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In order to reduce the noise of brain signals, neuroeconomic experiments typically

aggregate data from hundreds of trials collected from a few individuals. This contrasts

with the principle of simple and controlled designs in experimental and behavioral

economics. We use a frequency domain variant of the stationary subspace analysis

(SSA) technique, denoted as DSSA, to filter out the noise (nonstationary sources) in EEG

brain signals. The nonstationary sources in the brain signal are associated with variations

in the mental state that are unrelated to the experimental task. DSSA is a powerful

tool for reducing the number of trials needed from each participant in neuroeconomic

experiments and also for improving the prediction performance of an economic choice

task. For a single trial, when DSSA is used as a noise reduction technique, the prediction

model in a food snack choice experiment has an increase in overall accuracy by

around 10% and in sensitivity and specificity by around 20% and in AUC by around

30%, respectively.

Keywords: choice behavior, neuroeconomics, EEG data, multi-dimensional time series, stationary subspace

analysis

JEL Codes: C32, D87

1. INTRODUCTION

The interest of economists and other social scientists to integrate neurophysiological data to
study human behavior has dramatically increased. Neuroeconomics has opened the door to
research aiming to explain behavioral models of decision making (Camerer et al., 2004). However,
neuroeconomics has only had limited reception into mainstream economics, perhaps due to the
limitation of brain processes for improving the prediction of economic behavior (see Harrison,
2008; Bernheim, 2009; Konovalov and Krajbich, 2016). After all, economists are ultimately
interested in predicting behavior (Gul and Pesendorfer, 2008; Fehr and Rangel, 2011).

Behavioral and experimental economics seem to be very much interrelated with
neuroeconomics. However, behavioral and experimental economics rely on simple and controlled
experiments to infer causality. Brain data, by nature, are very noisy. This is due to the fact that
subjects react to the presented stimuli and process it in their brain visually (i.e., colors, shapes,
etc.), physically (i.e., moving their eyes and muscles), emotionally, engaging in memory and other
processes that simultaneously activate different regions of the brain. The data collected from an
individual on a single trial measures the activity of the brain for the stimuli, but it also captures the
noise from all other activity unrelated to the task of the experiment. Brain experiments typically
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implement hundreds of trials that when aggregated filter
out noisy signals (Plassmann et al., 2007; Hare et al., 2009;
Milosavljevic et al., 2010). There is a trade-off between
the experimental economics principle of designing simple
experiments to assess causality and the neuroeconomics need for
a large number of trials to reduce the noise in brain signals.

An emerging literature in neuroeconomics uses brain signals
to directly explain choice behavior. One of the models used to
explain decision making is the Neural Random Utility Model
(NRUM; Webb et al., 2013). EEG data have been used to predict
purchase decisions (Ravaja et al., 2013), consumer’s future choices
(Telpaz et al., 2015), predict preferences (Khushaba et al., 2012,
2013) and response to advertisements (Boksem and Smidts, 2015;
Venkatraman et al., 2015).

EEG signals from different electrodes measuring brain activity
have, in the past, been regarded as a multi-dimensional
nonstationary time series; see Ombao et al. (2005) and von
Bünau et al. (2010) for examples. Kaplan et al. (2005) regard the
nonstationarity as the “unavoidable noise” in the brain signal.
Here the nonstationary sources in the brain signal contributes
to the noise in the EEG data and removing this nonstationarity
is extremely useful for prediction purposes in brain related
experiments. We use the words noise and nonstationarity
interchangeably because in our setup the nonstationary sources
contribute to parts of the signal that are unrelated to the
task related activity in the experiment. Hence eliminating
nonstationarity reduces noise in the brain signal. See section 3.2
and Figures 1, 2 for illustrations of the signal before and after
noise reduction. von Bünau et al. (2009) and von Bünau et al.
(2010) associate alpha oscillations in the data as a nonstationary
source. These oscillations appear usually in the range of 8–12 Hz
and are associated with blinking, fatigue or tiredness. Over the
course of the experiment such changes in the EEG time series are
unrelated to the experimental task and corrupt the signal.

Transforming a multi-dimensional nonstationary time
series into stationarity through linear transformations is
a nontrivial problem of fundamental importance in many
application areas. Stationary subspace analysis (SSA) (von
Bünau et al., 2009) is a recent technique that attempts to find
stationary linear transformations, in lower dimensions, of multi-
dimensional nonstationary time series, where nonstationarity
means independent heterogenous data with mean and variance
smoothly varying across time.

In this paper, we apply dependent SSA (DSSA, for short)
method proposed in Sundararajan and Pourahmadi (2017) for
the general class of multi-dimensional nonstationary time series
to data from a neuroeconomics case study. DSSA relies on the
asymptotic uncorrelatedness of the discrete Fourier transform
(DFT) of a second-order stationary time series at different
Fourier frequencies and unlike the well-known cointegration
theory that is restricted to parametric models such as VAR, DSSA
avoids parametric model assumptions.

We employ the DSSA technique, as a noise reduction step to
separate stationary (useful signal) and nonstationary sources to
reduce noise in the EEG brain signal. This is important because
using this process may move neurophysiological responses to
become more aligned with the design of traditional economics

experiments. In other words the nonstationary sources in
the brain signal are associated with variations in the mental
state that are unrelated to the experimental task at hand.
Hence the DSSA technique can be useful in reducing the
number of trials needed from each participant in neuroeconomic
experiments. More importantly, the technique greatly improves
the prediction performance of an incentivized economic food
choice task. In addition, the DSSA technique performs a formal
test of stationarity that ensures there is a statistically significant
reduction in nonstationarity (noise) in the observed signal. The
ability of DSSA and ISSA in detecting the true dimension of
the stationary subspace process is illustrated for different sample
sizes and dimensions and it was observed that inmost cases DSSA
performs better than ISSA. See section 3 of Sundararajan and
Pourahmadi (2017) for more details.

The rest of the paper has the following content: Section 2
introduces the SSA model setup, describes the existing SSA
technique and then the DSSA approach. Section 3 discusses an
empirical application of decisions for purchasing food snacks.
Subjects were presented with 10 food snack choice questions
and the observed EEG signal from 9 electrodes is treated as
a 9-dimensional time series. The various steps taken for noise
reduction are described in section 3.2 and the “noise reduced”
series is then analyzed. Finally, prediction models (section 3.2.2)
of the decision made by the subjects regarding various food
choices are constructed and their performance is illustrated.

2. STATIONARY SUBSPACE ANALYSIS
(SSA)

We begin with the SSA model setup and the method in
von Bünau et al. (2009) which deals with independent and
heteroscedastic data and is denoted by ISSA. Then a SSA method
for dependent data, denoted by DSSA, for finding the stationary
subspace process (noise reduced signal) of the observed second-
order nonstationary process (observed EEG signal) is described.

2.1. ISSA
Let {Xt} be the observed p-dimensional nonstationary time series
that is linearly generated by d stationary sources Ys

t and p − d
nonstationary sources Yn

t . More precisely,

Xt = AYt =
[

As An

]

[

Ys
t

Yn
t

]

, (1)

where A is the unknown p× p (invertible) mixing matrix, As and
An are p×d and p×(p−d) matrices, respectively. The dimension
d is unknown and needs to be estimated. In ISSA, the notion of
stationarity is with respect to the first two moments (i.e., mean
and lag-0 covariance).

The goal is to estimate the demixing matrix B = A−1 so
that Yt = BXt is separated into stationary and nonstationary
sources. The nonstationary source Yn

t contributes to the noise
(for example, fatigue and tiredness of participants during the
experiment) in the observed EEG signal and separating it from
the stationary source Ys

t is useful in improving performance in
prediction models.
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FIGURE 1 | Band-Pass filtered 9-dimensional EEG signal {Xt,j : t = 1, 2, . . . , 640} (before noise reduction) gathered from subject #31 while responsing to food-choice

question number 9.

The matrix B is assumed to be an orthogonal matrix. The
matrix B is estimated first by dividing the time series data into
N epochs and then minimizing, as a function of B, the Kullback-
Leibler (KL) divergence between Gaussian distributions across
these segments. Let µ̂i, 6̂i, i = 1, 2, . . . ,N, be the estimated mean
and covariance of the data for the ith segment, respectively. Let
the d × p matrix B1 be the first d rows of B. It follows that the
mean and variance of Ys

t = B1Xt on the ith segment are

µ̂s
i = B1µ̂i and 6̂s

i = B16̂iB
⊤
1 , i = 1, 2, ...,N. (2)

The matrix B is then chosen so that the means and covariances
vary the least across all epochs. This leads to en estimate B1 such
that B1Xt is the target stationary source. The objective function
is the sum of the Kullback-Leibler (KL) divergences between
the N(µ̂s

i , 6̂
s
i ) i = 1, . . . ,N, on each segment and a normal

distribution with their grand averages as its parameters, namely
N(µs,6s) where µs = 1/N

∑N
i=1 µ̂s

i and 6s = 1/N
∑N

i=1 6̂s
i :

L(B) =
N

∑

i=1

DKL[ N(µ̂s
i , 6̂

s
i ) || N(µs,6s) ]

=
N

∑

i=1

(

− log det 6̂s
i + (µ̂s

i − µs)⊤(µ̂s
i − µs)

)

. (3)

The matrix B is estimated by minimizing L(B); see von Bünau
et al. (2009) for more details. In the above methodology, the
partitioning of the time series into N segments comes with some
disadvantages. In addition to the independence assumption, ISSA
works under the assumption that nonstationarity in the data is
only with respect to the first two moments (mean and variance)
which can be restrictive.

2.2. Dependent SSA (DSSA)
Here we describe the DSSA approach to finding a stationary
subspace process of given multi-dimensional second-order
nonstationary processes satisfying Equation (1) using properties
from the frequency domain. This method does not require
dividing the time series data into several segments and utilizes
a test of stationarity for determining whether the estimated
source is stationary. This would be useful in not only finding
the stationary subspace process (noise reduced signal) but to
also ensure there is a statistically significant reduction in the
nonstationarity (noise) in the observed EEG signal.

Recall that the discrete Fourier transform (DFT) of any d-
variate series {Zt}, 1 ≤ t ≤ T, is given by

JZ(ωk) =
1√
2πT

T
∑

t=1

Zt exp(−itωk), (4)
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FIGURE 2 | Three-dimensional stationary subspace process {Yt,j : t = 1, 2, . . . , 640} (after noise reduction) gathered from subject #31 while responsing to food-choice

question number 9.

where ωk = 2π
T k, k = 1, 2, . . . ,T. Treating the DFT as a time

series indexed by k, its lag-r autocovariance is the d × d complex
valued matrix given by

Ŵ̂Z
r = 1

T

T
∑

k=1

JZ(ωk)JZ(ωk+r)
∗, (5)

where JZ(·)∗ denotes the complex conjugate transpose and r =
0, 1, . . .. It is well known (Theorem 4.3.1 of Brillinger, 2001)
that for a second-order stationary time series {Ys

t }, its DFTs are
asymptotically uncorrelated when ωi 6= ωj, i.e.,

cov(JYs (ωi), JYs (ωj)) = O

(

1

T

)

, (6)

where JYs (·) denotes the DFT of of {Ys
t }. Thus, for a given

positive integer m, based on the magnitudes of the first few
autocovariances of the DFTs of Ys

t = B1Xt , we construct the
following objective function as a measure of departure from
stationarity:

DY (B) =
m

∑

r=1

|| Ŵ̂Ys

r (B) ||2F , (7)

where for a matrix A ∈ R
d×d, ||A||F =

√

∑d
i,j=1 |a2ij| denotes

its Frobenius norm. A solution B̂ is obtained by minimizing
DY (B) subject to the orthonormality assumption BB⊤ = Ip, see
Sundararajan and Pourahmadi (2017) for more details. In section
2.2.5 of the previous work a sequential technique for estimating
the unknown dimension d of the stationary subspace is described.

The previous work includes theoretical justifications for DSSA
to correctly identify the dimension d of the stationary source.
Also, numerous simulation examples with different types of
stationary and nonstationary sources are simulated and the
ability of DSSA and ISSA to identify a stationary subspace process
{Ys

t } and its dimension d has been discussed. In these examples,
for the nonstationary sources {Yn

t } in Equation (1), independent
Gaussian components with changing variances and dependent
Gaussian components with changing variances are simulated.
The dimensions were allowed to vary from 1 to 5. Other
simulation examples include stationary vector autoregressive
processes (VAR) with no nonstationary sources (d = p),
time-varying vector moving average processes (VMA) with no
stationary sources (d = 0) and nonstationary unit-root VAR
processes with the number of nonstationary sources varying from
1 to p− 1.
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3. EXPERIMENT OF ECONOMIC CHOICES:
A CASE STUDY

A total of 181 right-handed students participated in a food snack
choice decision experiment conducted in the Texas A&MHuman
Behavior Laboratory. The sample consisted of about 50% females
and 50% males. The subjects were presented with 10 food choice
task questions (10 trials). Each choice consisted of two food
products, product A and product B. The two products within
each alternative had the same features relative to brand, price,
packaging and flavor. The only difference between each pair of
products was that one of them had fewer calories, making it a
healthier choice (original strawberry Jello−70 calories- vs. sugar-
free strawberry Jello −10 calories)1. Subjects were asked to fast
for 3 h prior to the experiment, and received a compensation fee
of $20 in exchange for their participation. In order to incentivize
and make the food choice task real, one of the 10 tasks was
randomly selected to be binding and participants had to eat the
food snack before being paid and leaving the laboratory. The
displayed picture of each item was the actual photo available for
purchase in Walmart’s website; however, the participants were
not aware that the products were purchased in Walmart.

The experimental design proceeds as follow. At the beginning
of the experiment, a blank slide with a fixation point in the
middle of the computer screen was presented for 2 s. Then, for
each food choice task, the actual product images were presented
in the following screen for 8 s. A separate decision slide asked
participants which of the two food snacks they prefer to eat. After
each decision, an inter-stimulus slide was presented for 0.75 s.
The order of the products was randomized across trials in the
experimental design; however, all subjects completed the task in
the same order.

3.1. Data Acquisition
The participant was fitted with a proper size EEG headset (B-
Alert X10, Advanced Brain Monitoring, Inc.) with 9 electrodes
to record brain activity from the pre-frontal (F3, F4, FZ), central
(C3, C4, CZ), and parietal (P3, P4, POZ) cortices and a linked
mastoid reference. An electrode impedance test was performed
to ensure proper conductivity of the electrodes. The impedance
level threshold was 20 k�. An EEG calibration procedure was
implemented before the data collection. The EEG calibration
incorporated choice tasks (unrelated to the study), psychomotor,
and auditory psychomotor vigilance tasks. The EEG data was
collected at a sampling rate of 256 Hz. The experiment was
presented using the iMotions software platform.

3.2. Data Analysis
For any given food choice task, say product A vs. product B,
we gathered the 9-dimensional EEG signal from the 9 electrodes
from the start of the stimuli when the product images are shown
to 2.5 seconds after the start. On the digital signal scale, this
constitutes 640 observations (2.5× 256). More precisely, for each

1The product list and amount of calories is listed in section A.1 in Appendix. The

focus of this paper is reducing EEG noise to improve the prediction of which of the

two food snacks participants would choose, irrespective of the product’s identity.

subject j = 1, 2, ..., 181, the data comprises of 640 observations
across time.

Given the raw 9-dimensional EEG time series obtained in this
case study, we proceed according to the following algorithm to
obtain the prediction results:

The Prediction Algorithm.

Step 1: Filter the raw 9-dimensional signal using a 0.5 Hz high-
pass and 45 Hz low-pass filter. Denote the filtered series
as {Xt,j} where j = 1, 2, . . . , 181 and t = 1, 2, . . . , 640.

Step 2: Pre-whiten {Xt,j}. For convenience in notation, we
denote Xt,j as the band-pass filtered signal that has been
pre-whitened.

Step 3: Noise reduction: Apply SSA to {Xt,j} to obtain {Yt,j}
(Section 3.2.1).

Step 4: Feature Selection and Prediction Models (Section 3.2.2).
Step 5: Assessing Prediction Performance (Section 3.2.3).

In Step 2 we pre-whiten {Xt,j} before further analysis by
computing the 9 × 9 sample covariance matrix Sj and then
transform the data to (Sj)

−0.5Xt,j. This standardization reduces
the cross-sectional correlation in {Xt,j}.

3.2.1. Noise Reduction via SSA

It is common to treat data like {Xt,j} as a nonstationary time
series (Ombao et al., 2005; Park et al., 2014). The words
noise and nonstationarity are used interchangeably because in
our setup the nonstationary sources contribute to parts of
the signal that are unrelated to the food choice task. Hence
eliminating nonstationarity reduces noise in the brain signal. As
an illustration, we make a plot of the 9-dimensional EEG signal
Xt,j (before noise reduction) in Figure 1. In Figure 2, we then
plot a 3-dimensional stationary subspace process obtained after
application of DSSA. The presence of nonstationarity (noise) in
Xt,j was confirmed by carrying out formal tests of stationarity
(Jentsch and Subba Rao, 2015). Hence we resort to the SSA
technique for removing this nonstationarity from the signal and
this is described in this section.

As a pre-processing technique to reduce noise, we apply DSSA
and ISSA described in section 2 to obtain a d dimensional
stationary subspace process where d < 9, denoted by {Yt,j}.
Since the actual dimension d is unknown, we present the results
for d = 4, 5, 6, 7, 8. We also applied the sequential technique in
Sundararajan and Pourahmadi (2017) to detect d for each subject
and each food choice task. Here we obtained a mode of d = 8 as
an estimate of the dimension of the stationary subspace.

3.2.2. The Prediction Models

We discuss three prediction models based on logistic regression
with different derived features. The aim of the prediction models
discussed below is to fit a model to predict product choice
(A or B) based on the input signal. While building prediction
models M1 and M2, only Step 2 of the algorithm is used, for
prediction model M3 both Steps 2 and 3 are needed. Note
that model M2 assumes that {Xt,j} is stationary whereas model
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M3 assumes that {Xt,j} is nonstationary and applies SSA before
extracting features and estimating the prediction model.

3.2.2.1. ModelM1

A standard model similar to Telpaz et al. (2015) is based on the
importance of the pre-frontal EEG channels in explaining choice
behavior in individuals. Following their aggregation technique to
reduce the noise when computing preference scores for products,
we take average of the signals from the 3 pre-frontal channels (F3,
F4, FZ) over the 2.5 s. The signal here is a 3-dimensional band-
pass filtered signal that was pre-whitened. The average is taken
per subject per food choice question (say product A vs. product
B). For subject j, j = 1, 2, . . . , 181 , this average denoted by the
scalar Xj is used as a feature in the following logistic regression
model:

P
(

cj,AB = 1
∣

∣

∣
Xj

)

=
exp(a0Xj)

1 + exp(a0Xj)
, (8)

for j = 1, 2, . . . , 181. In the model above we have denoted 1 for
product A and 0 for product B and the model predicts the class
(0 or 1) based on the derived feature Xj.

3.2.2.2. ModelM2

In this approach, to distinguish between the two classes denoted
as 1 for product A and 0 for product B, we take {Xt,j} the pre-
whitened 9-dimensional band-pass filtered signal. We then focus
on the covariance structure of Xt,j for each of the two classes (0
and 1). The aim is to derive features that bring out the differences
between the two classes based on the covariance structure of the
signal. This is achieved by computing the average spectral density
matrices for the two classes over the Fourier frequencies:

gi(ωk) = 1

ni

∑

j∈Class i
gj(ωk), i = 0, 1, (9)

where gj(ωk) is the estimated 9 × 9 spectral matrix for subject
j using observations {Xt,j}, ni for i = 0, 1 is the number of

subjects in the two classes and ωk = 2πk
640 , k = 1, 2, . . . , 640,

are the fundamental Fourier frequencies. The spectral matrix was
estimated using a Daniell kernel with smoothing window length
25 (approximately

√
640); see Example 10.4.1 in Brockwell and

Davis (1991).
In order to train the classifier, for every subject j ∈

{1, 2, . . . , 181}, a distance vector pj,AB = (p0,j,AB, p1,j,AB) is
computed where

pi,j,AB = 1

640

640
∑

k=1

|| gj(ωk)− gi(ωk) ||2F i = 0, 1.

and || · ||F is the Frobenius norm of a matrix. It measures the
distance to the center of each of the two classes and serves
as our two-dimensional feature vector used in constructing the
following logistic regression model (prediction model):

P
(

cj,AB = 1
∣

∣

∣
pj,AB

)

=
exp(α0p0,j,AB + α1p1,j,AB)

1 + exp(α0p0,j,AB + α1p1,j,AB)
, (10)

for j = 1, 2, . . . , 181 and cj,AB is the class indicator (1 for product
A or 0 for product B) for subject j.

3.2.2.3. ModelM3

Here we apply Step 2 on the raw 9-dimensional EEG signal
to obtain {Xt,j}. Then we obtain on the d-variate stationary
subspace processes, {Yt,j}, using DSSA/ISSA (Step 3). Similar to
the approach in model M2, we aim to capture the differences
between the two classes based on the covariance structure of the
signal. Unlike model M2, we apply DSSA and ISSA described in
section 2 to obtain a d-dimensional stationary subspace process
where d < 9, denoted by {Yt,j}. Features to be fed into the
prediction model will be based on {Yt,j} as opposed to modelM2

wherein {Xt,j} was used. Then, proceeding as in model M2, we
compute the average spectral density matrices for the two classes
over the Fourier frequencies:

f i(ωk) = 1

ni

∑

j∈Class i
fj(ωk), i = 0, 1, (11)

where fj(ωk) is the estimated d × d spectral matrix for subject
j using observations {Yt,j}, ni for i = 0, 1 is the number of

subjects in the two classes and ωk = 2πk
640 , k = 1, 2, . . . , 640

are the fundamental Fourier frequencies. The spectral matrix was
estimated using a Daniell kernel with smoothing window length
25 (approximately

√
640).

In order to train the classifier, for every subject j ∈
{1, 2, . . . , 181}, a distance vector dj,AB = (d0,j,AB, d1,j,AB) is
computed where

di,j,AB = 1

640

640
∑

k=1

|| fj(ωk)− f i(ωk) ||2F i = 0, 1.

and || · ||F is the Frobenius norm of a matrix. It measures the
distance to the center of each of the two classes and serves
as our two-dimensional feature vector used in constructing the
following logistic regression model (prediction model):

P
(

cj,AB = 1
∣

∣

∣
dj,AB

)

=
exp(β0d0,j,AB + β1d1,j,AB)

1 + exp(β0d0,j,AB + β1d1,j,AB)
, (12)

for j = 1, 2, . . . , 181 and cj,AB is the class indicator (1 for product
A or 0 for product B) for subject j.

3.2.3. Prediction Performance

We asses the performance by computing the overall prediction
accuracy and the average sensitivity and specificity. Using the

TABLE 1 | Confusion matrix.

Prediction

Product A Product B Total

Actual Product A CA IB TA

Product B IA CB TB
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confusion matrix given in Table 1, we compute two prediction
accuracy measures given by

A1 =
CA + CB

TA + TB
, A2 =

CA
TA

+ CB
TB

2
, (13)

where A1 is the overall prediction accuracy of the model and A2,
in a binary classification context, is the average of sensitivity (true
positive rate) and specificity (true negative rate) of the prediction
models. Finally, we present an estimate of the AUC: area under
the ROC curve (LeDell et al., 2015) for the 10 food choice
questions for each of the 3 models and this measure is denoted
as A3. The ROC curve plots the true positive rate against the false
positive rate and is a useful measure of model performance. The
area under the ROC curve (known as AUC) varies between 0 and
100% with a value of 50% as baseline (uninformative classifier).

In Table 2, we shuffle the class labels randomly and fit the
prediction models and assess the performance measures. The
shuffling of labels is done 500 times, each time fitting the
prediction models, and the average performance measure over
the 500 runs across the 10 food choice questions is presented.
This enables us to identify a baseline for the 3 performance

measures (70% for performance measure A1 and 50% for
performance measures A2 and A3).

These accuracy rates are computed using a 10-fold cross-
validation technique where the data is randomly divided into
10 nearly equal parts. Each part is removed, in turn, while the
remaining data are used to fit the prediction models M1,M2,M3

and the predictions are carried out for the left out part. More
precisely, the computed accuracy rates are the out-of sample

TABLE 2 | Prediction performance of the 3 models with shuffled labels: the

average of the 3 performance measures A1, A2, and A3 (AUC) taken across the

10 food choice questions for the three competing models M1, M2, and M3.

Model Overall

accuracy - A1

Avg. of sensitivity and

specificity - A2

AUC - A3

M1 69.54 48.97 53.26

M2 69.05 51.81 53.25

M3 - DSSA 69.12 51.34 54.20

M3 - ISSA 69.51 51 52.08

For model M3 the choice of d is taken as 8.

FIGURE 3 | Overall prediction accuracy rate (A1), in %, based on a 10-fold cross-validation for the 10 food choice tasks for the two mdoels M1 and M2. Approximate

95% confidence intervals included for each accuracy estimate.
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FIGURE 4 | Prediction accuracy rate as average of sensitivity and specificity (A2), in %, based on a 10-fold cross-validation for the 10 food choice questions for the

two models M1 and M2. Approximate 95% confidence intervals included for each accuracy estimate.

TABLE 3 | Ten-fold cross-validation overall prediction accuracy (in %) for the 10 questions Q1–Q10 corresponding to d = 4, 5, 6, 7, 8 for DSSA and ISSA (model M3).

d Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

4 DSSA 72.80 73.65 74.22 71.53 74.00 73.83 73.48 71.38 74.50 72.97

ISSA 69.60 71.20 75.10 71.40 66.50 76.20 70.18 68.45 72.37 73.13

5 DSSA 73.50 73.21 75.76 73.00 68.30 77.85 73.55 72.40 74.60 78.75

ISSA 74.00 75.48 71.80 71.80 75.10 75.10 75.20 74.62 72.40 70.70

6 DSSA 74.65 75.00 78.46 72.85 77.35 75.10 75.70 74.52 77.45 78.61

ISSA 71.94 77.30 74.00 79.62 78.50 73.50 75.70 76.80 74.00 74.25

7 DSSA 76.12 80.27 78.56 79.15 79.20 76.15 79.65 80.11 79.12 80.50

ISSA 75.70 74.00 76.20 81.80 80.12 79.80 78.50 80.80 77.90 76.80

8 DSSA 78.98 81.35 81.52 84.12 80.24 79.11 82.30 80.58 80.13 81.94

ISSA 76.90 75.10 80.16 79.60 75.10 79.00 79.00 84.75 82.00 75.68

Significant results (instances of at least a 1% improvement in DSSA) are highlighted in bold.
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FIGURE 5 | Average 10-fold cross-validation overall accuracy rate (in %) for the 10 food choice questions (y-axis) vs. dimension of the stationary subspace (x-axis).

Approximate 95% confidence intervals included for each accuracy estimate.

estimates wherein for any given pair of products A and B,
the prediction model is fit based on roughly 90% of the
subjects and the predictions are carried out for the remaining
subjects.

The overall accuracy rate (A1) for models M1 and M2

computed and plotted in Figure 3 shows that it varies between
69 and 72% for both models. Next, we look at the performance
measure A2 as an average of the sensitivity and specificity of
modelsM1 andM2. We notice from Figure 4 that both methods
perform poorly with accuracy rates around 50%. Note that as
opposed to averaging over the signal across the 3 channels in
model (Equation 8), we also assessed the performance of the
logistic regression models fitted individually with each of the pre-
frontal channels. We obtained rates (not presented here) similar
to that seen in Figures 3, 4 in terms of overall prediction accuracy
and average of sensitivity and specificity.

Next, we study the overall prediction accuracy (A1) after
applying the pre-processing techniques DSSA and ISSA and
removing the nonstationarity (noise) in the EEG signal, and
fitting the prediction model (Equation 12 of model M3). Since
the actual dimension of the stationary subspace is unknown, in
Table 3 we present the results for dimensions d = 4, 5, 6, 7, 8,

which show that DSSA performs better than ISSA in most cases.
The average overall accuracy rate based on the 10 food choice
tasks for each value of d is given in Figure 5. It is seen that the
10-fold cross-validation accuracy rate is around 80% for each of
the 10 tasks when the dimension d = 8. This rate is roughly 10%
more than the accuracy rate from Figure 3 wherein no SSA-type
pre-processing technique is applied. We also notice that as the
dimension of the stationary subspace d increases, the accuracy
rate also increases. This phenomenon was also observed in von
Bünau et al. (2010) and confirms the improvements in prediction
accuracy when there are fewer nonstationary sources (noise) in
model (Equation 1). The DSSA/ISSA turns out to be a very
useful tool for reducing the noise (nonstationarity) in the EEG
signal.

We then asses the performance measure A2 which is an
average of the sensitivity and specificity for modelM3. We set the
dimension of the stationary subspace at d = 8. Figure 6 shows
that DSSA performs slightly better than ISSA in most cases. More
importantly, we note that in comparison to Figure 4, DSSA has
roughly a 20% increase in the performance measure A2.

Finally, we present a cross-validation estimate of the AUC
for the 3 competing models in Figure 7. We again notice
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FIGURE 6 | Prediction accuracy rate: average of sensitivity and specificity (A2), in %, based on a 10-fold cross-validation for the 10 food choice questions. Model M3

was used with d = 8. Approximate 95% confidence intervals included for each accuracy estimate.

roughly a 20% increase when using DSSA/ISSA (Model M3) as
a noise reduction technique before constructing the prediction
model.

The average of the 3 performance measures A1, A2, and
A3(AUC) taken across the 10 food choice questions for the three
competing models M1, M2, and M3 is reported in Table 4. We
note that for models M1 and M2 the overall prediction accuracy
(A1) is roughly 70% which is treated as a baseline for this
measure. However, the performance measures A2 and A3 (AUC)
are only around 50% which suggests a poor performance. In
contrast for modelM3, overall accuracy rate increased by roughly
10%, the measure A2 is higher by around 20% and measure
A3 (AUC) is significantly higher (increase of roughly 30%) than
modelsM1 andM2.

4. CONCLUDING REMARKS

EEG records the electrical activity of the brain directly in the
scalp. EEG signals have high temporal resolution, thus providing
rich time series data of brain activity. We concentrate on EEG
because it is a less expensive method to obtain brain data,
making it more accessible. Brain data, however, is inherently

noisy, because it captures the brain activity for the stimuli, along
with other activity unrelated to the task of the experiment. In
order to filter out the noise, neuroeconomic experiments typically
aggregate data from hundreds of trials from each participant.
In addition to potential fatigue effects, we point out a tradeoff
between the basic experimental economics principle of simplicity
with the neuroeconomic need for a large number of trials to
reduce brain signal noise. We apply a new statistical technique to
a food choice task and show its potential for reducing the noise
and hence the number of trials needed for EEG experiments.
Based on the results presented in section 3.2.3, we notice that the
overall accuracy rate is around 80% for each of the 10 trials when
noise reduction is carried out through SSA (model M3). More
importantly, the overall prediction accuracy from a single trial
increased by around 10%, the average of sensitivity and specificity
increased by around 20% and the AUC increased by roughly 30%
when the DSSA/ISSA technique was used to reduce signal noise.

The improvement in the prediction results in this case
study by implementing noise reduction via DSSA/ISSA indicates
the dynamic behavior of the brain processes. This time-
varying behavior leads to nonstationarity in the observed multi-
dimensional EEG signal. This phenomenon has been observed
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FIGURE 7 | Cross-validation estimate of the AUC in % (Area under the ROC curve) for the 3 models M1 M2 and M3. Approximate 95% confidence intervals included

for each accuracy estimate. For model M3 we take d = 8.

TABLE 4 | The average of the 3 performance measures A1, A2, and A3 (AUC)

taken across the 10 food choice questions for the three competing models M1,

M2, and M3.

Model Overall

accuracy - A1

Avg. of sensitivity and

specificity - A2

AUC - A3

M1 70.04 48.97 53.26

M2 70.52 52.17 59.31

M3 - DSSA 81.02 71.23 82.75

M3 - ISSA 78.73 67.61 81.72

For model M3 the choice of d is taken as 8.

and studied in other works (Ombao et al., 2005; Demiralp et al.,
2007; von Bünau et al., 2009; Sundararajan and Pourahmadi,
2017, to name a few) wherein the observed EEG signal is
treated as a multi-dimensional nonstationary time series. Hence
removing nonstationarity from the EEG signal is seen to improve
prediction performance in the above cited works and also in
the current case study. The improvement in the prediction
performance of EEG brain data shown in this case study
is encouraging. Future work can build upon our procedure

to develop other post-processing techniques to further refine
neurophysiological predictors of choice behavior.
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A. APPENDIX

A.1. List of Food Snack Products Used in
the Experiment
A.1.1. Experimental Instructions

The Food Choice Task will proceed as follows:

1. This stage consists of 10 choice situations.
2. In each trial, you will be presented with two food products.
3. You need to choose which of the two products you would

prefer to eat.
4. Your decisions are real. At the conclusion of the experiment,

one decision will be randomly selected to be binding.
5. You will receive one single unit of the food product you chose

and will have to eat it at the end of today’s session.

TABLE A1 | Food snack choices.

Choice Product A Product B

1 Low calorie Jell-O gelatin (10

cal.)

Original Jell-O gelatin (70 cal.)

2 Oven baked Lays potato

chips (120 cal.)

Classic Lays potato chips

(160 cal.)

3 No sugar added Dole

peaches (25 cal.)

Original Dole peaches (70 cal.)

4 Light Yoplait yogurt (90 cal.) Original Yoplait yogurt (150

cal.)

5 Fat free Pringles potato chips

(70 cal.)

Original Pringles potato chips

(150 cal.)

6 Sugar free Snack Pack

pudding (70 cal.)

Original Snack Pack pudding

(110 cal.)

7 Reduced fat Sargento string

cheese (50 cal.)

Original Sargento string

cheese (80 cal.)

8 Non-fat Oikos Greek yogurt

(120 cal.)

Traditional Oikos Greek yogurt

(150 cal.)

9 Reduced fat Cheez-It baked

crackers (130 cal.)

Original Cheez-It baked

crackers (150 cal.)

10 Diet Lipton green tea (0 cal.) Traditional Lipton green tea

(100 cal.)

The pictures of all products were taken from the WalMart’s website where they were

purchased.
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