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We develop an integrative Bayesian predictive modeling framework that identifies

individual pathological brain states based on the selection of fluoro-deoxyglucose

positron emission tomography (PET) imaging biomarkers and evaluates the association

of those states with a clinical outcome. We consider data from a study on temporal lobe

epilepsy (TLE) patients who subsequently underwent anterior temporal lobe resection.

Our modeling framework looks at the observed profiles of regional glucose metabolism

in PET as the phenotypic manifestation of a latent individual pathologic state, which

is assumed to vary across the population. The modeling strategy we adopt allows

the identification of patient subgroups characterized by latent pathologies differentially

associated to the clinical outcome of interest. It also identifies imaging biomarkers

characterizing the pathological states of the subjects. In the data application, we identify

a subgroup of TLE patients at high risk for post-surgical seizure recurrence after anterior

temporal lobe resection, together with a set of discriminatory brain regions that can be

used to distinguish the latent subgroups. We show that the proposed method achieves

high cross-validated accuracy in predicting post-surgical seizure recurrence.

Keywords: Bayesian hierarchical model, positron emission tomography (PET), spatially-informed prior, mixture

model, variable selection, Pólya-Gamma distribution

1. INTRODUCTION

In the era of precision medicine, in order to deliver targeted therapies for neurological disorders,
the development of methods to identify reliable and quantifiable biomarkers that are associated
to individual clinical outcomes has become of paramount importance (Insel and Cuthbert, 2015).
Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy and the most common
epilepsy refractory to anti-epileptic drugs. Surgery provides an effective treatment for many
patients, yielding a seven-fold greater probability of seizure freedom 1 year after surgery than
patients treated with medications alone (Wiebe et al., 2001). Despite its effectiveness, 30–50% of
patients with TLE continue to experience seizures after surgery (Spencer et al., 2005; de Tisi et al.,
2011).
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As interictal 18F-fluorodeoxyglucose positron emission
tomography (FDG-PET) has traditionally been used for seizure
focus localization (Wieser, 2004), there is substantial interest
in identifying methods that utilize PET for prediction of post-
surgical seizure relief (Willmann et al., 2007). Mesial TLE with
hippocampal sclerosis is defined by the presence of neuronal
cell loss and gliosis in the CA1 region and endfolium of the
hippocampus, a particular part of the temporal lobe (Wieser,
2004). Therefore, prediction of post-surgical outcome using
FDG-PET has traditionally focused on specific regions selected
a priori within the temporal lobe (Dupont et al., 2000; Lin
et al., 2007). Such studies have demonstrated predictive value
of FDG-PET for identifying mesial TLE. Increasing evidence,
however, points at TLE as a network disorder that includes
abnormality distributed beyond the temporal lobe, rather than
a focal disorder (Bonilha et al., 2005; McDonald et al., 2008;
Mueller et al., 2010; Chiang and Haneef, 2014). This suggests
that whole-brain statistical approaches may allow for improved
identification of quantifiable features from neuroimaging data
that can be reliably associated with individual clinical outcomes
and improve clinical decision-making.

Traditional predictive modeling approaches for neuroimaging
data have included the use of pattern recognition techniques,
such as Linear Discriminant Analysis (Haynes and Rees, 2005),
Support Vector Machines (Mitchell et al., 2004; LaConte et al.,
2005) and Bayesian classifiers (Burge et al., 2009; Arribas et al.,
2010). In particular, pattern recognition techniques have been
used with varying success to predict post-surgical outcome in
TLE, ranging from 50 to 75% accuracy using random forests
(Njiwa et al., 2015) to 70% accuracy using elastic net and support
vector machines (Munsell et al., 2015). Recently, Bayesian
spatial hierachical models have also been used to improve
prediction accuracy from PET data by borrowing strength from
spatial correlations between neighboring voxels/regions (Derado
et al., 2013). Several approaches for dynamic PET data have
also been proposed. O’Sullivan (2006) and Jiang and Ogden
(2008), for example, utilize mixture modeling and conditional
autoregressive models to incorporate spatial information into
PET analysis, while other work has used functional principal
components (Jiang et al., 2009) or wavelets (Millet et al.,
2000; Alpert et al., 2006) to analyze dynamic PET signal.
Although each of these approaches represents an important
advance in neuroimaging methods development, these methods
do not quantify the relative importance of selected regions,
which may impact the effectiveness of related clinical decisions.
Recently, Bayesian scalar-on-image regression methods have
been proposed that associate a univariate outcome to massive
multi-dimensional image predictors, particularly for functional
magnetic resonance imaging (fMRI) data (van Gerven et al.,
2010; Goldsmith et al., 2014; Li et al., 2015). All the methods
above, however, do not consider the heterogeneity of the
population of individuals and implicitly assume that, given a set
of discriminatory regions, their association to the outcome is the
same across the population. In reality, however, the strength of
the association can vary across subgroups of subjects.

In this paper, we develop a statistical model to identify
whole-brain biomarkers from PET imaging which are associated

to the prediction of post-surgical seizure recurrence following
anterior temporal lobe resection. Post-surgical seizure recurrence
is thought to be due to incomplete resection of the epileptogenic
zone, which is defined as the area of cortex necessary and
sufficient for initiating seizures, and whose removal is necessary
for seizure abolition (Lüders et al., 1993). While the epileptogenic
zone was historically thought to arise from discrete focal sources,
more recent evidence suggests that seizure activity arises from
the activity of epileptogenic cortical networks that are distributed
beyond the temporal lobe (Franaszczuk et al., 1994; Franaszczuk
and Bergey, 1998; Baccalá et al., 2004; Worrell et al., 2004,
2008; Jirsch et al., 2006; Kramer et al., 2008; Chiang et al.,
2017a). Patients with different epileptogenic zone configurations
are expected to exhibit different likelihoods of post-surgical
seizure recurrence. Different epileptogenic zone configurations
are also expected to produce different interictal metabolic
patterns of FDG uptake, due to the effect of epileptogenic activity
on neuronal loss and postictal metabolic depression (Luders,
2008). The epileptogenic zone, however, cannot be identified
pre-operatively, due to the fact that parts of an epileptogenic
lesion may not be implicated in the preoperatively recorded
seizure, but will continue to generate seizures post-operatively
if not resected (Rosenow and Lüders, 2001). In our model
formulation, we look at the observed PET brain measurements
as the phenotypic manifestation of latent individual pathological
states that are assumed to vary across the population. We then
factor the joint distribution of the data into the product of
two conditionally independent submodels, an outcome model
that relates the post-surgical outcome to the latent states, and a
measurement model that relates those latent states to the observed
brain measurements. For the latter, we employ mixture models
for clustering and variable selection priors that capture spatial
correlation among neighboring brain regions. This allows us to
cluster subjects into subgroups with different latent pathological
states, while simultaneously identifying discriminatory brain
regions that characterize the subgroups. A logistic regression
model relates the latent states to the binary clinical outcome.

We apply the proposed approach to PET data collected at
the University of California, Los Angeles (UCLA) as part of
a clinical study on post-surgical outcomes in temporal lobe
epilepsy. We also incorporate into the analysis connectivity
information from resting-state functional magnetic resonance
imaging (fMRI) data, to inform the selection of discriminatory
brain regions. Integrative models that take into account
neuroscientific information frommulti-modal data sources, such
as fMRI, electroencephalography (EEG), or diffusion tensor
imaging (DTI), are a pressing issue in the field, in particular
given the limited number of patient samples collected in many
neuroimaging experiments (Bowman et al., 2012; Hinne et al.,
2014; Jorge et al., 2014). Bayesian inference provides a powerful
way to incorporate multi-modal imaging into computational
anatomy by inclusion through network priors. In our case
study, we identify a subgroup of patients at high risk for post-
surgical seizure recurrence, together with several discriminatory
brain regions which can be used in clinical decisions to
maximize interventional treatments. Furthermore, we show that
the proposed approach achieves high cross-validated accuracy in
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predicting post-surgical seizure recurrence. Further assessment
of the performance of our method is performed in the
Supplementary Material by conducting a comparison study on
synthetic data against multi-step approaches and/or approaches
that do not condition on latent states.

2. MATERIALS AND METHODS

2.1. Case Study on Temporal Lobe Epilepsy
Positron emission tomography (PET) is a type of in vivo nuclear
medicine imaging which uses radioactive tracers to quantify
tissue function. The subject is injected with a positron-emitting
isotope, such as 18F-FDG, and a PET image is reconstructed
of the isotope concentration based on the incidence of gamma
rays from the positron-electron annihilation. In this work,
we analyze data on 19 adult patients with drug resistant
MTLE and radiological evidence of unilateral hippocampal
sclerosis (MTLE-HS), who underwent pre-operative interictal
18F-FDG PET and anterior temporal lobe resection (ATL) at
the UCLA Seizure Disorder Center between 2007 and 2012.
Patients were identified from the UCLA video-EEG Epilepsy
Monitoring Unit. As the primary outcome of this study
was post-operative seizure freedom after epilepsy surgery, a
healthy control group was not obtained as anterior temporal
lobe resections are not performed in healthy patients without
indication for surgery. Diagnostic evaluation included video-
EEG monitoring, high resolution MRI, interictal 18F-FDG PET,
and neuropsychological testing. PET/CT scans were acquired
on a Siemens Biograph scanner as described in Kerr et al.
(2013). Patients fasted for at least 6 h before each scan except
for water and medications. Patients received 0.14 mCi/kg of 18F-
FDG intravenously and rested in a quiet, dimly lit room with
their eyes open during the ensuing 40min uptake period with
concomitant EEG monitoring to confirm interictal status. The
iterative reconstruction program Ordered Subset Expectation
Maximization (OSEM) available through NeuroQ (Syntermed,
GA, USA) was used for reconstruction of PET images. Iterative
reconstruction was halted after two iterations using eight subsets.
CT images were reconstructed using filtered back projection
at 3.4 mm axial intervals to match the slice separation of the
PET data, and used for attenuation correction. Post-operative
seizure freedom was assessed 1 year after surgery and classified
as either seizure-free (SF; Engel Class 1) or not seizure-free
(NSF; Engel Class 2–4). The binary outcome of complete freedom
from disabling seizures (Engel Class 1) is the standard primary
outcome of interest evaluated in epilepsy surgery treatment trials
(Engel et al., 2012). The use of this primary outcome in epilepsy
surgery trials results from the goal of epilepsy surgery, which is
complete seizure freedom. In addition, we have available resting
state fMRI (rs-fMRI) data collected on a separate set of 32
TLE patients recruited from the UCLA Seizure Disorder Center.
Details on fMRI data are described in section 3.1.

2.2. PET Pre-processing
In PET studies, the quantity that is clinically assessed is a scalar
rate of regional glucose uptake, based on a method described
by Sokoloff et al. (1977). This quantity is then normalized

relative to an internal reference standard, such as the whole-
brain or cerebellar activity, and compared to the expected level
for a reference normal subject (Silverman et al., 2008). The
cerebellum is commonly used as the reference PET region
for diseases of interest in which the cerebellum is thought
not to be affected, such as diseases involving diffuse forebrain
involvement. However, cerebellar atrophy is a very well described
phenomenon in epilepsy, and is moreover associated with longer
duration of epilepsy as well as younger age of epilepsy onset
(Sandok et al., 2000). Given that the cerebellum could be
more involved in epilepsy than traditionally thought (Fountas
et al., 2010), we chose to normalize by the average whole-brain
uptake rather than by the cerebellum. The assessed quantity
therefore provides a measure of the level of metabolic activity
in each region, relative to that expected in healthy controls.
Uptake levels may be quantified on the single-voxel level or
based on the mean uptake within fixed regions of interest.
However, because single-voxel measurements are adversely
affected by noise, the use of regions of interest (ROIs) in
FDG-PET has been suggested as a more robust alternative for
clinical practice (Wahl et al., 2009), which additionally facilitates
standardized comparisons of affected regions across subjects.
NeuroQ (Syntermed, GA, USA) is a software approved by the
FDA in 2004 for quantitative assessment of brain PET imaging
in clinical practice and was used to pre-process PET images.
Following transformation into template Montreal Neurological
Institute (MNI) space by a method previously described by Tai
et al. (1997), images were segmented into 47 predefined regions
of interest using a predefined NeuroQ atlas (Silverman and
Melega, 2004; Ercoli et al., 2012) which has been previously
considered for quantitative assessment of PET data in clinical
practice (Smith et al., 2007; McCallum et al., 2010; Torosyan
and Silverman, 2012; Kerr et al., 2013; Akdemir et al., 2014).
ROI abbreviations are listed in the Supplementary Material. Pre-
processing consisted of scalp removal, rigid registration to a
reference PET image to correct for head tilt, and reformatting of
transaxial slices to fit normal template transaxial slices using 10
iterations. Maximization of the mutual information between the
image volumes was used to identify the registration parameter.
A mean count was calculated in each ROI, normalized by the
whole-brain counts and standardized relative to the mean and
standard deviation of each ROI among healthy controls. Greater
magnitude of PET image intensities indicate more pathological
levels of metabolic activity, with positive values indicating greater
levels of hypermetabolism (i.e., greater metabolism than in
healthy controls) and negative values indicating greater levels
of hypometabolism (i.e., lower metabolism than in healthy
controls). Consequently, different patterns of nonzero signal
characterize different pathological patterns of metabolic activity.
Imaging patterns of hyper- and hypometabolism were of interest
in this study rather than the raw PET signal intensities, due to
the association of hypermetabolic activity with epileptic activity.
Lateralized ROIs were recoded from left and right to ipsilateral
or contralateral with respect to the side of subsequent resection.
A histogram of the normalized and standardized PET image
intensities (Figure not shown) indicated a bell-shaped, unimodal,
and fairly symmetrical distribution, with a skewness of−0.39.
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2.3. Statistical Model
Let Xi denote the R × 1 vector of normalized PET image
predictors on R brain regions of interest (ROIs) for subject
i and let Yi denote the corresponding post-surgical outcome,
for i = 1, . . . , n. We propose to study the association
between the PET image predictors and the outcome via a
measurement error model formulation. As described above,
non-zero values of X indicate the level of PET metabolic
activity, with different non-zero intensity patterns indicating
different pathological imaging profiles. Accordingly, we assume
that the brain’s observed profile of metabolic activity is the
manifestation of a latent (i.e., unobserved) pathological state. In
epilepsy, the latent pathological state represents the configuration
of metabolic activity in regions implicated in the underlying
epileptogenic zone, which is in turn associated to post-surgical
seizure recurrence. Here, we assume a finite number of
pathological states due to the expected modular organization of
the brain, which is generally decomposed into a finite number
of submodules (Meunier et al., 2010). Let ηi denote the latent
pathological state of subject i. Then, we propose to factor the
joint distribution of Zi = {Yi,Xi}

n
i=1 into the product of two

conditionally independent sub-models: an outcome model that
relates the clinical outcome to the latent pathological state, and a
measurementmodel that relates the latent pathological state to the
observed imaging data. Therefore, we consider a non-differential
measurement error model, i.e., conditionally upon the latent
pathological state ηi, the observed surrogate Xi contains no
additional information on the outcomeYi (Richardson andGilks,
1993), f (Yi|ηi,Xi) = f (Yi|ηi). This model allows us to capture
the current understanding in epilepsy that failure of temporal
lobe resection results most likely from incomplete resection of the
epileptogenic zone (Ryvlin and Kahane, 2005). In other words, if
the true epileptogenic zone were known, data contained in the
PET image Xi would not provide any additional information on
the probability of post-operative seizure recurrence Yi. Thus,

f (Z|η) =
n
∏

i=1

f (Yi|ηi)f (Xi|ηi), (1)

where η = (η1, . . . , ηn). We specify the measurement
model in Equation (1) as a mixture model with variable
selection. Subgroups of patients with different epileptogenic
zone configurations may be expected to exhibit different risks
of post-surgical seizure recurrence. We therefore specify the
outcome model in Equation (1) as a logistic regression model
that relates the latent states to the binary clinical outcome. There
is extensive literature on the use of measurement error models
to model data in which risk factors related to the observed
disease or treatment status are unknown, but where surrogate
measures, which provide information on the unobserved risk
factor, are recorded. A review of measurement error models
may be found in Carroll et al. (2006). With respect to existing
literature, our model formulation allows us to cluster subjects
into subgroups with different latent pathological states, i.e.,
different epileptogenic zone configurations, while simultaneously
identifying discriminatory brain regions. In the selection, we also

capture spatial correlation among neighboring brain regions via
a spatial prior, as described in section 2.3.3.

2.3.1. Clustering via Finite Mixture Models
We envision that a subject may be characterized by one of
K possible pathological states. Let ηi denote a latent random
variable that identifies the state of the i-th subject, i = 1, . . . , n.
We assume that the latent individual state ηi takes values in
{1, . . . ,K}, where one of the states can be assumed as reference.
Then, for each subject i we define an allocation vector ρi =

(I(ηi = 1), . . . , I(ηi = K − 1)), where I(ηi = k) indicates that
subject i has latent state k, i.e., I(ηi = k) = 1 if ηi = k, and 0
otherwise. Then, for the measurement model in Equation (1), we
choose a finite mixture model that clusters the n subjects into K
possible subgroups as

f (Xi|ηi,π , θ) =
K
∑

k=1

πkf (Xi|θk),

with ηi = k if subject i belongs to cluster k and P[ηi =

k] = πk. The ηi’s are assumed to be independent and identically
distributed, so that η ∼ Multinomial (1;π1, . . . ,πK). We
assume a Dirichlet prior on the mixture weights, p(π) =

Dirichlet (α1, . . . ,αK). We consider the case where f (xi|θk) is
Gaussian with parameters θk = (µk,6k), so that

f (Xi|θk) = N (µk,6k), (2)

with k = 1, ..,K. The component-specific mean µk models the
latent state specific random effect and characterizes the mean
metabolic profile for subjects with latent state k, whereas 6k is
a variance-covariance matrix that captures general relationships
among regions for subjects with latent state k. In summary, the
likelihood function for the measurement model is

L(X|η,µk,6k) =

K
∏

k=1

(2π)−nkR/2|6k|
−nk/2

× exp







−
1

2

∑

{i : ηi=k}

(Xi − µk)
T6−1

k
(Xi − µk)







,

with nk denoting the number of subjects in cluster k. Here
we assume diagonal variance-covariance matrices 6k =

diag
(

σk,1, . . . , σk,R
)

. Even though we make this simplifying
assumption at this stage of the hierarchy, our proposed model is
still able to capture structural dependencies via the specification
of the prior model for the mean components in Equation (4) that
we describe in section 2.3.3.

2.3.2. Association with the Treatment Outcome
The outcome model in Equation (1) allows the prediction of the
subject-specific outcomes based on the patients’ individual latent
pathological state ηi. We can relate the latent states with the
outcome of interest by employing a generalized linear model. In
general, we may have available a vector of baseline covariates Ui
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for subject i. Since the post-surgical outcome is binary, we can
then use a logistic regression model

p(Yi = yi|ηi,β) =
exp(ξTi β)yi

1+ exp(ξTi β)
, (3)

with β = (β0, . . . ,βK−1,βU) and ξ i = (1, ρi,Ui), where βU is the
vector of corresponding regression coefficients for U = {Ui}

n
i=1.

Here, βk, k = 1, . . . ,K − 1 captures the “risk” associated to
latent state k relative to the baseline latent state. Each βk can be
interpreted as the log-odds of the outcome for subjects in state k
relative to subjects in the reference state, and β0 as an intercept
term yielding the log-odds of the outcome for subjects in the
reference state.

The analytically intractable form of the likelihood function
using a logit link is known to pose challenges for Bayesian
inference in logistic regression models. To address this and to
improve posterior sampling, we employ the data augmentation
approach recently devised by Polson et al. (2013). Let ω be a
Pólya-Gamma random variable, ω ∼ PG(b, c), with parameters
b > 0 and c ∈ R,

ω
D
=

1

2π2

∞
∑

k=1

gk

(k− 1/2)2 + c2/4π2
,

where gk are independently distributed as Gamma(b, 1).
Augmentation with a Pólya-Gamma random variable allows for
the likelihood contribution of the ith observation to be written as

Li(β) =
exp(ξTi β)yi

1+ exp(ξTi β)

=
1

2
exp(κiξ

T
i β)

∫ ∞

0
exp

(

−
ωi(ξ

T
i β)2

2

)

p(ωi)∂ωi,

where κi = yi − 1/2, for ωi ∼ PG(1, 0). Combining all n
terms then gives the following convenient representation for the
conditional likelihood in β , given ω and η:

L(β|η,ω) ∝ exp

{

−
1

2
(z − 4β)T�(z − 4β)

}

,

where z = (κ1/ω1, ..., κm/ωm), κi = yi − 1/2, � =

diag(ω1, ...,ωn), 4 is the n × K matrix 4 = (ξT1 , ..., ξ
T
n ), ξ i =

(1, ρi,1, ρi,2, ..., ρi,K−1), and ρi,k = I(ηi = k) ∀k = 1, ...,K − 1.
See Polson et al. (2013) for details. We complete the model by
imposing a conjugate prior on β , p(β) = N(mβ ,Vβ ), where mβ

and Vβ denote the prior mean and covariance, respectively.

2.3.3. Spatially-Informed Selection Prior
Not all brain regions are expected to provide information
about the subgroup structure of the subjects, in which case the
inclusion of non-discriminatory regions in model (Equation 2)
may obscure the discovery of true groups. Oneway to address this
issue is through variable selection for clustering. Let γ ∈ {0, 1}R

denote a binary vector, where γj = 1 if region j is discriminatory,
and γj = 0 otherwise, ∀j = 1, . . . ,R. We follow Hoff (2006) and

identify discriminatory brain regions by imposing spike-and-slab
priors on the random effects µk = (µk,1, . . . ,µk,R). Given the
spatial contiguity in neuronal glucose consumption, we allow for
spatial smoothness among neighboring regions by specifying the
slab portion of the prior as an intrinsic conditional autoregressive
(ICAR) prior distribution (Banerjee et al., 2014). Our prior on
µk,j can be written as

p(µk,j|γj,µk,\j) = γjN

(
∑R

j′=1 Sj,j′µk,j′

∑R
j′=1 Sj,j′

,
ck

∑R
j′=1 Sj,j′

)

+ (1− γj)δ0(µk,j), (4)

where δ0 denotes a spike at zero, S is an R × R symmetric
neighborhood matrix, with Sj,j′ = 1 if regions j and j′ are
neighbors, and Sj,j′ = 0 otherwise, and where µk,\j denotes all
elements of µk except the jth element. We also impose priors
on the diagonal elements of 6k in Equation (2) and allow for
separate variances for the discriminatory and non-discriminatory
regions. In particular, for the parameters corresponding to γj =

1, we have σk,j = σk ∼ IG(ak, bk) for all k, while for γj = 0 we
impose σk,j = σ0 ∼ IG(a0, b0). Finally, in specifying the prior on
the selection indicators, γ, we allow for external information on
the network structure of the brain, for example on connectivity
between regions, to be incorporated in the model by imposing an
Ising prior of the type

p(γ) ∝ exp
{

e1TRγ + fγTSγ
}

, (5)

with S denoting the neighborhood matrix. If a connection exists
between two regions j and j′, then selection of one region j (i.e.,
γj = 1) leads to an increased probability that region j′ will also
be selected (i.e., γj′ = 1). The hyperparameter e ∈ (−∞,∞)
controls the sparsity of the model and represents the prior
expected number of discriminatory regions. The hyperparameter
f > 0 is a smoothing parameter which represents the prior
probability of a region being discriminatory given that its
neighbors are too. In particular, if a region has no neighbors,
then its prior distribution reduces to an independent Bernoulli
distribution with probability exp(e)/(1 + exp(e)), which is a
common prior assumed in Bayesian variable selection literature
in the case of independent variables.

The prior construction (Equations 4, 5) allows for sparsity
while promoting spatial contiguity in the selection. The ICAR
prior, in particular, ensures that each cluster’s mean metabolic
PET profile varies smoothly in space, as each µk,j is modeled
to vary around the mean of its neighbors, with variance
inversely scaled by the number of neighbors. Spatial prior
constructions have been used extensively in neuroimaging
applications, particularly with fMRI data (Smith and Fahrmeir,
2007; Zhang et al., 2014; Li et al., 2015).

2.3.4. MCMC Algorithm
In order to sample from the joint posterior distribution of
all parameters ({σk}

K
k=1, σ0, η,π , γ, {µk}

K
k=1,β ,ω), we employ

Markov Chain Monte Carlo (MCMC) methods that combine
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variable selection stochastic search algorithms that use add-
delete-swap moves (Savitsky et al., 2011) with efficient Pólya-
Gamma sampling for logit models (Polson et al., 2013). We
provide full details of the implementation in the Supplementary
Material.

2.3.5. Prediction
An important characteristic of our model formulation is that
it allows for prediction of the outcome status yf of a future
observation xf , based on the training data {X,Y}. In the context
of pre-surgical evaluation for epilepsy surgery, this allows for
probabilistic, patient-specific predictive estimates of the patient’s
probability of surgery benefit, in order to assist with clinical
decision-making. The predictive distribution is given by

p(yf |xf ,X,Y) =

∫

β

∑

ηf ∈{1,...,K}

p(yf |ηf ,β)p(β|X,Y)p(ηf |xf )∂β ,

(6)
and cannot be computed in closed form. Following standard
Bayesian techniques, these steps can be employed to simulate
from Equation (6):

1. Sample T values of µk, 6k, πk, β from the joint posterior,
using theMCMCalgorithm as described in the Supplementary
Material.

2. For each posterior draw, t = 1, . . . ,T:

• Sample m ≥ 1 values of ηf ∈ {1, . . . ,K} from p(ηf |xf ),
where ∀k = 1, . . . ,K

p(ηf = k|xf ) ∝ p(xf |ηf = k)p(ηf = k) = p(xf |µ
(t)
k
,6(t)

k
)π (t)

k
.

• For each sampled value of ηf , sample a value of yf ∈ {0, 1}

from p(yf |ηf ,β
(t)).

The posterior predictive probability p(yf = 1|xf ,X,Y) can then
be estimated as the proportion of posterior predictive samples
for which yf = 1. In the analyses of this paper, given the
limited number of samples available, which does not allow a
meaningful splitting of the data into training and validation,
we implemented cross-validation prediction via the importance-
sampling approach, as proposed by Gelfand (1996), and write the
cross-validation predictive density for the ith observation as

p(Yi=1|X,Y−i)=

∫

η,β
p(Yi = 1|X,Y−i, η,β)p(η,β|X,Y−i)∂β∂η

where we use p(η,β|X,Y) as an importance sampling
density for p(η,β|X,Y−i), and Y−i denotes the non-hold
out outcomes. Specific details on implementation are provided
in the Supplementary Material.

3. RESULTS

We now apply the proposed model to the data we have available
from the University of California, Los Angeles Seizure Disorder
Center, where we illustrate the utility of our proposed model for
predicting a post-surgical outcome among MTLE-HS patients
from pre-surgical FDG-PET imaging.

3.1. Prior Connectivity Network
For this analysis,we allowed the spatial networkpriorEquation (5)
to capture information on functional connectivity between the
ROIs, which we estimated based on resting-state fMRI data
(rs-fMRI), collected on a separate set of 32 unilateral temporal
lobe epilepsy patients from the UCLA Seizure Disorder Center.
Rs-fMRI was performed on the subjects after a comprehensive
epilepsy surgery evaluation and prior to epilepsy surgery. None
of the patients had a seizure in the 24 h preceding the imaging or
had seizures during the study, as confirmed by the simultaneous
EEG obtained during fMRI. There were no post-surgical
outcome data available for these patients. External or historical
information is often used to formulate priors in Bayesian analysis.
There is extensive literature which demonstrates the general
replicability of Pearson correlation estimation of functional
connectivity from rs-fMRI in temporal lobe epilepsy (Centeno
and Carmichael, 2014). Furthermore, despite increasing evidence
that functional connectivity is dynamic (Honey et al., 2009; Ma
et al., 2014; Chiang et al., 2016), recent research indicates a large
proportion of the information present in functional connectivity
is contained in static estimates (Chiang et al., 2017b).

We give full details of the rs-fMRI data and the process
to estimate a connectivity network in the Supplementary
Material. In brief, preprocessing of rs-fMRI imaging was
performed using FSL (fMRIB Software Library) version 5.0.7
(Oxford, United Kingdom, www.fmrib.ox.ac.uk/fsl). Functional
connectivity between the 47 ROIs was estimated by placing
a 6-mm spherical seed in Montreal Neurological Institute
(MNI) space at the location of each of the 47 ROIs. Each
patient’s fMRI BOLD image was registered to the patient’s
high-resolution structural image using FLIRT (FMRIB’s Linear
Image Registration Tool) (Jenkinson et al., 2002; Greve and
Fischl, 2009), and the high-resolution structural was registered
to the standard MNI space using FNIRT (FMRIB’s Non-linear
Image Registration Tool) (Andersson et al., 2007). Functional
connectivity between each pair of nodes was computed as the
partial Pearson correlation between the averaged regional time-
series. This provided us with a 47 × 47 correlation matrix.
An edge was then considered as included in the connectivity
network if the correlation between the regions exceeded a given
threshold. The threshold was chosen so that the average number
of neighbors for each region was approximately 5, yielding a
connectivity structure close to a three-dimensional lattice. The
resulting network was used as the neighborhood matrix S in the
specification of the MRF prior (Equation 5) on γ and also in
the ICAR prior (Equation 4) on the slab portion of the prior on
µk,j. The estimated functional connectivity matrix and resulting
neighborhood matrix S are shown in Figure 1. We observe
several known connectivity relationships, including functional
connectivity between regions in the brainstem (midbrain, pons);
between the primary and associative visual cortices; between the
cerebellar hemispheres and vermis; and between ipsilateral and
contralateral ROIs (Quigley et al., 2003).

3.2. Biomarker Selection and Clustering
In our approach to model fitting we consider a grid of values
of K to find the number of states K yielding the best model fit
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FIGURE 1 | Spatial connectivity network between ROIs constructed from resting-state fMRI imaging: (A) partial Pearson correlation matrix, (B) neighborhood matrix S

of binarized edges.

that also provides improved clinical interpretability. For the study
of this paper, model fit for each value of K for K = 2, . . . , 6
was assessed using the deviance information criterion (DIC)
of Spiegelhalter et al. (2002). We found that K = 2 clusters
allowed for a parsimonious model permitting meaningful clinical
characterization of high- and low-risk patients, with minimal
to no further improvement in the DIC for larger values of K.
This result was confirmed through model comparison using the
posterior Bayes factor (Aitkin, 1991), with a posterior Bayes
factor greater than 1 from comparisons of the K = 2 model to
K = 3, . . . , 6 models. Results we report here are based on the
combined posterior output from two MCMC chains, with each
chain initialized with different numbers of discriminatory ROIs
and number of subjects in each subgroup. Other initial values

were set asµ
(0)
k

= 0, σ (0)
k

= 1 ∀k, σ (0)
0 = 1, β(0) = 0. We ran each

MCMC chain for 100,000 iterations, with the first 50,000 sweeps
discarded as burn-in.

As discussed in section 2.3.3, the hyperparameter e of theMRF
prior (Equation 5) regulates the prior sparsity whereas f induces
smoothness, with higher values of f yielding a higher prior
probability that a region is selected given that its neighbors are
selected. The choice of e and f has been discussed by Li and Zhang
(2010) and Stingo et al. (2013). It is known that with distributions
as in Equation (5) a phase transition boundary problem can
be encountered, where the number of selected regions increases
sharply for small changes in f (Li and Zhang, 2010). Here we set
the sparsity parameter to e = −4.5, corresponding to a lower
bound on the prior probability of selection of 1%. As for the
prior smoothness, f , a plot of the prior over a grid of values
f ∈ {0.1, 0.2, 0.3, . . . , 0.9} revealed that the phase transition

starts at a prior smoothness of f = 0.2 and becomes severe
at around f = 0.4. As suggested by Li and Zhang (2010), the
prior smoothness parameter f was therefore set to a value far
from the phase transition boundary. Here we present results
for two values, f = 0.01 and f = 0.1, representing different
levels of small-to-moderate effect of the prior information on
connectivity. As for the other hyperparameter settings, we placed
a vague prior on the mixing parameters π , that is, αk = 1 ∀k, and
fixed the prior shape and scale parameters of the inverse gamma
priors on σk and σ0 to be non-informative with ak = 2 and
bk = 1 ∀k, and a0 = 2 and b0 = 1. We also set the unscaled
variance of the ICAR prior to ck = 5, and the prior mean and
covariance of β tomβ = 0 and Vβ = 5I, respectively. Age of the
patient at surgery, epilepsy duration, and history of generalized
tonic clonic seizures were controlled for as baseline covariates in
the logistic likelihood.

Convergence of each MCMC chain was assessed using two
independent tests: the Raftery-Lewis diagnostic (Raftery and
Lewis, 1992) and the Geweke test (Geweke, 1991). In addition,
convergence of the multiple chains was assessed using the
Gelman-Rubin potential scale reduction factor, based on the
implementation in the R package “coda” (Raftery and Lewis,
1992). Convergence diagnostics indicated convergence to the
stationary distribution (results reported in the Supplementary
Material). Agreement between MCMC chains was assessed
through the Pearson correlation between the marginal posterior
probabilities of ROI selection and cluster allocation of each pair
of chains.

For posterior inference, our primary interest is in the
estimation of the discriminatory regions, the latent states, and
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their association with the binary clinical outcome, as captured
by the parameters γ, η, and β , respectively. Trace plots for
these parameters showed good mixing for all chains (figures not
shown). Figure 2 shows the marginal posterior probabilities of
inclusion (PPIs) for each of the 47 brain regions, with different
graphical symbols for the settings of f = 0.01 (x) and f = 0.1
(o). Based on this plot, a selection of the discriminatory regions
can be done by thresholding the PPIs. For example, the median
model (Barbieri and Berger, 2004) selects the same subset of 8
ROIs under both f = 0.01 and f = 0.1. The selected brain regions
are listed in Table 1, and graphically depicted in Figure 3. To
examine the sensitivity of the selected regions to the formulation
of the network prior, we additionally ran the model under a
neighborhood matrix S defined by simple Euclidean distance.
Selected discriminatory regions were robust to the formulation
of the network, with the exception of the contralateral associative
visual cortex, which had a marginal PPI of 0.303 (f = 0.1) and
0.311 (f = 0.01) under a network defined by spatial neighbors.
This decrease in posterior probability is an effect of the MRF
prior, due to the functional connectivity present between the
ipsilateral and contralateral associative visual cortex in Figure 1B

which is not captured based on spatial distance.
Figure 4 shows the marginal posterior probabilities of sample

allocations for each of the 19 MTLE-HS patients. A classification
of the subjects into two subgroups can be obtained, for example,
by assigning subjects according to the posterior mode of η.
For interpretation of the two subgroups, one can examine the
PET metabolic activities characterizing the subjects. These are

shown in Figure 5 for the selected brain regions. Furthermore,
posterior inference for the β parameters is summarized in
Table 2. These results suggest that the two subgroups identify
patients at different levels of risk for post-operative seizure
recurrence, with one subgroup having a eβ = 5.2 times greater
odds of persistent post-operative seizures 1 year after surgery
(Table 2). This corresponds to a 90% posterior probability of
an odds ratio >1 for post-surgical seizure freedom between
the two identified subgroups (Table 2). Figure 5 reveals, in
particular, that the subgroup with greater odds of post-operative
seizure recurrence (Cluster 2) is characterized by lower levels
of interictal glucose metabolism in the bilateral associative

TABLE 1 | Temporal lobe epilepsy dataset: Selected brain regions and

corresponding marginal posterior probabilities of inclusion (PPI).

ROI PPI

f = 0.01 f = 0.1

Ipsilateral inferior parietal lobule 0.961 0.973

Ipsilateral parietotemporal cortex 0.955 0.948

Ipsilateral associative visual cortex 0.956 0.969

Contralateral inferior parietal lobule 0.742 0.850

Contralateral associative visual cortex 0.632 0.732

Contralateral cerebellar hemisphere 0.988 0.979

Ipsilateral cerebellar hemisphere 0.950 0.961

Cerebellar vermis 0.989 0.984

FIGURE 2 | Temporal lobe epilepsy dataset: Marginal posterior probabilities of inclusion for brain regions, for f = 0.01 (x) and f = 0.1 (o).
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FIGURE 3 | Temporal lobe epilepsy dataset: Mean random effect (µk ) of PET metabolic activity for ROIs with PPI greater than 0.5, shown on axial sections. (a)

Ipsilateral inferior parietal lobule, (b) contralateral inferior parietal lobule, (c) ipsilateral parieto-temporal cortex, (d) ipsilateral associative visual cortex, (e) contralateral

associative visual cortex, (f) cerebellar vermis, (g) ipsilateral cerebellar hemisphere, (h) contralateral cerebellar hemisphere. Non-selected ROIs are shown in grayscale.

FIGURE 4 | Temporal lobe epilepsy dataset: Marginal posterior probabilities of

cluster allocation, for f = 0.01 (x) and f = 0.1 (o).

visual cortices, ipsilateral parieto-temporal cortex, and bilateral
inferior parietal cortices, as well as higher levels of interictal
glucose metabolism in the bilateral cerebellar hemispheres

and cerebellar vermis. Our identification of these metabolic
patterns may suggest extratemporal gliosis, as well as increased
baseline levels of cortical excitability, in patients at higher
risk for post-operative seizure recurrence. We provide further
comment on the neurological significance of these findings in the
Discussion.

3.3. Prediction Results
In addition to the identification of subgroups of subjects,
characterized by latent pathologic conditions differentially
associated to the outcome of interest, and the selection of
imaging biomarkers that characterize the pathologic states of
the subjects, our modeling approach allows a probabilistic
estimate of an individual patient’s risk of post-operative seizure
recurrence. Probabilistic assessment of outcome risk may
aid pre-surgical decision-making, by facilitating identification
of patients with greater probability of seizure recurrence
following anterior temporal lobe resection. Such information
may potentially be weighed against the known risks of
surgery (e.g., infection, bleeding, reactions to general anesthesia)
to stratify patients according to predicted outcome. Here,
we assessed prediction performance via importance-sampling
cross-validation.

Figure 6 shows the receiver operating characteristic (ROC)
curve, a plot of the false positive rates vs. the true positive
rates, obtained for a grid of threshold values (0:0.05:1) on
the estimated posterior predictive probabilities. The area under
the curve (AUC) was 0.91. The optimal threshold, selected to
maximize the Youden’s index (Hiden and Glasziou, 1996), for
imbalanced class sizes, resulted in an 84% predictive accuracy,
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FIGURE 5 | Temporal lobe epilepsy dataset: Distribution of PET metabolic activity in the selected regions for the identified subgroups, for f = 0.1.

with correct prediction of post-surgical outcome in 16/19
patients, including 10/12 seizure-free patients and 6/7 non
seizure free patients.

Our prediction results compared favorably to those we
obtained on the same data with other analogous methods
which predict binary outcomes from an identified underlying
latent state. In particular, we compare to three multi-step
approaches commonly used in prediction for their simplicity
and computational speed. In the first approach, principal
components was used to reduce the data to the top eight
principal components, collectively explaining 85% of the variance
in the data. The reduced principal components of X were
then used as predictors within Bayesian logistic regression.

Predictive accuracy was assessed through the importance-
sampling cross-validation prediction approach of Gelfand (1996).
In the second approach, a multistep logistic regression approach
was used, similarly to what has been done in neuroimaging
studies (Versace et al., 2014). In this approach, a filtering
approach was performed by calculating permutation p-values for
each region and retaining regions with small p-values. Using
this reduced subset of regions, patients were clustered using k-
means. Bayesian logistic regression was fitted to predict post-
surgical outcome from latent class membership, and importance
sampling cross-validation used to assess predictive accuracy. In
the third comparison, a multi-step version of our approach was
used, in which sparse cluster analysis was separated from the
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TABLE 2 | Temporal lobe epilepsy dataset: (a) Posterior mean of β; (b) 95% credible interval (CI) for β; and (c) posterior probability of odds ratio >1, e.g.,

P[eβj > 1|X,Y ] = P[βj > 0|X,Y ] , shown for proposed approach (f = 0.1), multi-step logistic approach, and multi-step sparse clustering approach.

Proposed Method Multistep logistic regression Multistep sparse clustering

(a) (b) (c) (a) (b) (c) (a) (b) (c)

β0 −0.377 (−1.588, 3.587) 0.43 −0.225 (−0.8, 1.665) 0.41 −0.169 (−0.746, 1.718) 0.43

β1 0.368 (0.275, 0.685) 0.99 0.250 (0.183, 0.48) 0.99 0.262 (0.196, 0.486) 0.99

β2 −3.726 (−4.639, −0.76) 0.01 −1.25 (−1.742, 0.347) 0.06 −1.247 (−1.737, 0.358) 0.06

β3 −0.082 (−0.117, 0.032) 0.09 −0.069 (−0.094, 0.011) 0.05 −0.079 (−0.107, 0.014) 0.05

β4 1.649 (0.832, 4.364) 0.90 0.939 (0.453, 2.552) 0.88 0.41 (−0.113, 2.140) 0.68

Here β1 ≡ Epilepsy duration, β2 ≡ History of GTC, β3 ≡ Age at surgery, β4 ≡ Cluster 1 (v. Cluster 2).

Odds are with respect to seizure freedom.

FIGURE 6 | Temporal lobe epilepsy dataset: Receiver operating characteristic

curve (ROC) for proposed method, elastic net, principal components

regression (PCR), multi-step logistic regression, and multi-step sparse

clustering in predicting post-operative outcome 1 year after anterior temporal

lobe resection.

outcome model. In particular, a greedy forward search algorithm
was used for simultaneous variable selection and clustering
(Raftery and Dean, 2006). Patients were clustered based on the
selected variables through a Gaussian mixture model (Fraley
et al., 2012) and Bayesian logistic regression then used to
predict post-surgical outcome from latent class membership,
with predictive accuracy assessed through importance-sampling
cross-validation. Prediction results using our unified approach
attained superior predictive performance compared tomulti-step
approaches (Figure 6). Multi-step logistic regression and multi-
step sparse clustering approaches attained higher predictive
accuracy than PCR. We also compared to methods such as
elastic net (Zou and Hastie, 2005), ridge regression (Hoerl
and Kennard, 1970), and the Least Absolute Shrinkage and
Selection Operator (LASSO) method of Tibshirani (1996) that,
in particular, do not condition on latent states, but rather use

the X data as the covariates. Penalized regression approaches
that did not condition on a latent state performed poorly in
data with underlying latent states (see Supplementary Material).
Additionally, in the Supplementary Material, we conduct a
full comparison study among competing methods on synthetic
data to evaluate results for both prediction and biomarker
selection.

4. DISCUSSION

Our results have identified a subgroup of temporal lobe epilepsy
patients with 5.8 times greater odds of post-operative seizure
recurrence after anterior temporal lobe resection. These patients
were characterized by lower levels of interictal metabolism in
regions near the ipsilateral parieto-temporal-occipital junction.
Lower interictal metabolism in peritemporal regions may suggest
structural abnormalities such as gliosis or neuronal loss in
these regions, alternatively or in combination with functional
abnormality involving a widespread epileptogenic network
which extends beyond the temporal lobe. Evidence for such
a subgroup has been suggested by previous research, which
found limited improvement in seizure outcomes in patients
with electrocorticographical (ECoG) evidence of extratemporal
involvement of inferior parietal cortex (Aghakhani et al.,
2004). The implication of extratemporal brain structures
in patients with poorer postsurgical outcomes supports the
presence of latent pathologies in patients with epilepsy. Other
ECoG studies have also suggested the presence of latent
pathology in epilepsy involving spread of the epileptogenic
focus and the possible creation of secondary foci (Rougier,
1990; D’Ambrosio et al., 2005). Therefore, lower interictal
metabolism in this subset of patients may suggest a subtype
of MTLE-HS with parietal involvement, which may lead
to post-operative seizure generation if not resected. The
involvement of posterior parietal regions in this subset of
patients may result from connectivity to other regions clinically
involved in MTLE. Structural connectivity exists between the
presubiculum and the posterior parietal cortex through the
cingulum, for example, and functional connectivity between
these regions also exists through the default mode network
(Buckner et al., 2008). Pulvinar atrophy has also been found
in TLE patients with persistent post-operative seizures (Keller
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et al., 2015), so connectivity of posterior parietal regions to
the pulnivar nucleus may also play a role in posterior parietal
involvement.

Patients at high risk for post-operative seizure recurrence
were also characterized by higher levels of interictal glucose
metabolism in the cerebellum. The cerebellum’s role in inhibiting
seizures has been investigated since the early 1940’s, following
the discovery that cerebellar stimulation may result in seizure
modification or even termination (Moruzzi, 1950). Recent
technological advances in techniques for cerebellar stimulation
have led to renewed interest in the role of cerebellar stimulation
in seizure inhibition, with a 41% seizure rate reduction achieved
through cerebellar stimulation (Velasco et al., 2005). Direct
optogenetic stimulation of the cerebellar Purkinje cells has
been found to be sufficient to reduce the duration of seizures
in temporal lobe epilepsy (Krook-Magnuson et al., 2014). It
is postulated that the mechanism of cerebellar stimulation
in seizure inhibition may be through increased inhibitory
efferent output from the Purkinje cells to the deep cerebellar
nuclei, resulting in increased inhibitory cerebellar output to
the thalamocortical projections and thus decreased contralateral
cortical excitability (Fountas et al., 2010). Likewise, the
cerebral cortex exhibits feedback to the contralateral cerebellar
hemispheres through corticopontocerebellar tracts. In our study,
we found that the subgroup of MTLE-HS patients at high
risk for post-operative seizure recurrence was characterized by
higher levels of interictal glucose metabolism in the bilateral
cerebellar hemispheres and cerebellar vermis, with slightly
larger marginal posterior probability of discriminating high-
vs. low-risk patients in the contralateral than the ipsilateral
cerebellar hemisphere. Higher interictal glucose metabolism in
the cerebellum may be caused by pre-operatively increased
baseline levels of cortical excitability in high-risk patients,
resulting in increased activity of corticopontocerebellar white
matter tracts and increased crossed cerebellar metabolism. The
localization of this phenomenon may be similar to that of
cerebellar diaschisis, in which supratentorial lesions such as
stroke may cause disruption of corticopontocerebellar tracts and
therefore contralateral cerebellar hypometabolism. In the case
of epilepsy, in which there is over- rather than underactivity
of the cortex, overstimulation of the corticopontocerebellar
tracts may lead to contralateral cerebellar hypermetabolism.
Inhibitory outflow from the Purkinje cells may then result in
hypometabolic activity in areas such as the inferior parietal
lobule, congruent with the functional abnormality observed
in the temporo-parieto-occipital junction as described above.
Our observation of bilaterally increased glucose metabolism in
the cerebellum suggest bilaterally increased cortical excitability
in patients at high risk for post-operative seizure recurrence,
with slightly higher cortical excitability ipsilaterally. The
greater contralateral cerebellar involvement observed here is
also consistent with our observation of ipsilaterally involved
temporo-parieto-occipital regions due to crossed cerebello-
cortical connections.

In addition to enhancing understanding of the
pathophysiology behind post-operative seizure recurrence, our
finding that patients at high risk for epilepsy surgery failure are

characterized by lower PET metabolism in peritemporal regions
and higher cerebellar metabolism, provides a marker for patients
where epilepsy surgery is at high risk for failure. These patients
may be better candidates for neuromodulatory treatments
for medication-refractory epilepsy, such as direct cortical
stimulation, as is being used in responsive neurostimulation
(RNS) at regions of seizure onset (Geller et al., 2017). We
show that TLE patients at high risk for anterior temporal lobe
resection failure have abnormal pre-surgical brain metabolic
activity compared to those patients who attain post-surgical
seizure freedom, suggesting a difference in the underlying
brain networks of the two groups. The approach proposed here
provides a method which may potentially allow for pre-surgical
differentiation between patients with abnormal underlying brain
activity.

In this paper we have developed a general integrative
modeling framework to characterize the association between a
set of image predictors and an individual clinical outcome that
simultaneously (a) identifies subgroups of patients characterized
by latent pathologies differentially associated to the outcome
of interest, (b) identifies discriminatory brain regions across
subjects, and (c) uses prior connectivity information from
external data to inform the selection of biomarkers. Our Bayesian
measurement error model provides a modeling approach for
the prediction of post-surgical treatment response from imaging
data which explicitly accounts for the unobserved disease state.
As described in section 2.3.5, our model provides an approach
in which a new prospective surgery candidate can come in,
be scanned with PET imaging, assigned to a latent risk group,
and evaluated for their probability of achieving seizure freedom
if operated upon. By accounting for heterogeneity in the
unobserved state, while allowing for incorporation of external
prior information, we have obtained accurate prediction in
data where surrogate measures, such as neuroimaging data,
are observed. We have shown that our approach achieves
superior predictive performance compared to commonly used
approaches, such as principal components regression, ROI-based
clustering, and ROI-based sparse regression, and additionally
leads to accurate inference with respect to identification of latent
states and variable selection.

We have used the proposed method to analyze data
we have available from the University of California, Los
Angeles Seizure Disorder Center, where the interest was in
predicting the post-surgical outcome among MTLE-HS patients
from pre-operative FDG-PET imaging. In the analysis, we
have used resting-state fMRI imaging to inform the prior
model. Our analysis has identified several discriminatory
ROIs, together with a subgroup of patients at higher risk of
post-operative seizures recurrence. Pre-surgical identification
of regions pathophysiologically involved in post-operative
seizure recurrence may assist in targeting these regions for
interruption. Here, patients at higher risk were characterized
by lower levels of interictal glucose metabolism in the bilateral
associative visual cortices, ipsilateral parietotemporal cortex, and
bilateral inferior parietal lobules, and higher levels of interictal
glucose metabolism in the bilateral cerebellar hemispheres and
cerebellar vermis. Cross-validated prediction of post-operative
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seizure freedom has achieved an AUC of 0.91 and 84%
predictive accuracy, showing superior predictive performance
compared to methods which do not condition on latent
states. One caution in interpreting the results of this study
is the moderate statistical power due to limited sample size.
Future corroboration on larger samples is needed prior to
use in clinical practice. Pre-surgical identification of patients
at high risk of not benefiting from surgery may improve
treatment planning for these patients, including the potential
avoidance of surgery risks in cases with low probability of
benefit.

In our study, we have utilized standard PET ROIs obtained
from quantitative assessment software used in clinical practice,
where PET activity in each region of interest is computed
by averaging within the ROI. Similar ROI-based approaches
are utilized within the standard preprocessing protocol of
NeuroQ to aid clinical interpretability, and have demonstrated
clinical utility in neurological disorders such as Parkinson’s
disease (Akdemir et al., 2014), tinnitus (Smith et al., 2007),
and epilepsy (Kerr et al., 2013). However, it is important to
note that voxel-based data allow for a finer-grained approach
to biomarker selection and may be of interest in future
applications of our methodology. Use of other well-known
atlases to segment PET data, such as the Automated Anatomic
Labeling (AAL) atlas, may also be useful for comparing to
other studies. Rigid registration and the use of PET-to-PET
registration is also susceptible to PET signal variations, with
hippocampal atrophy in TLE potentially contributing further
to decreased registration accuracy as well as partial voluming
effects. Further improvements in predictive accuracy may
be seen with alternative pre-processing methods, including
registration to high-resolution structural imaging and partial
volume correction.

Future applications of our method to pre-operative mapping
may wish to investigate finer parcellations of the brain, to better
delineate the epileptogenic zone and more directly aid pre-
operative mapping. Given the routine use of fMRI and EEG
in the management of patients with epilepsy, it might also
be possible to extend our general model formulation to the
identification of spatial fMRI markers of disease outcome while
taking advantage of the temporal resolution of EEG data to
construct prior connectivity networks. Finally, even though the
motivating example for our proposed model has come from the
prediction of post-surgical outcomes in epilepsy surgery, data
from other neurological disorders may also be analyzed. In such
cases, it may be of interest to extend the treatment outcome to a
multinomial likelihood, with larger sample sizes needed if such
analysis is desired.
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