role in APD-induced obesity in rats (Davey
et al., 2013). In view of the importance of this microbiome
in diet-induced obesity (Bäckhed et al., 2004, 2007; Turnbaugh
et al., 2009), Davey et al. tested the role of this microbiome

FIGURE 2 | Antipsychotics cause insulin resistance via obesity. Antipsychotics

block receptors 5-HT2C, histamine H1 and D2 receptors resulting in a

decrease in POMC and an increase in NPY production, leading to increased

appetite. Increased food intake results in obesity, which is associated with

insulin resistance via increased FFA, leptin and TNF-α. pAMPK,

phosphor-AMP-activated protein kinase; APDs, antipsychotic drugs; FFA, free

fatty acids; D2, dopamine D2 receptor; 5-HT2C, Serotonin 5-HT2C receptor;

NPY, neuropeptide Y; POMC, proopiomelanocortin; TNF-α, tumor necrosis

factor alpha.

in olanzapine-induced obesity and found that use of antibiotics
resulted in decreased fat accumulation in rats treated with
olanzapine (Davey et al., 2013). Regarding to energy expenditure,
similar to the sedative effects of APDs on humans, it has been
widely reported that APDs such as olanzapine and risperidone
decreased locomotor activities in both rats and mice (Fell et al.,
2007; Cope et al., 2009; Weston-Green et al., 2011; Zhang et al.,
2014b; Lian et al., 2015; Lord et al., 2017). Although a recent
study found an increased heat production in mice treated with
olanzapine (Lord et al., 2017), a previous study reported a
decrease of metabolic rate in mice with olanzapine infusion
(8mg/kg/day) but not in mice with a lower dose (4 mg/kg/day)
(Coccurello et al., 2009). Furthermore, a number of studies in
rats reported that olanzapine reduced core body temperature
or thermogenesis of brown adipose tissue (BAT) accompanied
with decreased expression of functional thermogenic proteins,
uncoupling protein1 (UCP1) and peroxisome proliferator-
activated receptor gamma coactivator-1α (PGC-1α) of BAT
(Stefanidis et al., 2009; van der Zwaal et al., 2012; Zhang et al.,
2014b). Therefore, further studies are necessary to clarify the
effects of APDs on thermogenesis.

Obesity is closely related to diabetes through insulin resistance
and inflammation (Kahn et al., 2014; Verma and Hussain, 2017).
In obesity, blood insulin levels are increased. However, in obese
rats, the efficacy of insulin to stimulate Akt2 activity decreases in
the muscle and liver, suggesting insulin resistance in these tissue
(Kim et al., 2000). In obesity, increased blood levels of free fatty
acids (FFA), tumor necrosis factor alpha (TNF-alpha) and leptin
have been demonstrated to contribute to the development of type
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2 diabetes (Verma and Hussain, 2017). Blood levels of FFA were
increased in obesity due to an increased release from an increased
size and number of adipocytes (Verma and Hussain, 2017).
Increased FFA levels in turn inhibit insulin/IRS phosphorylation,
leading to insulin resistance in insulin target cells such as
skeletal muscle, the liver and endothelial cells (Kahn et al., 2006;
Wilding, 2007). Decreased IRS phosphorylation causes decreased
PI3K/Akt pathway activity and GLUT4 translocation (Wilding,
2007). Lowering the levels of FFA has been shown to increase
insulin sensitivity in obese and non-obese diabetic subjects,
indicating the important role of FFA in insulin resistance
(Goodpaster and Coen, 2014). Exercise has been shown to reduce
FFA and improve insulin sensitivity (Kwak, 2013; Malin et al.,
2016).

Olanzapine has been shown to increase lipogenesis and thus
increase FFA (Albaugh et al., 2011a). Recent studies showed that
blood levels of FFA were significantly increased in rats after
chronic administration of olanzapine (Davey et al., 2013; Liu
et al., 2015, 2017). Jassim et al showed that a single injection of
clozapine and olanzapine in rats increased serum FFA after 12–
24 h (Jassim et al., 2012). A recent study in male rats showed that
olanzapine could stimulate lipogenesis independent of weight
gain, but with dosage-dependent effects (Ferno et al., 2015). All
these studies support the view that APD-induced obesity could
contribute to insulin resistance partially via increased blood levels
of FFA.

TNF-alpha, which is increased in obesity, may also play a

key role in the link between obesity and diabetes (Verma and

Hussain, 2017). Both cell culture and animal studies have shown
TNF-alpha to interfere with the insulin pathway causing insulin

resistance (Nieto-Vazquez et al., 2008). Knockout of TNF-alpha
decreased obesity-caused insulin resistance (Uysal et al., 1997). In
addition, Interleukin 1 (IL-1), IL-6 and leptin are also increased in
obesity and have been associated with insulin resistance (Verma
andHussain, 2017). Chronic treatment (46 days) with olanzapine
has been reported to increase TNF alpha expression in adipose
tissue and plasma and IL-1 expression in rat plasma (Victoriano
et al., 2010). In addition, administration of olanzapine and
other atypical APDs has been shown to increase blood levels
of leptin and ghrelin, suggesting that leptin and ghrelin could
also be a link between APD-induced obesity and diabetes (Jin
et al., 2008; Albaugh et al., 2011b; Zhang Q. et al., 2013). As
an adipocyte-derived hormone, adiponectin controls lipid and
carbohydrate metabolism, in which a low adiponectin level is
associated with obesity, insulin resistance and type 2 diabetes
(Jin et al., 2008). Schizophrenia patients with metabolic disorders
have been reported with a low adiponectin levels (Hanssens
et al., 2008; Oriot et al., 2008; Chen P.-Y. et al., 2011; Sugai
et al., 2012). Accumulated evidence has shown that treatment
with atypical APDs clozapine and olanzapine decreases plasma
adiponectin levels associated with weight gain, high fasting
glucose, hypertriglyceridemia, insulin resistance induced by these
drugs (Hanssens et al., 2008; Bai et al., 2009;Wampers et al., 2012;
Klemettila et al., 2014), although it should be noted that some
atypical APDs (e.g., risperidone) did not affect adiponectin levels
(Murashita et al., 2007; Wampers et al., 2012).

Mechanism 3: Antipsychotic-Induced
β-Cell Dysfunction and Apoptosis
Recent studies have paid attention to the role of β-cells in
APD-induced diabetes. Pancreatic β-cells are the only type of
cells that secrete insulin. The pathogenesis of diabetes involves
the altered mass and function of β-cells (Kahn et al., 2014).
It has been recognized that β-cell damage is necessary for the
pathogenesis of type 2 diabetes (Kahn et al., 2014). Insulin
resistance alone is regarded as insufficient to cause diabetes.
According to β-cell damage, the development of diabetes is
classified into five stages (Weir and Bonner-Weir, 2004). Stage
1 is compensation in which insulin secretion is increased and
blood glucose levels are maintained at normal levels. Stage 2 is
characterized by the mild rise of blood glucose levels to 5.0–6.5
mmol/L in which there are loss of β-cell mass and function. Stage
3 is early decompensation, in which maintenance of a normal
range of blood glucose levels does not occur due to the inability
of damaged β-cells to secrete insulin. Stage 4 is characterized
by stable decompensation and significant β-cell damage. Stage
5 is major decompensation where profound reduction of β-cell
mass and ketosis occurs. Therefore, protection of β-cells and
promotion of human β-cell proliferation have been investigated
in preclinical models to improve diabetes (Xiao et al., 2014;
Shirakawa and Kulkarni, 2016).

APDs can cause β-cell damage directly and indirectly. The first
evidence for APD-induced β-cell damage was from the studies
of olanzapine-induced insulin resistance in canine models in
comparison with a high-fat diet (Ader et al., 2005; Bergman
and Ader, 2005). It was found that there was no expected β-cell
compensation for olanzapine-induced insulin resistance (Ader
et al., 2005; Bergman and Ader, 2005). This is different from
insulin resistance induced by a high-fat diet which confers β-
cell compensation, suggesting that olanzapine can cause β-cell
damage. Chintoh et al also demonstrated that APDs caused
β-cell damage in a rat model (Chintoh et al., 2009). It was
found that acute treatment with clozapine and olanzapine at
the dosages of 10 and 3 mg/kg respectively produced insulin
resistance evidenced by decreased glucose infusion, increased
hepatic glucose production and decreased peripheral glucose
utilization (Chintoh et al., 2009). Clozapine and olanzapine also
decreased β-cell insulin secretion under hyperglycaemic clamp,
indicating that direct β-cell damage accompanied clozapine- and
olanzapine- induced insulin resistance. Olanzapine and clozapine
have been shown to decrease insulin secretion in islet β-cells
(Johnson et al., 2005; Weston-Green et al., 2013). In isolated
rat islets, olanzapine and clozapine inhibited cholinergic-glucose
induced insulin secretion but risperidone and ziprasidone did
not (Johnson et al., 2005). These results may account for the fact
that diabetes is common in patients treated with clozapine and
olanzapine as β-cell damage can accelerate the development of
diabetes from insulin resistance.

Studies have now shown various mechanisms for APD-caused
β-cell dysfunction (Figure 3). APDs can act on several β-cell
receptors to cause decreased insulin secretion. Binding
experiments showed that APDs can bind to various receptors
including dopaminergic, histaminergic, serotonergic, adrenergic
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FIGURE 3 | The effects of antipsychotics on β-cells. Antipsychotics can block

ATP and M3, adrenergic α1 and 5-HT2A receptor-mediated insulin secretion.

APDs act on the mitochondrial apoptotic pathway, leading to decreased Bcl-2

ratio, increased cytochrome c release, Apaf/caspase activation and apoptosis.

APDs, antipsychotic drugs; ATP, adenosine triphosphate; M3R, muscarinic M3

receptor; Apaf, apoptotic protease activating factor.

and muscarinic receptors (Guenette et al., 2013). It is known that
blockade of the 5-HT2A and muscarinic M3 receptors weakens
insulin response to glucose challenge, whereas antagonism at the
dopamine D2 receptor increases insulin secretion (Rubí et al.,
2005; Hahn et al., 2011; Weston-Green et al., 2013). Guenette
et al. used a series of antagonists to screen their effects on
insulin secretion including prazosin (a selective adrenergic α1
antagonist), idazoxan (a selective adrenergic α2 antagonist),
SB242084 (a selective 5-HT2C antagonist), WAY100635 (a
selective 5HT1A antagonist), and MDL100907 (a selective
5-HT2A antagonist). It was found that only prazosin and
MDL100907 were associated with decreased insulin secretion
(Guenette et al., 2013). Olanzapine and clozapine may bind to
these receptors, blocking them to stimulate insulin secretion
(Guenette et al., 2013). Interestingly, antagonist affinity with
M3 has been demonstrated to be a main indicator of diabetes
induced by APDs (Silvestre and Prous, 2005). APDs which have
high binding affinity with M3 receptors, such as olanzapine
and clozapine, have been shown to decrease insulin secretion
(Johnson et al., 2005; Weston-Green et al., 2012b), providing
clear evidence for the important role of M3 receptors in the
direct effect of APDs on β-cells (Deng, 2013; Weston-Green
et al., 2013).

APDs have also been linked to an increase in apoptosis of β-
cells, leading to lower mass and thus decreased insulin secretion.
Ozasa et al. demonstrated that APDs can act directly on β-cells
to cause apoptosis (Ozasa et al., 2013). Therefore, β-cell mass
is decreased, leading to decreased insulin secretion. Clozapine
has also been shown to damage β-cells to cause diabetes (Best
et al., 2005). The effect of APD-induced β-cell damage may be
mediated by the mitochondrial apoptotic pathway (Figure 3).
This pathway was regulated by proapoptotic proteins such as Bak,
Bax, Bid, Bim, Bcl-associated death promoter (BAD), Noxa, and
PUMA (Chen et al., 2013). It was also regulated by antiapoptotic

proteins such as Bcl-2, Bcl-xL, Bcl-w, Mcl-1, and A1 (Chen et al.,
2013). A changed ratio of proapoptotic proteins to antiapoptotic
proteins can lead to the release of cytochrome c, resulting in
promotion of the formation of active apaf (apoptotic protease
activating factor)/caspase-9 complex (apoptosome), leading to
caspase-3 activation and apoptosis. Contreras-Shannon et al.
showed that clozapine caused mitochondrial damage in several
types of insulin responding cells, including cultured mouse
myoblasts (C2C12), adipocytes (3T3-L1), hepatocytes (FL-
83B), and monocytes (RAW 264.7) (Contreras-Shannon et al.,
2013). A proteomic study has also shown that olanzapine and
clozapine cause dramatic mitochondrial protein changes in the
hippocampus of rats (Ji et al., 2009). Although neither study was
carried out in β-cells, they showed APDs had a direct effect on
the mitochondrial apoptotic pathway. The effect of APDs on β-
cell mitochondria warrants detailed investigation. It may reveal a
major mechanism for APD-induced diabetes.

Decreased insulin secretion caused by APDs could also be
mediated by ATP. ATP is mainly produced in mitochondria
and known to regulate insulin secretion (Seino, 2012). In
physiological condition, glucose metabolism increases ATP
production. Accumulation of ATP in β-cells leads to closing of
the KATP channels and opening of the voltage-dependent Ca2+

channels, resulting in Ca2+ influx to trigger insulin secretion
(Seino, 2012). It has been shown that treatment of insulin
responsive cells with clozapine reduced ATP production. It is
possible that APDs also affect ATP production in β-cells.

In summary, APDs can affect the β-cell insulin secretion
function. This may be mediated by several receptors particularly
the M3 receptors. APDs could also cause β-cell apoptosis and
decrease production of ATP. Further detailed studies will be
helpful to elucidate these important mechanisms.

PREVENTIVE AND THERAPEUTIC
IMPLICATIONS

As discussed above, multiple mechanisms are involved in APD-
induced diabetes including increased appetite, insulin resistance
and β-cell damage. Prevention of these changes caused by APDs
could be critical for medication compliance and improving
clinical outcomes. To date, dozens of drugs have been trialed
with some success in partly ameliorating antipsychotic-induced
metabolic side-effects. Amantadine, metformin, reboxetine,
sibutramine and topiramate have been shown to be effective
in reducing APD-induced weight gain in Baptista et al’s
examination of 25 pharmacologic weight loss intervention trials
(n = 1,221) (Baptista et al., 2008). Metformin was demonstrated
to have the most promising effects on weight loss, followed
by d-fenfluramine, sibutramine, topiramate, and reboxetine,
in a meta-analysis of 32 placebo-controlled pharmacologic
intervention trials involving 1,482 subjects (Maayan et al., 2010).
Therefore, these drugs could ameliorate APD-induced insulin
resistance via reducing obesity. Furthermore, the meta-analysis
also showed that metformin and rosiglitazone (two antidiabetic
drugs) can decrease insulin levels and insulin resistance (assessed
using HOMA-IR) in patients treated with atypical APDs,
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even though they have no effects on fasting glucose levels
(Maayan et al., 2010). However, in two studies, metformin was
found to decrease fasting glucose along with decreased insulin
and HOMA-IR in chronic schizophrenia patients treated with
olanzapine (Baptista et al., 2006; Chen et al., 2008). In animal
experiments, metformin and glyburide have been shown to
reduce olanzapine-caused hyperglycaemia (Boyda et al., 2014).
These results suggest that these antidiabetic drugs may directly
ameliorate insulin resistance. Althoughmetformin outperformed
other agents, the current evidence is still too limited to support
it as a regular adjunctive medication to control antipsychotic-
induced weight gain and metabolic abnormalities (Maayan
et al., 2010). Recently, a 16 weeks randomized clinical trial
examined the effects of liraglutide (a glucagon-like peptide-1
[GLP-1] receptor agonist) used in conjunction with clozapine
or olanzapine treatment on prediabetes and overweight/obesity
in patients with schizophrenia spectrum disorders (Larsen
et al., 2017). In the patients with liraglutide co-treatment,
glucose tolerance was significantly improved, and particularly
63.8% prediabetic patients developed normal glucose tolerance.
In addition, liraglutide induced weight loss and reduction
in a number of cardiometabolic parameters including waist
circumference, systolic blood pressure, visceral fat and low-
density lipoprotein (Larsen et al., 2017).

Based on the key roles of histamine H1 and 5-HT2C
antagonisms in APD-induced weight gain, a number of animal
and/or clinical trials targeted at these receptors have be examined
recently. It has been shown that co-treatment with betahistine
(an H1 agonist and H3 antagonist) could partially reduce
olanzapine-induced weight gain in both schizophrenia patients
and animal models (Deng et al., 2012; Poyurovsky et al.,
2013; Lian et al., 2014a,b, 2016). Betahistine co-treatment can
also ameliorate the increased triglyceride accumulation and
non-esterified fatty acids caused by olanzapine via modulating
AMPK-SREBP-1 and PPARα-dependent pathways (Liu et al.,
2015). A recent animal trial found that lorcaserin (a 5-HT2C-
specific agonist) could not only partially reduced olanzapine-
induced food intake and weight gain, but also improved glucose
tolerance in female mice (Lord et al., 2017). In future, the major
effort could be the elucidation of the mechanisms for APD-
induced diabetes, particularly APD-induced β-cell damage. It
is only the beginning to realize the important role of β-cells

in APD-induced diabetes. Since APDs may decrease insulin
secretion through blocking M3 receptors on β-cells (Johnson
et al., 2005; Weston-Green et al., 2013), it is worth to trial
whether a specific M3 agonist could mitigate APD-induced
diabetes. Drugs or phytochemicals that can protect β-cells
may be used for the prevention of APD-induced diabetes. For
example, resveratrol and curcumin have been demonstrated
to be effective to protect β-cells in streptozotocin-induced
damage (Su et al., 2006; Meghana et al., 2007; Palsamy and
Subramanian, 2010), which may be used in APD-induced β-cell
damage.

CONCLUSIONS

APDs are associated with diabetes and hyperglycaemic
emergency. This could be mediated by multiple mechanisms.
APDs can inhibit the insulin signaling pathway in insulin
sensitive cells such as muscle cells, hepatocytes and adipocytes
to cause insulin resistance. APD-induced obesity can result in
high levels of FFA and inflammation, which can cause insulin
resistance as well. More importantly, APDs can cause direct
damage to β-cells. This accounts for the rapid development
of diabetes and severe diabetic complications. As multiple
mechanisms are involved in APD-induced diabetes, preventive
and therapeutic approaches may need to combine agents
counteracting different mechanisms. Among them prevention of
β-cell damage is of particular importance as diabetes would not
happen without β-cell damage.
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