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Sympathetic nerve activity (SNA) contributes appreciably to the control of physiological

function, such that pathological alterations in SNA can lead to a variety of diseases. The

goal of this review is to discuss the characteristics of SNA, briefly review the methodology

that has been used to assess SNA and its control, and to describe the essential role of

neurophysiological studies in conscious animals to provide additional insights into the

regulation of SNA. Studies in both humans and animals have shown that SNA is rhythmic

or organized into bursts whose frequency varies depending on experimental conditions

and the species. These rhythms are generated by brainstem neurons, and conveyed to

sympathetic preganglionic neurons through several pathways, including those emanating

from the rostral ventrolateral medulla. Although rhythmic SNA is present in decerebrate

animals (indicating that neurons in the brainstem and spinal cord are adequate to

generate this activity), there is considerable evidence that a variety of supratentorial

structures including the insular and prefrontal cortices, amygdala, and hypothalamic

subnuclei provide inputs to the brainstem regions that regulate SNA. It is also known

that the characteristics of SNA are altered during stress and particular behaviors such as

the defense response and exercise. While it is a certainty that supratentorial structures

contribute to changes in SNA during these behaviors, the neural underpinnings of the

responses are yet to be established. Understanding how SNA is modified during affective

responses and particular behaviors will require neurophysiological studies in awake,

behaving animals, including those that entail recording activity from neurons that generate

SNA. Recent studies have shown that responses of neurons in the central nervous

system to most sensory inputs are context-specific. Future neurophysiological studies in

conscious animals should also ascertain whether this general rule also applies to sensory

signals that modify SNA.
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INTRODUCTION

The 2009 report (Schlaich et al., 2009) demonstrating that
catheter-based radiofrequency renal denervation could reverse
the elevated levels of blood pressure and muscle sympathetic
nerve activity (MSNA) in a cohort of hypertensive patients with
end stage kidney failure drew considerable attention to the role of
sympathetic dysfunction in cardiovascular disease. Disturbances
in SNA are thought to contribute to the genesis and/or
the maintenance of many cardiovascular diseases including
essential hypertension, heart failure, orthostatic hypotension, and
psychogenic heart disease or heart disease that is a consequence
of psychiatric disorders (Mathias, 1996; Benarroch, 1997; Klein
et al., 2003; Low and Engstrom, 2012; Martínez-Martínez
et al., 2014; Wehrwein and Barman, 2014). As reviewed by
Wehrwein et al. (2016), several neurological diseases/disorders
have imbalances in SNA as either a direct cause of the
disease (e.g., multiple system atrophy, Shy Drager syndrome,
pure autonomic failure) or as a consequence of a disease
(e.g., Parkinson disease). The therapeutic effects of many
commonly used prescription and over-the-counter drugs result
from modulation of sympathetic function; examples include β-
adrenoceptor antagonists for heart failure, hypertension, and
glaucoma; β-adrenoceptor agonists for asthma and emphysema,
α-adrenoceptor antagonists for benign prostatic hyperplasia, and
α-adrenoceptor agonists to dilate pupils for ophthalmic exams
(see review by Esler, 2012). Thus, in order to appreciate fully
integrative physiology and pathophysiology, we need to be able
to measure SNA and to understand how it can be modulated
in different behavioral states and under pathophysiological
conditions.

This review summarizes our current state of knowledge of the
central nervous system mechanisms that generate and modulate
SNA. A major focus is gaps in our knowledge about these
neural mechanisms, and the strengths and weaknesses of the
experimental paradigms that have been used to decipher the
control of autonomic function. In particular, we will discuss
the promise of evolving techniques for examining the neural
control of SNA and cardiovascular function in conscious animal
models.

INDIRECT INDICES OF SNA

During the past several decades, investigators have used a
variety of approaches to assess “sympathetic tone,” including
indirect measures such as pharmacological or surgical blockade
of autonomic ganglia (King et al., 2007; Yoshimoto et al., 2010a),
evaluation of the range of fluctuations of blood pressure (blood
pressure variability) over time (Parati et al., 2013), changes
in the frequency components of heart rate or systolic blood
pressure variability (see reviews by Acharya et al., 2006; Reyes
del Paso et al., 2013), and a measure of total or regional
norepinephrine spillover via the use of radiotracer dilution
technology (Esler et al., 1984). Several reviews (Guild et al.,
2010; Malpas, 2010; Charkoudian and Wallin, 2014) provide an
excellent critique of the pros and cons of each of these indirect
methods in establishing information about sympathetic control

of the cardiovascular system. Whereas each of these methods
gives us some important clues about sympathetic function, none
can actually substitute for a direct recording of the activity within
the sympathetic nerves that control various autonomic effector
organs. In 1932 Adrian and colleagues were the first to publish a
recording of the naturally occurring activity in sympathetic nerve
fibers (cervical and abdominal) in anesthetized cats and rabbits
(Adrian et al., 1932). About 36 years later, Karl-Erik Hagbarth
pioneered the use of microneurography to record MSNA in
humans by inserting a needle into his own ulnar nerve (see Vallbo
et al., 2004).

RHYTHMS: THE HALLMARK OF SNA

Following the landmark studies by Adrian et al. (1932) and
Vallbo et al. (2004), many investigators have placed recording
electrodes in or on sympathetic nerves supplying a variety of
target organs, including the heart, kidney, splanchnic circulation,
skeletal muscle vasculature, brown adipose tissue, spleen, and
skin. Recordings of SNA have been obtained using multiple
experimental models including barbiturate-, chloralose-, or
urethane-anesthetized cats, rabbits, and rodents, decerebrate-
unanesthetized cats and rodents, isolated rodent brainstem-
spinal preparations, and conscious cats, rabbits, rodents, sheep,
and human subjects (see reviews by Barman and Gebber, 2000;
Vallbo et al., 2004; Wallin and Charkoudian, 2007; Guild et al.,
2010; Malpas, 2010; Kenney and Mosher, 2013; Charkoudian
and Wallin, 2014; White et al., 2015; Hart et al., 2017). A
common feature of these diverse studies is that bursts of
SNA are synchronized to the phases of the cardiac cycle
(cardiac-related activity) as a result of baroreceptor-induced
entrainment. In addition, the amplitude of these cardiac-related
bursts waxes and wanes on the time scale of the respiratory
cycle (respiratory-related activity), reflecting central and reflex-
induced cardiorespiratory synchronization. These features of
SNA are illustrated by the data in Figure 1 from a cat that was
anesthetized with a mixture of diallybarbiturate and urethane,
paralyzed with gallamine triethiodide, and artificially ventilated.
The traces show arterial pressure (AP), inferior cardiac (to the
heart) and vertebral (to the vasculature of the skeletal muscle
of the forelimb) nerve activity (CNA, VNA), and phrenic nerve
activity (PNA). The cardiac-related and respiratory-related bursts
of SNA are evident in the raw recordings from two functionally
distinct sympathetic nerves emanating from the left stellate
ganglion (Figure 1A); also these hallmark characteristics of SNA
can be quantified by spectral analysis using fast Fourier transform
(Figure 1B). The autospectra of CNA and VNA show peaks at
both the frequency of the central respiratory cycle and at the
frequency of the heartbeat. Coherence analysis showed that these
components of SNA were strongly correlated to PNA and the AP,
respectively.

Since the cardiac- and respiratory-related bursts of SNA
are prominent in recordings from most sympathetic nerves
in mammalian species, they (especially the cardiac-related
rhythm) are regarded as the hallmark of SNA. In fact, when
using microneurography to record MSNA in human subjects,
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FIGURE 1 | Cardiac-related and respiratory activity recorded from two branches of the left stellate ganglion in a barbiturate-anesthetized, paralyzed, and

artificially-ventilated cat. (A) Traces (top to bottom) show the arterial pressure (AP), cardiac nerve activity (CNA), vertebral nerve activity (VNA), integrated phrenic nerve

activity (PNA), and time base (1 s/division). The capacity-coupled preamplifier bandpass setting was 30–3,000Hz (CNA, VNA) or 10–1,000Hz (PNA). Signals were

passed through a 50/60Hz noise eliminator (Hum Bug; Quest Scientific) and a moving averager (CWE, Model MA-821RSP) with a 50-ms (CNA, VNA) or 100-ms

(PNA) time constant. (B) Autospectra (left) and coherence functions (right) for these signals. Spectra are based on 35 20-s windows with 50% overlap, and they have

a frequency resolution of 0.05Hz per bin. Data showing cardiac- and respiratory-related rhythms appear in CNA and VNA have been published (Barman and Kenney,

2007; Barman, 2016); this figure has been created de novo but does not contain any original data.

the appearance of the cardiac-related activity signals to the

investigator that the recording electrode has reached the

appropriate target. Nonetheless, central sympathetic circuits are

dynamic and can generate different burst patterns depending on

the physiological state, the type of nerve being studied, as well as

the species (Malpas, 1998, 2010; Chang et al., 1999; Hashimoto
et al., 1999; Barman and Gebber, 2000; Barman and Kenney,
2007; Charkoudian andWallin, 2014). For example, cardiac- and
respiratory-related rhythms are typically absent in the activity

recorded from cutaneous vasoconstrictor fibers, sudomotor

fibers, epinephrine-regulating adrenal preganglionic neurons,
and nerves supplying the brown adipose tissue (Jänig et al., 1983;

Johnson andGilbey, 1994;Macefield andWallin, 1996;Morrison,
1999; Morrison and Cao, 2000). Differences in neuronal activity
patterns among a wide population of sympathetic nerves may
reflect the non-uniform influences of central and peripheral

inputs to sympathetic outflow (Morrison, 2001). In addition
to the cardiac- and respiratory-related periodicities, oscillations
ranging from∼0.04Hz to at least 10-Hz have been recorded from
sympathetic nerves in a variety of species (see reviews by Malpas,
1998, 2010; Barman and Gebber, 2000; Barman, 2016).

COMPARING VARIOUS EXPERIMENTAL
MODELS FOR RECORDING SNA

While the number of laboratories with expertise in recordings
of SNA from human subjects has increased in the twenty-
first century, animal models remain the mainstay in central
autonomic research. Table 1 summarizes some of the benefits
and limitations of using human subjects and anesthetized or
conscious animal models to study sympathetic neural control
of autonomic function. In addition to these models which are
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TABLE 1 | Benefits and limitations of recording SNA in different models.

Benefit/Limitation Human Conscious

animal

Anesthetized

animal

No question regarding relevance of

research

*

Reproducible recordings over extended

periods of time

* *

Study SNA in different disease models,

with and without treatment

* * *

Record SNA long term in same subject to

track disease development and

progression

*

Study state-dependent and

behavior-induced changes in SNA

* *

Record from visceral sympathetic nerves * *

Record from many nerves simultaneously

to study differential control of SNA

*

Only MSNA and SSNA can be recorded *

Integrity of baroreceptor reflex is needed

to verify recording is from a sympathetic

nerve

*

Manipulate central sympathetic circuits

pharmacologically

* *

Record simultaneously from central

neurons and sympathetic nerves

* *

Neuromuscular blockade can be used to

avoid movement artifacts

*

Anesthesia can alter cardiovascular

stability and makes the preparation less

physiological

*

Telemetry is in its infancy; very few labs

capable of doing this

*

Less than 50% success rate in valid nerve

recordings

*

*Denotes that the listed characteristic relates to this model.

the focus of this review article, the authors acknowledge that
work on reduced preparations such as the isolated brainstem-
spinal cord preparation, working heart-brain preparation,
and the decerebrate, artificially-perfused rat preparation have
contributed to our base of knowledge regarding the peripheral
and central control of the autonomic nervous system (Paton,
1996; Pickering and Paton, 2006; Chen et al., 2011).

No doubt the ideal experimental model to study changes
in SNA in health and disease in the human population is
to record SNA in human subjects. As articulated in several
recent reviews (Wallin and Charkoudian, 2007; Charkoudian
and Wallin, 2014; White et al., 2015; Hart et al., 2017), MSNA
burst frequency or burst incidence in a supine individual is
reproducible in recordings made many months apart if his/her
physiological status has not changed drastically. As cautioned
by Hart et al. (2017) this is the case as long as recording
conditions are standardized (e.g., room temperature between 21
and 24◦C, subject at rest but not sleeping, and room noise at
a minimum). However, MSNA burst frequency increases with
age and during exposure to high altitudes; and burst incidence
is higher in individuals with various cardiovascular pathologies

such as chronic renal failure, congestive heart failure, diabetes,
hypertension, metabolic syndrome, obesity, and obstructive sleep
apnea (Wallin and Charkoudian, 2007; Charkoudian andWallin,
2014; White et al., 2015; Hart et al., 2017).

Despite the recognized scientific and practical value
to recording SNA in human subjects, one cannot design
experiments using human subjects to study changes in MSNA
before, during, and after the development of certain pathologies
as one cannot readily predict which subjects would qualify for
entry into the study. Also, the time (years) needed to complete
such a study induces other “expected” age-related changes
in MSNA (Wallin and Charkoudian, 2007; Charkoudian and
Wallin, 2014). Another limitation of studies in human subjects is
that one cannot intentionally manipulate regions of the central
nervous system to assess the impact of such on SNA. Also,
one cannot simultaneously record from individual brainstem
neurons and sympathetic nerves in an effort to understand the
neural pathways involved in regulating SNA. Perhaps even more
problematic, one cannot record from a visceral (e.g., cardiac,
splanchnic, or renal) nerve in a human subject and yet these may
be the most important nerves to study in terms of the basis for
cardiovascular disease or dysfunction (Osborn and Fink, 2010).
For example, Osborn and Fink (2010) have data supporting the
view that splanchnic SNA is increased, renal SNA is decreased,
and muscle SNA is unchanged during angiotensin II-induced
hypertension in rats.

It is not surprising that many autonomic neuroscientists have
relied on animal models to study SNA and the central neural
control of cardiovascular function. Studies using anesthetized or
decerebrate animals are amenable to recording simultaneously
sympathetic outflow to multiple effector organs and the activity
of central neurons. Also this preparation is well-suited for
recording changes in SNA and blood pressure produced by
elicitation of reflexes and by chemical activation or inactivation
of various brain regions (see reviews by Dampney, 1994;
Malpas, 1998, 2010; Barman and Gebber, 2000; Guyenet, 2000;
Guild et al., 2010; Kenney and Mosher, 2013). Such studies
have provided us with a wealth of information on the roles
of various peripheral and central regions involved in the
control of SNA and cardiovascular function. They also have
allowed us to gain an appreciation for the complexity of
autonomic regulation including differential control of regional
sympathetic outflow. For example, Barman and Gebber and
their colleagues have used several approaches in anesthetized
cats to identify central neurons that generate and/or transmit
rhythmic activity to the spinal intermediolateral cell column
(IML) that contains the cell bodies of preganglionic neurons
(Barman and Gebber, 1992, 1993, 1997, 1998, 2007; Barman
et al., 1994, 1995, 1997, 1999, 2002, 2005; Orer et al., 1999,
2008). These experimental approaches include (1) applying
correlation analyses (spike-triggered averaging and coherence
analysis) to the simultaneously recorded activity of individual
brainstem neurons and sympathetic nerves, (2) microinjecting
agonists or antagonists of putative central neurotransmitters,
including glutamate, GABA, serotonin, and catecholamines, into
different medullary and pontine regions to characterize changes
in SNA rhythmicity, and (3) using the technique of antidromic

Frontiers in Neuroscience | www.frontiersin.org 4 December 2017 | Volume 11 | Article 730

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Barman and Yates Autonomic Control in Conscious Animals

activation to determine interconnections of medullary neurons
and projections of brainstem neurons to the IML. Studies
using anesthetized animals have also provided us with a wealth
of information on the complexity of the neurochemistry of
central autonomic pathways (Benarroch, 1997; Stornetta, 2009).
Knowing the specific neuronal phenotypes of central neurons
has allowed for the application of appropriate optogenetic and
pharmacogenetic actuators to identify the roles of specific groups
of neurons in the control of SNA and blood pressure (Guyenet,
2006; Wenker et al., 2017). These studies along with others (see
reviews by Dampney, 1994; Barman and Gebber, 2000; Guyenet,
2000; Barman, 2016) have been a part of the framework for
constructing the wiring diagram shown in Figure 2 that depicts
the central pathways that regulate the cardiovascular system; this
figure is discussed in more detail below.

Amongst the major limitations of an anesthetized animal
preparation is the fact that anesthesia alters blood pressure and
respiration, two major factors that modulate SNA, as well as
having direct effects on SNA (Shimokawa et al., 1998; Neukirchen
and Kienbaum, 2008). The effect of anesthetics on the activity of
neurons that control SNA is additionally problematic, and one
cannot study the impact of behavioral or state-dependent changes
in SNA. Of course, the inability to do long-term recordings of
SNA in anesthetized animals limits what information we can
gain about the role of changes in SNA in disease development
or progression. Instead, when recording SNA of anesthetized
animals, one needs to compare levels of SNA from different
groups of animals (e.g., a normotensive group and a hypertensive
group).

Some of the limitations associated with the use of anesthetized
animal models can be overcome by performing long-term
recordings of SNA in conscious, freely behaving animals. There
are two major approaches to these chronic nerve recordings.
One can use a tethered system in which wires attached to a
recording electrode on a nerve are exteriorized and connected
to a recording device (e.g., Yoshimoto et al., 2010b; Hamza and
Hall, 2012) or one can use a telemetry-based implantable nerve
amplifier (e.g., Barrett et al., 2003; Guild et al., 2012; Muntzel
et al., 2012; Stocker and Muntzel, 2013). Twenty-first century
advancements in continuous nerve recording techniques have
not only eliminated the influence of anesthesia on the measured
variables, but they have allowed researchers to study SNA in the
same animal before, during, and after development of a pathology
or before and during a change in behavior (e.g., sleep, exercise,
stress) or change in diet (e.g., high salt or high fat diet). The field
of central autonomics has benefited by gaining new information
regarding the contribution of changes in SNA in health and
disease (see reviews by Guild et al., 2010; Wehrwein and Barman,
2014; Hart et al., 2017). Wehrwein and Barman (2014) recently
highlighted several studies that have used continuous (up to 21
days) nerve recordings to determine the time course of changes
in SNA as hypertension develops. It seems that very few studies
have been able to show unequivocally that an increase in SNA
underlies the development or maintenance of hypertension.

Few laboratories have mastered the ability to simultaneously
record from two sympathetic nerves in conscious animals,
limiting the ability to use these conscious animal models to
study the critical issue of differential control of SNA. Notable

exceptions include Miki and colleagues who have made notable
contributions to this field by the use of recordings of the activity
more than one sympathetic nerve often in conjunction with
vascular responses in rats under a variety of conditions, including
rapid eye movement (REM) and non-REM sleep and exercise
(Miki and Yoshimoto, 2005, 2010). For example, they showed
that at the transition between non-REM and REM sleep, there is
a decrease in renal SNA with an increase in renal blood flow and
an increase in lumbar SNA with a decrease in hindlimb blood
flow.

Other drawbacks of recording from SNA in conscious animals
is the inability to pair these recordings with sophisticated
approaches like simultaneous recording of central sympathetic
neurons and using antidromic activation to target specific types
of neurons (example, neurons projecting to the IML). In fact,
it is our understanding that recording from central sympathetic
neurons in a conscious animal model has been mastered only by
Yates et al. (Barman et al., 2011; DeStefino et al., 2011). These
studies are discussed below.

Regardless of the experimental model to be chosen (human
subjects or instrumented animals), it is important to be
adequately trained in the technologies to be used. Recent reviews
such as those by Guild et al. (2010) and Hart et al. (2017)
articulate the challenges in gaining this expertise, including care
in handling nerves, waiting adequate time between surgery or
other manipulations and the beginning of the recording period,
and taking care to eliminate movement-induced and electrical
artifacts. Since there is no perfect experimental model, one needs
to select the model that best addresses the questions at hand.
For example, if the question relates to the impact of activation
or deactivation of brain regions on SNA, the best model may
be anesthetized animals (Masuda et al., 1992; Barman et al.,
1994, 2002, 2005; Orer et al., 2008; Barman and Gebber, 2009).
When one is interested in identifying central neurons involved
in control of SNA, decerebrate, anesthetized, or conscious animal
models can be utilized, with the caveat that the firing patterns
of the neurons can be altered by anesthesia or decerebration
(Barman and Gebber, 1992, 1997; Barman et al., 2011; DeStefino
et al., 2011).

CONTRIBUTIONS OF THE MIDBRAIN,
DIENCEPHALON, AND TELENCEPHALON
IN CONTROLLING SNA AND BLOOD
PRESSURE

Most studies deciphering the neural control of SNA and blood
pressure have focused on the brainstem. This is largely due
to the fact that the essential neurons for controlling cardiac-
related fluctuations in SNA andmediating the baroreceptor reflex
are located in the brainstem and spinal cord (Dampney, 1994).
Across species, the key circuit that mediates the baroreceptor
reflex includes neurons in the nucleus of the tractus solitarius
(NTS) and caudal and rostral ventrolateral medulla (CVLM,
RVLM). As shown in Figure 2, neurons in the RVLM convey
the integrated brainstem signal to sympathetic preganglionic
neurons located in the IML. This basic circuit for regulating
baroreceptor-mediated changes in SNA is widely represented in
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FIGURE 2 | Neural pathways that regulate blood pressure. The minimal “textbook” pathway that produces baroreceptor reflexes is denoted using black-filled symbols

and thick arrows, and consists of neurons in the nucleus tractus solitarius (NTS) that receive baroreceptor inputs, interneurons in the reticular formation of the caudal

ventrolateral medulla (CVLM), bulbospinal neurons in the rostral ventrolateral medulla (RVLM), and sympathetic preganglionic neurons located in the intermediolateral

cell column (IML) of the thoracic and upper lumbar spinal cord. However, many other neural structures and pathways participate in regulating sympathetic nervous

system effects on the control of blood pressure, which are indicated using gray-filled symbols and thin arrows. The medullary raphe nuclei act in concert with the

RVLM in adjusting sympathetic nervous system outflow to the cardiovascular system (Barman and Gebber, 2000). Both the RVLM and raphe nuclei receive

substantial inputs through particular regions of the reticular formation (RF), including the lateral tegmental field (LTF) (Barman and Gebber, 1987, 1989). In addition to

baroreceptor inputs, a variety of other visceral inputs including those from chemoreceptors contribute to regulating sympathetic nervous system activity (Thorén et al.,

1976; Guyenet, 2000), as do somatic signals relayed from the spinal cord (Wilson and Hand, 1997; Boscan et al., 2002) and vestibular system (Yates et al., 2014).

Somatic signals are conveyed to the RVLM through the CVLM and other regions of the reticular formation (Masuda et al., 1992; Steinbacher and Yates, 1996a,b), the

parabrachial nucleus and periaqueductal gray (Balaban, 1996; Andrew, 2010), the caudal portions of the vestibular nuclei (Holstein et al., 2011a), and regions of the

cerebellum (uvula, fastigial nucleus) (Nisimaru, 2004; Yates et al., 2014). Cerebellar influences on the control of blood pressure are mediated in part through

connections with parabrachial neurons that project to NTS (Bradley et al., 1991). Several midbrain regions participate in regulating blood pressure by providing inputs

to NTS and RVLM, including the periaqueductal gray (Lovick, 1993), parabrachial nucleus (Saper and Loewy, 1980; Hamilton et al., 1981; Mraovitch et al., 1982;

Felder and Mifflin, 1988; Herbert et al., 1990; Mifflin and Felder, 1990; Paton et al., 1990; Krukoff et al., 1993), and mesencephalic locomotor region (MLR)

(Degtyarenko and Kaufman, 2005). The MLR regulates locomotion in some species, and projections from the MLR to NTS likely change the set point of the

baroreceptor reflex during locomotion (Degtyarenko and Kaufman, 2005). Hypothalamic nuclei (Ross et al., 1981; Berk and Finkelstein, 1982; Kannan and Yamashita,

1983; van der Kooy et al., 1984; Jordan et al., 1988; Mifflin et al., 1988; Wible et al., 1988; Mifflin and Felder, 1990; Markgraf et al., 1991; Allen and Cechetto, 1992;

Cechetto and Chen, 1992; Martin and Haywood, 1992; Ebihara et al., 1993; Martin Haywood and Haywood, 1993; Kawano and Masuko, 1995; Badoer, 1998;

Coote et al., 1998; Fontes et al., 2001; Cravo et al., 2003; Horiuchi et al., 2006; Kawabe et al., 2008; Bowman et al., 2013; Sapru, 2013) provide inputs to NTS

and/or the RVLM, as do the amygdala (Kapp et al., 1982; Schwaber et al., 1982; van der Kooy et al., 1984; Saha, 2005; Saha et al., 2005; Bowman et al., 2013), and

prefrontal and insular cortices (Shipley, 1982; van der Kooy et al., 1984; Cechetto and Chen, 1990, 1992; Verberne and Owens, 1998; Owens and Verberne, 2000;

Gabbott et al., 2005; Sévoz-Couche et al., 2006). Inputs from the telencephalon to the RVLM and NTS are both direct and indirect through relays in the

hypothalamus, periaqueductal gray, and parabrachial nucleus (Saper and Loewy, 1980; Cechetto and Chen, 1990, 1992; Krukoff et al., 1993; Hardy, 1994).

textbooks, such that the pathway (in addition to connections
from NTS to parasympathetic neurons that adjust heart rate) is
sometimes represented as the totality of neural control of cardiac
function.

The baroreceptor reflex, as assessed by considering a variety
of responses (e.g., changes in SNA or heart rate) to stimulation of
baroreceptors, is qualitatively similar in conscious, anesthetized,
and decerebrate preparations of a variety of species (Seagard
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et al., 1982, 1983; Abdel-Rahman et al., 1987; Stornetta et al.,
1987; Matsukawa and Ninomiya, 1989; Suzuki et al., 1993; Farber
et al., 1995;Muzi and Ebert, 1995; Ebert et al., 1998; Katsuda et al.,
2000; Lee et al., 2004). Such observations reinforce the notion that
the control of SNA is mainly a function of the brainstem.

Although the baroreceptor reflex is qualitatively the same
across experimental preparations, it is also recognized that the
dynamic properties of the response are altered by anesthetics and
decerebration (Seagard et al., 1982, 1983; Abdel-Rahman et al.,
1987; Stornetta et al., 1987; Matsukawa and Ninomiya, 1989;
Suzuki et al., 1993; Farber et al., 1995; Muzi and Ebert, 1995;
Ebert et al., 1998; Katsuda et al., 2000; Lee et al., 2004). The
baroreceptor reflex is also affected by transitions in sleep/wake
and behavioral states and following stress (Stephenson et al.,
1981; Coote, 1982; Conway et al., 1985; Del Bo et al., 1985;
Knuepfer et al., 1986; Kasting et al., 1987; Mion and Krieger,
1988; Sei et al., 1994; Vaile et al., 1996; Sei and Morita, 1999;
Zoccoli et al., 2001; Kanbar et al., 2007; Grippo et al., 2008; Julien,
2008; Cortelli et al., 2012; Almeida et al., 2014; Kuo et al., 2014).
The latter findings highlight an influence of supratentorial brain
regions on the brainstem circuitry that regulates SNA and blood
pressure.

A variety of approaches, including neuroanatomical studies
and neurophysiological experiments using microstimulation
of brain regions and/or antidromic stimulation, have shown
that a number of structures in the midbrain, diencephalon,
and telencephalon affect the activity of neurons in NTS
and the RVLM (Verberne et al., 1997). These structures are
indicated in Figure 2, and include the parabrachial nucleus,
periaqueductal gray, several hypothalamic nuclei, amygdala,
insula, and prefrontal cortex. One study in anesthetized animals
showed that elimination of forebrain inputs caused a precipitous
change in SNA (Huang et al., 1987), highlighting the potential
significance of supratentorial regions in the control of blood
pressure. In addition, microneurography studies in humans
established that mental stress results in increases in MSNA
(Anderson et al., 1991; Callister et al., 1992; Carter et al., 2005;
Carter and Lawrence, 2007; Carter and Ray, 2009). Considering
the connections and functions of structures such as the insula,
prefrontal cortex, and amygdala that provide inputs to the RVLM
and NTS, a reasonable hypothesis is that they contribute to
adjusting SNA during stress and affective responses (Verberne
et al., 1997). However, there is no direct evidence to support
this hypothesis, and the required experiments would require the
use of a conscious animal preparation, since the complex signal
integration that occurs in the telencephalon is profoundly altered
by anesthesia and eliminated by decerebration.

MOVEMENT-RELATED CHANGES IN SNA

Movement requires changes in SNA in order to meet the
metabolic needs of an individual. Two examples of movement-
related increases in SNA are well-documented: (1) those that
occur during exercise, which are accompanied by resetting of
the baroreceptor reflex (Waldrop et al., 1996; Williamson, 2010;
Fadel and Raven, 2012; Matsukawa, 2012; Mitchell, 2012) and (2)

those that occur during movements that lead to peripheral blood
pooling, such as standing from a supine position in humans
(Yates et al., 2014). These two responses are distinct and will be
discussed separately below.

Exercise-Related Changes in SNA
In both animals and humans, adjustments in SNA and alterations
in the set-point of the baroreceptor reflex are initiated when
exercise begins (Waldrop et al., 1996; Fadel and Raven, 2012).
The changes in the baroreceptor set-point are needed to
allow blood pressure to increase during exercise. The term
“central command” refers to feedforward changes in autonomic
nervous system activity that accompany muscle contraction. In
decerebrate or anesthetized cats, stimulation of regions of the
lateral and caudal hypothalamus, fields of Forel, mesencephalic
locomotor region, and midbrain ventral tegmental area elicit
parallel changes in motor activity and cardiovascular responses
(Waldrop et al., 1996; Nakamoto et al., 2011; Matsukawa, 2012).
However, little is known about signal processing in these regions
that leads to changes in SNA and the baroreceptor reflex set point,
as the required experiments would require the use of an awake,
behaving animal preparation. The changes in the baroreceptor
reflex during exercise are due at least in part to inhibitory
neurotransmission in NTS (Degtyarenko and Kaufman, 2005;
Potts, 2006).

In addition to central command, inputs from group III
and group IV muscle afferents that respond to mechanical
and chemical stimuli trigger changes in SNA and blood
pressure (Kaufman, 2012). This response is often referred to
as the “exercise pressor reflex,” and indicates when blood
perfusion is not adequate to meet metabolic needs. The exercise
pressor reflex is mediated at least partly through brainstem
circuitry, and the neural mechanisms of the response have
been investigated extensively in anesthetized and decerebrate
animals. Spinoreticular pathways convey muscle afferent signals
to NTS and the ventrolateral medulla, and these relatively
direct connections with brainstem areas that control SNA are
believed to trigger the exercise pressor response (Stornetta
et al., 1989; Masuda et al., 1992; Potts, 2001, 2006; Degtyarenko
and Kaufman, 2002; Wilson et al., 2002). There is also some
evidence that central command and the exercise pressor reflex
are at least partially synergistic (Gallagher et al., 2006; Michelini
et al., 2015), although the combined influences of the two
on activity of neurons in NTS and the RVLM are yet to be
determined.

Posture-Related Changes in SNA
Head up movements, such as standing in humans, can result
in decreased return of blood to the heart and orthostatic
hypotension (Wieling and von Lieshout, 1993; Mano, 2001).
During such movements, SNA must increase to augment
vascular resistance and decrease lower body blood flow to
maintain stable blood pressure (Rushmer, 1976; Wieling and
von Lieshout, 1993; Mano, 2001). Unloading of baroreceptors
during head-upmovements undoubtedly plays a role in adjusting
SNA should blood pressure decrease. However, many lines of
evidence (reviewed in Yates et al., 2014) show that sensory
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inputs from the vestibular system also play an important role
in adjusting SNA during postural adjustments. The caudal
portion of the vestibular nucleus complex provides direct
inputs to RVLM, as well as indirect inputs that are conveyed
through the reticular formation (Steinbacher and Yates, 1996a,b;
Holstein et al., 2011a,b, 2014). In human subjects, movements
of the head that activate vestibular receptors produce a large
increase in MSNA (Hume and Ray, 1999). In conscious
animals, bilateral labyrinthectomies attenuate the increase in
vascular resistance that ordinarily occurs in the hindlimbs
during head-up tilts (Wilson et al., 2006; Yavorcik et al.,
2009).

Although vestibular-elicited changes in SNA can be
demonstrated in decerebrate, anesthetized, and conscious
animals, the properties of the responses differ considerably
between experimental preparations (Yates et al., 2014).
Direct comparisons of response characteristics have been
made in decerebrate and conscious animals. In decerebrate
cats, the activity of ∼50% of RVLM neurons, including
those with baroreceptor inputs, was modulated by 10◦ tilts
(DeStefino et al., 2011). Activation of vestibular receptors by
10–15◦ head-up tilts also produced appreciable increases in
SNA (Yates and Miller, 1994). However, in conscious cats,
only 1% of RVLM neurons responded to 10–15◦ rotations
(DeStefino et al., 2011), which elicited no appreciable
vasoconstriction (Wilson et al., 2006; Yavorcik et al., 2009).
These data show that in decerebrate animals, non-physiologic
(exaggerated) increases in sympathetic nerve activity occur
during head-up tilts. It appears that descending projections
from higher brain centers decrease the responsiveness to
labyrinthine inputs of neurons in the pathways regulating
SNA.

It has been postulated that regions of the cerebellum,
including the posterior cerebellar vermis (the uvula, lobule
IX) are components of the neural circuitry that adjusts the
sensitivity of RVLM neurons to particular sensory inputs,
including vestibular signals (see Figure 2). Purkinje cells in
the posterior cerebellar vermis project to the caudal vestibular
nucleus complex, which has monosynaptic and polysynaptic
connections with the RVLM (Angaut and Brodal, 1967; Precht
et al., 1976; Shojaku et al., 1987; Walberg and Dietrichs, 1988;
Paton et al., 1991; Sugiyama et al., 2011; Holstein et al.,
2011a), providing a pathway through which the uvula could
modulate SNA. A disynaptic link also connects the uvula and
NTS that may participate in adjusting the gain of baroreceptor
responses (Paton et al., 1990, 1991). Electrical or chemical
stimulation of the uvula produces changes in RVLM unit activity
(Silva-Carvalho et al., 1991) and blood pressure (Nisimaru
and Yamamoto, 1977; Bradley et al., 1987; Henry et al., 1989;
Paton and Gilbey, 1992). In addition, lesions of the uvula
produced a three-fold increase in the 10-Hz rhythm in SNA,
but had little effect on the cardiac-related rhythm (Barman
and Gebber, 2009). Thus, the uvula appears to play a specific
role in controlling SNA, and does not simply modulate the
excitability of brainstem neurons that regulate SNA. However,
additional experiments will be needed to more precisely define
that role.

MOVING FORWARD: FUTURE
APPLICATIONS OF
NEUROPHYSIOLOGICAL APPROACHES
TO ASCERTAIN THE NEURAL
MECHANISMS THAT CONTROL SNA

As discussed above, neurophysiological approaches have
provided a number of important insights into the brainstem and
spinal cord mechanisms that contribute to regulating SNA. The
use of such approaches in decerebrate and anesthetized animal
preparations revealed the areas of the brainstem that play key
roles in generating rhythmic SNA and reflex-mediated changes
in SNA. Experiments in anesthetized animals also showed that
a variety of supratentorial brain regions, including areas of
cerebral cortex, provide inputs to NTS and the RVLM (Verberne
et al., 1997; Verberne and Owens, 1998), but little is known
about the roles that these areas play in regulating SNA. While
microneurography studies in humans have shown that stress
alters MSNA (Anderson et al., 1991; Callister et al., 1992; Carter
et al., 2005; Carter and Lawrence, 2007; Carter and Ray, 2009),
and experiments in both humans and animals revealed that the
dynamic properties of the baroreceptor reflex are altered by
stress and particular behavioral repertoires such as the defense
reaction (Del Bo et al., 1985; Grippo et al., 2008; Grippo and
Johnson, 2009), little is known about how these conditions affect
the processing of signals by the brainstem circuitry that controls
SNA. One of the few studies that characterized the activity of
RVLM neurons in conscious animals suggested that expression
of cardiac-related activity by particular neurons could be labile,
and dependent on the animal’s cognitive state (Barman et al.,
2011). However, considerable additional research is needed to
appreciate the effects of stress and emotions on the firing rate and
integration of signals by the brainstem neurons that modulate
SNA. Similarly, our understanding is quite rudimentary of the
neural mechanisms responsible for feedforward cardiovascular
responses such as the defense reaction and central command.

Hence, despite considerable progress in understanding
relatively simple brainstem pathways that generate rhythmic
SNA and produce reflex-mediated changes in SNA, much is left
to be learned. While some insights will be achieved through
experiments in humans that combine microneurography with
functional imaging (Critchley et al., 2011; Macefield et al., 2013),
as with other fields of neuroscience recordings of neuronal
activity in awake, behaving animal models will be needed to
address many of the remaining scientific questions. Optimally,

such experiments should also include the chronic recording
of SNA, or at least some measure of cardiovascular responses

to changes is SNA (e.g., blood pressure and heart rate).
Most contemporary neurophysiological studies entail recordings

in conscious animals or humans, as it is appreciated that

the integration of information from the environment varies
profoundly in accordance with behavioral state (Schroeder et al.,

2010). It is now well-established that the processing of a variety
of sensory signals (olfactory, gustatory, auditory, somatosensory,
visual, vestibular) is dependent on whether the inputs are
encountered during an ongoing behavior or are imposed
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when an individual is inactive (Schroeder et al., 2010). For
example, responses of neurons in rodent somatosensory cortex
to whisker movements differ when the whisker is manipulated
in a stationary animal and during active exploration of the
environment (Castro-Alamancos and Bezdudnaya, 2015). The
responses of brainstem neurons to sensory inputs can also vary
depending on whether those inputs are elicited by imposed or
active movements. For instance, some vestibular nucleus neurons
are activated when an unexpected change in head position occurs,
but not when an individual voluntarily moves their head, despite
the fact that the inputs from the inner ear to the vestibular nuclei
are equivalent under the two situations (Cullen et al., 2011). It
is yet to be determined whether responses of NTS and RVLM
neurons to baroreceptor and other sensory inputs are similarly
context-dependent.

Experiments that incorporate the recording of responses of
brainstem neurons that regulate SNA in classical conditioning
paradigms and delayed response tasks could also be very useful.
Monitoring changes in RVLM neuronal activity during tasks
in which animals are rewarded for delaying a motor response
following a cue could provide insights into the mechanisms
of central command. Unlike studies of sensory and motor
physiology, experiments considering the control of SNA have
rarely been conducted using non-human primates. However,
future use of non-human primate models may be needed
to permit the sophisticated behavioral paradigms required to
decipher the context specificity in processing of signals by neural
pathways that control SNA.

Finally, use of recently-invented experimental paradigms such
as optogenetics will also be helpful to discover the physiological
role of descending projections from supratentorial areas to NTS
and RVLM, particularly if those techniques are coupled with
the recording of SNA and/or firing rates of brainstem neurons.
For example, a recent study by Wenker et al. (2017) used
ArchaerhodopsinT3.0 loss-of-function optogenetics to clarify the
role of RVLM C1 neurons in intact, unanesthetized rats. They
showed that these neurons have a very low level of activity at rest
but are activated by hypoxia and baroreceptor denervation; also
the activity of these C1 neurons is important for the maintenance
of blood pressure under conditions of anesthesia. Combining

neurophysiological recordings with behavioral paradigms could
also be very useful to address a number of key questions. For
example, it would be useful to compare the responses of RVLM
neurons to baroreceptor and noxious stimuli in normal animals
with those who have experienced acute and chronic stress.
Neurophysiological approaches in conscious animals are the best
methods to discern how stress alters the processing of signals
by brainstem neurons that control SNA, potentially providing
insights into new treatment paradigms for psychiatric conditions.

SUMMARY AND CONCLUSIONS

Thousands of studies have entailed the monitoring of SNA
in conscious or anesthetized humans, as well as conscious,
anesthetized, or reduced (e.g., decerebrate) animal preparations.
Use of each of these paradigms has strengths and weaknesses,
and by mainly utilizing anesthetized or decerebrate preparations
it was possible to determine the key areas of the brainstem that
are responsible for generating rhythmic SNA, including cardiac-
related activity that is related to the baroreceptor reflex. However,
reliance on anesthetized or decerebrate preparations has been
less successful in defining the role of multisynaptic connections
that modulate SNA, including those arising in the cerebellum
and supratentorial areas such as the hypothalamus, amygdala,
and prefrontal and insular cortex. Future neurophysiological
experiments in awake, behaving animal models will be required
to delineate the neural mechanisms that contribute to adjusting
SNA during stress and emotional states, and produce feedforward
and anticipatory cardiovascular responses that occur during
movement and specific behaviors.
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