
ORIGINAL RESEARCH
published: 09 January 2018

doi: 10.3389/fnins.2017.00740

Frontiers in Neuroscience | www.frontiersin.org 1 January 2018 | Volume 11 | Article 740

Edited by:

Pedro Antonio Valdes-Sosa,

Joint China-Cuba Laboratory for

Frontier Research in Translational

Neurotechnology, China

Reviewed by:

Jingxin Nie,

South China Normal University, China

Dante Mantini,

KU Leuven, Belgium

*Correspondence:

Yu-Feng Zang

zangyf@gmail.com

Gang Pan

gpan@zju.edu.cn

†
Co-first authors

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 19 October 2017

Accepted: 19 December 2017

Published: 09 January 2018

Citation:

Zhou Z, Wang J-B, Zang Y-F and

Pan G (2018) PAIR Comparison

between Two Within-Group

Conditions of Resting-State fMRI

Improves Classification Accuracy.

Front. Neurosci. 11:740.

doi: 10.3389/fnins.2017.00740

PAIR Comparison between Two
Within-Group Conditions of
Resting-State fMRI Improves
Classification Accuracy
Zhen Zhou 1†, Jian-Bao Wang 2, 3, 4†, Yu-Feng Zang 2, 3, 4* and Gang Pan 1*

1College of Computer Science and Technology, Zhejiang University, Hangzhou, China, 2Center for Cognition and Brain

Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China, 3 Zhejiang Key Laboratory for Research

in Assessment of Cognitive Impairments, Hangzhou, China, 4 Institutes of Psychological Sciences, Hangzhou Normal

University, Hangzhou, China

Classification approaches have been increasingly applied to differentiate patients

and normal controls using resting-state functional magnetic resonance imaging data

(RS-fMRI). Although most previous classification studies have reported promising

accuracy within individual datasets, achieving high levels of accuracy with multiple

datasets remains challenging for two main reasons: high dimensionality, and high

variability across subjects. We used two independent RS-fMRI datasets (n = 31, 46,

respectively) both with eyes closed (EC) and eyes open (EO) conditions. For each dataset,

we first reduced the number of features to a small number of brain regions with paired

t-tests, using the amplitude of low frequency fluctuation (ALFF) as a metric. Second, we

employed a new method for feature extraction, named the PAIR method, examining EC

and EO as paired conditions rather than independent conditions. Specifically, for each

dataset, we obtained EC minus EO (EC—EO) maps of ALFF from half of subjects (n = 15

for dataset-1, n = 23 for dataset-2) and obtained EO—EC maps from the other half (n

= 16 for dataset-1, n = 23 for dataset-2). A support vector machine (SVM) method was

used for classification of EC RS-fMRI mapping and EO mapping. The mean classification

accuracy of the PAIR method was 91.40% for dataset-1, and 92.75% for dataset-2 in the

conventional frequency band of 0.01–0.08 Hz. For cross-dataset validation, we applied

the classifier from dataset-1 directly to dataset-2, and vice versa. The mean accuracy

of cross-dataset validation was 94.93% for dataset-1 to dataset-2 and 90.32% for

dataset-2 to dataset-1 in the 0.01–0.08 Hz range. For the UNPAIR method, classification

accuracy was substantially lower (mean 69.89% for dataset-1 and 82.97% for dataset-2),

and was much lower for cross-dataset validation (64.69% for dataset-1 to dataset-2 and

64.98% for dataset-2 to dataset-1) in the 0.01–0.08 Hz range. In conclusion, for within-

group design studies (e.g., paired conditions or follow-up studies), we recommend the

PAIR method for feature extraction. In addition, dimensionality reduction with strong prior

knowledge of specific brain regions should also be considered for feature selection in

neuroimaging studies.

Keywords: resting-state fMRI, within-group design, amplitude of low-frequency fluctuation, linear support vector
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1. INTRODUCTION

Blood oxygenation level dependent (BOLD) functional magnetic
resonance imaging (fMRI) is a noninvasive neuroimaging
technology. BOLD fMRI is extensively used because of its
accessibility, ease of operation, and relatively good temporal
as well as spatial resolution. Resting-state fMRI (RS-fMRI) has
been increasingly utilized to evaluate the abnormal spontaneous
brain activity following a seminal study by Biswal et al. (1995).
To verify differences between patients and healthy controls,
the univariate approach is the most widely used statistical
method (i.e., comparing differences in a voxel-wise or region-
wise manner). Multivariate analyses using machine learning
approaches (e.g., support vector machines; SVM), can increase
sensitivity. These methods have been increasingly applied as
computation capacity increases (Haxby et al., 2001; Norman
et al., 2006; Yang et al., 2007; Dosenbach et al., 2010; Misaki et al.,
2010; Mahmoudi et al., 2012; Zhang et al., 2012; Wee et al., 2013,
2014).

A major challenge for machine learning in neuroimaging
studies, including RS-fMRI, is the “curse of dimensionality,”
which arises in situations involving tens of thousands of voxels
but a relatively small sample size (usually < 100 subjects). As
a result, classification accuracy often fails to generalize to new
data. A popular method for dimensionality reduction involving
conducting t-tests in a voxel-wise manner and selecting voxels
with larger absolute t-values (i.e., showing a significant difference
between two groups; Zhu et al., 2008; Zou et al., 2015; Liu et al.,
2017). However, classification based on the features selected by
t-test in the same dataset represents a type of circular analysis,
or “double dipping” (Kriegeskorte et al., 2009). A reasonable
validation procedure is to apply spatial information (i.e., the
location of the voxels) as well as the classifier directly into an
independent dataset. Unfortunately, few studies have employed
this method. Thus, the extent to which the t-value of each region
or voxel is correlated with the weight or importance of the feature
of each region or voxel in classification accuracy is currently
unclear.

Most previous classification studies have been conducted to
differentiate two or more independent groups (e.g., a patient
group vs. a control group). However, some experiments have
used within-group designs (e.g., two conditions within the same
group of subjects, or follow-up studies). For univariate statistical
analysis, this within-group design must be taken into account
by using, e.g., paired t-tests rather than independent two-sample
t-tests. For example, in RS-fMRI studies, eyes closed (EC) and
eyes open (EO) are two typical resting conditions. Although there
is not a clear consensus regarding which condition should be
used for clinical studies, a number of studies have confirmed
that the two conditions differ significantly (Liu et al., 2013; Xu
et al., 2014; Zou et al., 2015) using paired t-tests. Some researchers
have also performed classification analysis to differentiate these
two conditions (Liang et al., 2014; Zhang et al., 2015). However,
these studies have typically considered EC and EO to be two
independent conditions. One of these studies obtained about
75% accuracy using a stringent split-half validation procedure
(Liang et al., 2014) and the other achieved 97% accuracy using

leave-one-out validation (Zhang et al., 2015). Thus, it remains
unclear whether the classification analysis could be performed
using a paired design, rather than considering EC and EO as
independent conditions.

The current study aimed to differentiate EC and EO RS-fMRI
conditions using a paired design (hereafter referred to as the
PAIR method) for the following considerations. First, EC and EO
are two distinct RS-fMRI conditions. Second, a few previous EC
vs. EO RS-fMRI studies (Yan et al., 2009; Liu et al., 2013; Yuan
et al., 2014; Zou et al., 2015) have used the same analytic method,
i.e., ALFF, and consistently found difference in the sensorimotor
cortex, the primary auditory cortex, and the visual areas. It
means that it is well known which specific brain region should
contribute to the difference between EC and EO. We therefore
utilized ALFF as an RS-fMRI metric. We used paired t-tests and
selected voxels with larger absolute t-values for dimensionality
reduction. Further, we investigated correlations between t-values
and the weight of features in the classifier. Importantly, to test
classification accuracy, we performed cross-validation on two
independent datasets acquired at two research centers.

2. MATERIALS AND METHODS

2.1. Subjects
For cross-validation, we used two independent datasets. Dataset-
1 included 34 college students (aged 19–31 years; 16 females). The
data from three participants were excluded due to the low quality
of spatial normalization. Thus, 31 participants were included
in the final analysis. None of the participants had a history
of neurological or psychiatric disorders. The study design for
dataset-1 was approved by the ethics committee of the Center for
Cognition and Brain Disorders, Hangzhou Normal University.
Dataset-2 was obtained from a shared data source (Liu et al.,
2013) and was downloaded from http://fcon_1000.projects.nitrc.
org/indi/IndiPro.html (Beijing: Eyes Open Eyes Closed Study).
Dataset-2 included 48 college students (aged 19–31 years; 22
females). The data from two participants were discarded due
to low quality of spatial normalization. Thus, 46 participants
were included in the final analysis. None of these subjects had
a history of neurological or psychiatric disorders. The study
design for dataset-2 was approved by the ethics committee of
the Institutional Review Board of Beijing Normal University
Imaging Center for Brain Research. Written informed consent
was obtained from each participant before scanning.

2.2. MRI Scanning
In each dataset, participants underwent two RS-fMRI scanning
sessions (i.e., EO without fixation and EC), each lasting for 8
min. The order of the two sessions was counterbalanced across
participants. The participants lay supine with their heads snugly
fixed by straps and foam pads to minimize head movement.
During scanning, participants were asked to lie quietly in
the scanner, not to think about anything particular, and not
to fall asleep. Immediately after each scanning session, the
experimenter asked the participants to report their wakefulness
condition during scanning. All participants reported that they
had not fallen asleep during the RS-fMRI scanning.
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Dataset-1 was acquired using a GE healthcare MR-750 3-
T scanner (GE Medical Systems, Milwaukee, WI) with an
eight-channel head coil at the Center for Cognition and Brain
Disorders of Hangzhou Normal University. The BOLD images
were obtained using an echo-planar image sequence with the
following parameters: repetition time (TR)/echo time (TE) =

2,000/30 ms, flip angle = 60◦, 37 slices, thickness/gap = 3.4/0
mm, FOV = 220 × 220 mm2 with an in-plane resolution of
3.44 × 3.44 mm2. The duration of the resting-state scan was
8min, and included 240 images. Additionally, a 3D T1-weighted
magnetization-prepared rapid gradient echo (MPRAGE) image
was acquired with the following parameters: 176 sagittal slices
(achieve 176 slices with two slices at each end being discarded),
slice thickness/gap= 1/0mm, in-plane resolution= 250 × 250,
TR= 8100 ms, TE= 3.1 ms, inversion time (TI)= 1,100 ms, flip
angle= 8◦, field of view (FOV)= 250 × 250 mm2.

Dataset-2 was acquired using a SIEMENS TRIO 3-Tesla
scanner at the Beijing Normal University Imaging Center for
Brain Research. The functional images were obtained using an
echo-planar imaging sequence with the following parameters:
33 axial slices, thickness/gap = 3.5/0.7 mm, in-plane resolution
= 64 × 64, TR = 2,000 ms, TE = 30 ms, flip angle = 90◦, FOV
= 200 × 200 mm2. Each condition consisted of 240 functional
images. In addition, a 3D T1-weighted MPRAGE image was
acquired with the following parameters: 128 sagittal slices, slice
thickness/gap = 1.33/0 mm, in-plane resolution = 256 × 192,
TR = 2,530 ms, TE = 3.39 ms, TI = 1,100 ms, flip angle = 7◦,
FOV= 256 × 256 mm2.

2.3. Data Preprocessing
The following preprocessing steps were performed on the fMRI
data using RESTplus (http://restfmri.net/forum/RESTplusV1.2)
software, including: (1) discarding the first 10 volumes of
functional images; (2) slice timing; (3) head motion correction;
(4) spatial normalization using T1 image unified segmentation,
then resampling the functional image to 3 mm isotropic voxels;
(5) spatial smoothing with an isotropic Gaussian kernel with
a full width half maximum (FWHM) of 6 mm; (6) removing
linear trends within the time series. None of the subjects were
excluded due to excessive head motion based on criteria of
> 2mm displacement or an angular rotation of > 2◦ in any
direction.

It should be noted that, in addition to a whole brain mask,
the current study also included eyeball area with consideration
that the ALFF would be substantially different between EO
and EC due to blinks in the EO condition. The eyeball mask
was generated using the WFU PickAtlas Tool (http://www.nitrc.
org/projects/wfu_pickatlas/), with radius = 20 mm, and central
coordinates at x = −36, y = 60, z = −40 and x = 36, y = 60,
z = −40 for left and right eyeball, respectively. This whole brain
plus eyeball mask was then resliced to voxel size= 3×3×3mm3.

2.4. ALFF Calculation of Different
Frequency Bands
ALFFmeasures the signal fluctuations in each single time-course.
ALFF is the simplest metric among the analytic methods for RS-
fMRI and has been widely used in studies of brain disorders

(Zang et al., 2015). The procedure for calculating ALFF has been
described in previous studies (Zang et al., 2007). After removing
linear trends, the time series from each voxel was converted into
a frequency domain using fast Fourier transformation (FFT) and
the power spectrum was obtained. Since the power of a given
frequency is proportional to the square of the amplitude of this
frequency component in the original time series in time domain,
the power spectrum calculated by FFT was square rooted and
then averaged across the low frequency band of 0.01–0.08 Hz in
each voxel. Thus, this averaged square root was considered as the
ALFF. For standardization purposes, we divided the ALFF by the
mean ALFF of the individual whole brain (Zang et al., 2007).

Many previous studies reported that sub-frequency bands,
especially frequency bands higher than the conventional 0.01–
0.08 Hz, of the RS-fMRI signal have different physiological or
pathological significance. For example, previous studies have
reported differences in higher frequency bands between EC and
EO (Yuan et al., 2014), and abnormal ALFF in higher frequency
bands in patients with chronic pain (Malinen et al., 2010; Otti
et al., 2013) and epilepsy (Wang et al., 2015). Thus, we also
calculated the ALFF of sub-frequency bands including 0.01–0.027
Hz (Slow-5), 0.027–0.073 Hz (Slow-4), 0.073–0.198 Hz (Slow-3),
and 0.198–0.25 Hz (Slow-2) (Zuo et al., 2010; Han et al., 2011;
Zhang et al., 2013), a total of five frequency bands.

2.5. Paired t-Tests for Univariate Statistical
Analysis for Feature Selection
There are tens of thousands of voxels in a 3D whole-brain
model. To avoid the over-fitting problem (Guyon and Elisseeff,
2003), we employed paired t-tests between EC and EO to select
a limited number of voxels with larger t-values. The paired t-
tests were performed in five frequency bands in each dataset. A
combination threshold for single voxel of p < 0.01 and cluster
size > 1,269 mm3 (47 voxels) were utilized, corresponding to a
corrected p < 0.01 based on Monte Carlo simulations to correct
for multiple comparisons across the whole brain. It should be
noted that there is not a clear consensus regarding to the best
multiple comparison correction method. The main purpose of
the above criteria for multiple comparison correction was not
to reduce false positive findings for univariate statistical analysis.
Instead, it was used primarily for feature selection.

After paired t-tests, features were extracted in three ways. The
first method used the ALFF value of peak voxels selected from
paired-t maps in each frequency band of each dataset (Peak-
ALFF). The second method used the mean ALFF of a spherical
ROI (radius = 5 mm, totally 19 voxels) centered at the peak
voxel (Mean-ALFF). The third method used the ALFF value
of all voxels in the spherical ROI (All-ALFF). The number or
dimension of features differed between frequency bands and
datasets because the results of the paired t-tests were different.
Here we used D to denote a dataset in our study, e.g., dataset-
1. Thus, D has m subjects, with each subject having two resting
states, which were EC and EO, respectively. We used C and
O to denote the ALFF values of all voxels in the EC and
EO conditions, respectively. And F, e.g., Fpeak, Fmean, and Fall
denote the MNI coordinates obtained above using these three

Frontiers in Neuroscience | www.frontiersin.org 3 January 2018 | Volume 11 | Article 740

http://restfmri.net/forum/RESTplusV1.2
http://www.nitrc.org/projects/wfu_pickatlas/
http://www.nitrc.org/projects/wfu_pickatlas/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhou et al. PAIR Comparison Improves Classification Accuracy

feature extraction methods in a given frequency band in one
dataset. Given a specific frequency band, after performing paired
t-test, we got K clusters with k peak voxels. So technically,
the length of Fpeak and Fmean is k while the length of Fall is
k× 19.

2.6. Feature Extraction
Most previous discriminative studies of MRI data have focused
on differentiating two independent groups of subjects (e.g., a
healthy group vs. a patient group). Conventional univariate
studies typically compare the two groups using independent
two-sample t-tests. The current study used a within-group
design (i.e., EC vs. EO RS-fMRI conditions) within the same
group of subjects. Conventional univariate studies compare two
conditions using paired t-tests, to test whether the mean delta
differs from zero. Previous discriminative studies of EC vs. EO
data have examined the two conditions as two independent
groups (Liang et al., 2014; Zhang et al., 2015), using methods
like two-sample t-tests (namely UNPAIR method in the current
study).We used the paired t-test method to perform classification
in the PAIR method, using the ALFF difference map between EC
and EO of each subject for classification, rather than using the EC
map and EO map independently. Specifically, we generated two
independent groups of subjects, the EC—EO group and EO—EC
group, respectively, for each dataset. For example, for dataset-
1, half of the subjects were randomly selected with EC minus
EO of the ALFF value, and the other half with EO minus EC,
hereafter referred to as the C−O andO−C group, respectively.
The discriminative analysis was performed in a way named PAIR
method in the current study. For a dataset with m subjects, we
randomly generated a vector a of length m. The number of ai
equal to -1 is m/2 and the number of ai equal to 1 is also m/2,
1 ≤ i ≤ m. Here we used T to represent the dataset after pairing
group, e.g., EC—EO and EO—EC.

T = diag(a)(C−O) (1)

Then we performed feature selection on T based on the Fpeak,
Fmean and Fall these three feature selection methods. After that,
we got a new matrix X which would be the input matrix into the
SVM classifier.

X = diag(a)(C(F)−O(F)) (2)

The length of F, i.e., Fpeak, Fmean and Fall is k, k, and 19 × k
corresponding to Peak-ALFF, Mean-ALFF and All-ALFF feature
extraction methods. So the size of X is m × k, m × k and m ×

(19×k). Thus, we obtained 15 samples of EC—EO and 16 samples
of EO—EC in dataset-1. Similarly, in dataset-2, we obtained 23
samples of EC—EO and 23 samples of EO—EC. The samples in
datasets were labeled with category labels (−1 corresponding to
EC—EO group and 1 corresponding to EO—EC group). Previous
classification studies on EC and EO have considered the two
conditions as independent classes (Liang et al., 2014; Zhang et al.,
2015; i.e., the UNPAIRmethod in the current study). To compare
the PAIR and UNPAIR method, we also performed classification
between EC and EO while taking them as two independent

classes, as described in Liang et al. (2014). The features were
also from the voxels (i.e., Peak-ALFF, Mean-ALFF and All-ALFF,
respectively), as mentioned above. Therefore, we had 31 EC
samples and 31 EO samples for dataset-1, and 46 EC samples
and 46 EO samples for dataset-2. The samples in each dataset
were labeled with category labels (-1 corresponding to the EC
condition and 1 corresponding to the EO condition).

2.7. Classification and Validation within
Dataset
Within dataset-1 and dataset-2, we used leave-one-out cross
validation (LOOCV). Specifically, for each run of classification,
one sample was treated as testing data and the remaining
samples were used to construct the training data to perform
classification. We obtained the accuracy (0 for wrong and
1 for correct) for each run. All samples went through this
process, and the averaged accuracy was obtained. The SVM
method is a mathematical programming approach based on
the nonlinear optimization problem (Cortes and Vapnik, 1995).
SVM has become an increasingly popular method in many
fields in recent years (Misaki et al., 2010; Greene et al., 2016;
Linn et al., 2016). SVM incorporates the concept of structural
risk minimization by creating a separating hyperplane that not
only maximizes the margin separating two classes of data, but
also minimizes the misclassification error. Suppose we have
empirical data {Xi, yi}

n
i=1 with input feature pattern xi ∈ X and

binary labels yi ∈ {+1,−1}, SVM will find a linear hyperplane
h(X) = WT + b that separates the positive from the negative
samples with the largest soft margin. To construct this optimal
hyperplane, the following mathematical problem must be
solved:

min
W,b,ξ

1

2
‖W‖22 +

C

2
6n

i=1ξ
2
i

s.t. yi(W
TXi + b)+ ξi ≥ 1 i = 1, . . . , n

(3)

where ξi are slack variables for the soft margin and C is a
hyper-parameter between the margin space and the prediction
error. In the current study, the LIBLINEAR toolbox (Fan et al.,
2008) with the linear support vector classification (SVC) as
the classifier for the multi-voxel pattern analysis. C is set to
1 here. The SVC classifier was trained on the training data
and the corresponding category labels, and the performance of
the trained classifier was tested using the testing data and the
matching category labels. The LOOCV was performed separately
in five frequency bands with three feature extraction methods as
mentioned above, using both the PAIR method and the UNPAIR
method.

2.8. Validation across Datasets
To determine whether the features and corresponding classifiers
in one dataset could be generalized to the other dataset using
the currentmethod, we performed cross-dataset validation. Thus,
the classifier obtained in dataset-1 was directly tested on dataset-
2, and vice versa. The whole process is shown in Figure 1.
In addition, we reversed the whole experimental procedure, as
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shown in Figure 2 (i.e., training on dataset-2 and testing on
dataset-1).

3. RESULTS

3.1. Paired t-Test Results
Consistent with previous studies (Liu et al., 2013; Qin et al.,
2013; Xu et al., 2014; Yuan et al., 2014; Zou et al., 2015), the

EC condition exhibited significantly higher ALFF in the primary
sensorimotor cortex, the primary auditory cortex, the thalamus
and some parietal regions (Figure 3 for dataset-1 and Figure 4

for dataset-2). The EO condition showed significantly higher
ALFF in the eye ball, the frontal pole and the lateral occipital area.
The results showed some frequency-dependent differences. For
example, the higher frequency bands of Slow-2 (0.198–0.25Hz)
and Slow-3 (0.073–0.198 Hz) showed some differences in the

FIGURE 1 | The main steps of the PAIR method (i.e., EC—EO vs. EO–EC groups). The classification was performed separately on Peak-ALFF (ALFF of the peak

voxel), Mean-ALFF (mean ALFF of a spherical ROI) and All-ALFF (ALFF of all voxels of a spherical ROI). X is the input matrix into the classifier).

FIGURE 2 | The main steps of the UNPAIR method (i.e., EC vs. EO conditions). Classification was performed separately on Peak-ALFF (ALFF of the peak voxel),

Mean-ALFF (mean ALFF of a spherical ROI) and All-ALFF (ALFF of all voxels of a spherical ROI). Unlike the method shown in Figure 1, this method directly

differentiated between EC and EO conditions.
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FIGURE 3 | Paired t-test results of ALFF on dataset-1. (A–E) represent the difference of ALFF between EC and EO in the conventional band (0.01–0.08 Hz), Slow-5

(0.01–0.027 Hz), Slow-4 (0.027–0.073 Hz), Slow-3 (0.073–0.198 Hz) and Slow-2 (0.198–0.25 Hz) bands. Left in the figure indicates the right side of the brain. Warm

colors indicate higher ALFF in EC than EO, and cold colors indicate the opposite. (p < 0.01, corrected).
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FIGURE 4 | Paired t-test results of ALFF on dataset-2. (A–E) represent the difference of ALFF between EC and EO in the conventional band (0.01–0.08 Hz), Slow-5

(0.01–0.027 Hz), Slow-4 (0.027–0.073 Hz), Slow-3 (0.073–0.198 Hz) and Slow-2 (0.198–0.25 Hz) bands. Left in the figure indicates the right side of the brain. Warm

colors indicate higher ALFF in EC than EO, and cold colors indicate the opposite. (p < 0.01, corrected).
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white matter and eyeballs. The difference pattern was similar for
the two datasets. Detailed information about the coordinates of
the peak voxels is shown in Supplementary Tables 1, 2.

3.2. SVM Classifier Performance
We tested the classification performance of both the PAIR
method and the UNPAIR method both within each dataset
(by LOOCV) and across datasets. As shown in Table 1, in the
conventional frequency band of 0.01–0.08 Hz, the classification
accuracy of the PAIR method within dataset-1 was 91.40%, and
was 92.75% within dataset-2. The mean accuracy of cross-dataset
validation was 94.93% for dataset-1 to dataset-2 and 90.32%
for dataset-2 to dataset-1 in the 0.01–0.08 Hz (Table 1, in bold
font). This finding indicates that classification accuracy with the
PAIR method was better than that of the UNPAIR method. The

classification accuracy of the three feature selection methods in
five frequency bands are listed in Table 1.

To directly compare the PAIR method and UNPAIR method,
we averaged the performance of three feature selection methods
in conventional frequency band of 0.01–0.08 Hz as shown in
Figure 5. With the PAIR method, the classification accuracy
within dataset-1 was 91.40%, and accuracy was 92.75% within
dataset-2. The mean accuracy of cross-dataset validation was
94.93% for dataset-1 to dataset-2 and 90.32% for dataset-
2 to dataset-1. With the UNPAIR method, the classification
accuracy within dataset-1 was around 69.89% and accuracy
was 82.97% within dataset-2. The mean accuracy of cross-
dataset validation was 64.49% for dataset-1 to dataset-2
and 63.98% for dataset-2 to dataset-1. Thus, there was a
clear difference in classification accuracy between the two
methods.

TABLE 1 | Comparison of classification accuracy between PAIR and UNPAIR methods.

Frequency band 0.01–0.08 Hz 0.01–0.027 Hz 0.027–0.073 Hz 0.073–0.198 HZ 0.198–0.25 Hz

Peak-ALFF LOOCV on dataset-1 93.55% 100% 90.32% 100% 93.55%

Mean-ALFF LOOCV on dataset-1 93.55% 100% 93.55% 96.77% 93.55%

All-ALFF LOOCV on dataset-1 87.10% 100% 96.77% 100% 90.32%

Mean accuracy 91.40% 100% 93.55% 98.92% 92.47%

Peak-ALFF LOOCV on dataset-2 93.48% 93.48% 95.65% 95.65% 93.48%

Mean-ALFF LOOCV on dataset-2 95.65% 93.48% 95.65% 95.65% 93.48%

All-ALFF LOOCV on dataset-2 89.13% 84.78% 89.13% 91.30% 91.30%

Mean accuracy 92.75% 90.58% 93.48% 94.20% 92.75%

Peak-ALFF dataset-1 to dataset-2 93.48% 84.78% 84.78% 95.65% 95.65%

Mean-ALFF dataset-1 to dataset-2 95.65% 84.78% 91.30% 95.65% 95.65%

All-ALFF dataset-1 to dataset-2 95.65% 84.78% 93.48% 89.13% 95.65%

Mean accuracy 94.93% 84.87% 89.85% 93.48% 95.65%

Peak-ALFF dataset-2 to dataset-1 83.87% 83.87% 90.32% 93.55% 87.10%

Mean-ALFF dataset-2 to dataset-1 93.55% 80.65% 93.55% 93.55% 93.55%

All-ALFF dataset-2 to dataset-1 93.55% 93.55% 90.32% 83.87% 100%

Mean accuracy 90.32% 86.02% 91.40% 90.32% 93.55%

EC—EO vs. EO—EC GROUPS

Peak-ALFF LOOCV on dataset-1 75.81% 77.42% 72.58% 80.65% 79.03%

Mean-ALFF LOOCV on dataset-1 77.42% 74.19% 74.19% 82.26% 77.42%

All-ALFF LOOCV on dataset-1 56.45% 69.35% 66.13% 72.58% 67.74%

Mean accuracy 69.89% 73.65% 70.97% 78.50% 75.73%

Peak-ALFF LOOCV on dataset-2 83.70% 85.87% 85.87% 89.13% 92.39%

Mean-ALFF LOOCV on dataset-2 83.70% 85.87% 85.87% 91.30% 90.22%

All-ALFF LOOCV on dataset-2 81.52% 89.13% 82.61% 82.61% 80.43%

Mean accuracy 82.97% 86.96% 84.78% 87.68% 87.68%

Peak-ALFF dataset-1 to dataset-2 60.87% 63.04% 68.48% 71.74% 67.39%

Mean-ALFF dataset-1 to dataset-2 69.57% 64.13% 79.35% 71.74% 70.65%

All-ALFF dataset-1 to dataset-2 63.04% 75% 75% 73.91% 85.87%

Mean accuracy 64.49% 67.39% 74.28% 72.46% 74.64%

Peak-ALFF dataset-2 to dataset-1 61.29% 56.45% 66.13% 72.58% 74.19%

Mean-ALFF dataset-2 to dataset-1 64.52% 58.06% 62.90% 69.35% 77.42%

All-ALFF dataset-2 to dataset-1 66.13% 64.52% 59.58% 74.19% 75.81%

Mean accuracy 63.98% 59.68% 62.87% 72.04% 75.81%

EC vs. EO CONDITIONS
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FIGURE 5 | Mean accuracy of three feature selection methods in the

0.01–0.08 Hz band in both the PAIR and UNPAIR methods. The left side

means EC—EO vs. EO—EC groups, while the right side denotes EC vs. EO

conditions. The dark blue bar shows the accuracy of LOOCV on dataset-1,

the light blue bar shows the accuracy of LOOCV on dataset-2, the orange bar

shows the accuracy of the classifier of cross-dataset validation from dataset-1

to dataset-2, and the dark red bar shows the accuracy of the classifier of

cross-dataset validation from dataset-2 to dataset-1.

We also compared the three feature selection methods
(i.e., Peak-ALFF, Mean-ALFF, and All-ALFF) by averaging the
accuracy of five frequency bands for each feature selection
method. Since the classification accuracy of UNPAIRmethod was
worse than that of the PAIR method, the comparison among
feature selection methods was only conducted for the PAIR
method. As shown in Figure 6, the classification accuracy was
similar for the three feature selectionmethods, whileMean-ALFF
was slightly more stable than the other methods. Thus, further
analysis was based on Mean-ALFF.

Next we compared the classification accuracy of the PAIR
method among five frequency bands. We averaged the accuracy
of three feature selection methods. As shown in Figure 7, in
most conditions, the 0.073–0.198 Hz and 0.198–0.25 Hz bands
resulted in better prediction accuracy. The very low frequency
band of 0.01–0.027 Hz resulted in lower accuracy in the cross-
dataset validations of both dataset-1 to dataset-2 and dataset-2 to
dataset-1.

3.3. Weight of Features
One advantage of linear SVM is that the weights of all features
(i.e., brain regions in the current study) for classification accuracy
can be obtained.W in Equation (3) is the weight of each feature,
determining the importance of the contribution to this feature
to the classification. The greater the absolute value, the more
important it is. We analyzed the feature weights of the classifier
with LOOCVwithin each dataset and via cross-dataset validation
in five frequency bands using the PAIR method by Mean-ALFF
features. The results of the conventional frequency band (0.01–
0.08 Hz) are shown in Table 2. The other results are listed in
Supplementary Tables 3, 4.

As shown in Table 2, the t-values were correlated with the
weights. However, considering the small sample size of brain

FIGURE 6 | Comparison among three feature selection methods, i.e.,

Peak-ALFF, Mean-ALFF, and All-ALFF in PAIR method (i.e., EC—EO group vs.

EO—EC group). The five frequency bands were averaged.

FIGURE 7 | Accuracy of the averaged three feature selection methods in

0.01–0.08 Hz, 0.01–0.027 Hz, 0.027–0.073 Hz, 0.073–0.198 Hz, and

0.198–0.25 Hz bands in the PAIR method.

regions (n = 8 for each dataset), we combined the two datasets
and found a significant linear correlation between the t-values
and the weight (r = −0.7242, p < 0.05, n = 16; here we
discussed the weights in LOOCV). It should be noted that the
negative correlation was due to the arbitrary labeling of datasets
(−1 and 1).

Table 2 shows that the right eyeball (cluster number 1)
in dataset-1 had a large absolute t-value (−4.7459) but a
low weight (0.0885). In dataset-2, the left eyeball (cluster
number 3) showed a similar pattern (t = −7.6689, weight
= 0.0135). Thus, we eliminated the right eyeball in dataset-1
and eliminated the left eyeball in dataset-2, and repeated the
classification. Comparing the results in Table 3 with those in
Table 2, the classification accuracy after removing the right
eyeball in dataset-1 and removing the left eyeball in dataset-
2 remained roughly the same. The absolute value of the
linear correlation coefficient (combining dataset-1 and dataset-
2, n = 14 after removing) between the t-value and the new
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TABLE 2 | Weight of each brain region of LOOCV in dataset-1 and dataset-2, and by cross-validation between datasets in the 0.01–0.08Hz band.

Brain regions of

dataset-1 0.01–0.08 Hz

Cluster index ROI mean

t-value

Weight of features by LOOCV in

dataset-1 (93.55%)

Weight of features by across

validation from dataset-1 to

dataset-2 (95.65%)

Eyeball, R 1 −4.7459 0.0885 0.0600

SMC, B 2 5.2508 −1.0305 −1.0665

Eyeball, L 3 −4.7839 0.2405 0.2436

Frontal_Inf_Orb, R 4 −3.2028 0.3005 0.3111

Frontal_Inf_Orb, L 5 −4.1089 0.4917 0.5112

Occipital_Mid, R 6 −4.0079 1.4032 1.4368

Caudate, R 7 4.1222 −0.4066 −0.4168

Cingulum_Mid, R 8 3.1957 0.1112 0.1258

Brain regions of

dataset-2 0.01–0.08 Hz

Cluster index ROI mean

t-value

Weight of features by LOOCV in

dataset-2 (95.65%)

Weight of features by across

validation from dataset-2 to

dataset-1 (93.55%)

Cerebelum_8, L 1 2.6758 −0.2981 −0.3097

Eyeball, R 2 −7.0039 0.1833 0.1897

Eyeball, L 3 −7.6689 0.0135 0.0132

Lingual, L 4 3.1218 −0.7927 −0.8088

Cerebelum_Crusl, R 5 3.2954 −0.5689 −0.5715

Cerebelum_4_5, R 6 3.2602 −0.4425 −0.4543

SMC, B 7 6.8304 −0.7927 −0.7956

Occipital_Mid, L 8 −0.4900 0.2756 0.2758

SMC, sensorimotor cortex; Inf, inferior; Mid, middle;

Orb, orbital; L, left; R, right; B, bilateral.

TABLE 3 | Weight of each brain region of LOOCV in dataset-1 and dataset-2, and by cross-validation between datasets in the 0.01–0.08 Hz band (removing features

with the lowest absolute weight).

Brain regions of dataset-1

0.01–0.08 Hz

Cluster index ROI mean

t-value

Weight of features by LOOCV in

dataset-1 (96.77%)

Weight of features by across

validation from dataset-1 to

dataset-2 (95.65%)

SMC, B 2 5.2508 −1.0516 −1.0851

Eyeball, L 3 −4.7839 0.3373 0.3374

Frontal_Inf_Orb, R 4 −3.2028 0.3499 0.3610

Frontal_Inf_Orb, L 5 −4.1089 0.5260 0.5439

Occipital_Mid, R 6 −4.0079 1.2911 1.3110

Caudate, R 7 4.1222 −0.4244 −0.4327

Cingulum_Mid, R 8 3.1957 0.1815 0.1962

Brain regions of dataset-2

0.01–0.08 Hz

Cluster index ROI mean

t-value

Weight of features by LOOCV in

dataset-2 (95.65%)

Weight of features by across

validation from dataset-2 to

dataset-1 (93.55%)

Cerebelum_8, L 1 2.6758 −0.2988 −0.3062

Eyeball, R 2 −7.0039 0.1966 0.2009

Lingual, L 4 3.1218 −0.7958 −0.8045

Cerebelum_Crusl, R 5 3.2954 −0.5693 −0.5777

Cerebelum_4_5, R 6 3.2602 −0.4308 −0.4416

SMC, B 7 6.8304 −0.8045 −0.8160

Occipital_Mid, L 8 −0.4900 0.2768 0.2771

SMC, sensorimotor cortex; Inf, inferior; Mid, middle;

Orb, orbital; L, left; R, right; B, bilateral.
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weight increased slightly (r =−0.7242 before elimination, but
-0.7772 after elimination). This finding indicates that although
we removed certain abnormal brain regions for dataset-1 and
dataset-2, the classification accuracy remained similar. The
relationship between the t-values and weight in SVM was more
complex, and requires in-depth investigation in future studies.

As shown in Table 3, the contribution of each brain region
was similar for within-dataset validation and for cross-dataset
validation. Although the exact location of the peak voxels was
different for the two datasets, the sensorimotor cortex (SMC) and
visual cortex contributed more than the other regions to the final
classification accuracy in both datasets.

4. DISCUSSION

Most previous studies examining this topic have used between-
group designs (e.g., patients vs. controls), and independent two-
sample t-test is a popular univariate statistical method. However,
within-group designs can reduce between-subject variance and
increase statistical power, and the conventional corresponding
univariate statistical analysis is the paired t-test method. SVM
is a popular multivariate statistical method and has been widely
used to differentiate between independent groups. However,
for within-group designs, to the best of our knowledge, few
classification studies have taken paired conditions into account.
An important contribution of the current study is that, unlike
previous studies that considered EC and EO as independent
conditions (i.e., the UNPAIR method), we utilized a within-
group design (i.e., the PAIR method) for feature extraction. In
the PAIR method, the classification accuracy was relatively high
for both within-dataset validation (mean accuracy of 91.40% for
dataset-1 and 92.75% for dataset-2) and cross-dataset validation
(mean accuracy of 94.93% from dataset-1 to dataset-2 and 90.32%
from dataset-2 to dataset-1). However, for the UNPAIR method,
the classification accuracy was slightly lower (mean 69.89%
for dataset-1 and 82.97% for dataset-2), and was much lower
for within-dataset validation (mean accuracy of 64.49% from
dataset-1 to dataset-2 and 63.98% from dataset-2 to dataset-
1). One possible reason for the better results of the current
PAIR method is that with-group design can reduce variability
across subjects. The current PAIR classification method can be
further applied to other within-group neuroimaging studies,
e.g., between two task conditions of task fMRI studies or
follow-up studies. Classification of EC and EO is essentially
a kind of decoding of brain activities, which will be much
helpful to build cyborg intelligent systems (Wu et al., 2013,
2016).

It should be noted that there are a lot of data preprocessing
steps for RS-fMRI. One of them is scrubbing to reduce
the effect of outliers of timepoints. We thus compared the
classification accuracy between scrubbing and without-scrubbing
in frequency bands of 0.01–0.08, 0.01–0.027, 0.027–0.073, 0.073–
0.198, and 0.198–0.25 Hz in dataset-1. Chi-square tests showed
no significant difference (p = 0.3134–1 in 5 frequency bands, see
Supplementary Material) between the results with scrubbing and
without scrubbing.

Many methods have been applied for dimensionality
reduction in previous neuroimaging classification studies, and
t-tests are one of the most widely used methods. However, few
studies have investigated the correlation of t-values of each
region or voxel with the weight of the feature in the classifier. As
shown in Tables 2, 3, the t-values were highly correlated with
the weight in the classifier. The current results confirmed the
rationale for using t-tests for dimensionality reduction. It should
be noted that using t-tests for dimensionality reduction in the
same dataset is a type of circular analysis (Kriegeskorte et al.,
2009). Therefore, this method should be used cautiously, and
performing validation with independent datasets may provide a
more appropriate approach.

Although most previous RS-fMRI studies have focused on the
conventional frequency band of 0.01–0.08 Hz, its sub-frequency
bands (e.g., 0.01–0.027 Hz and 0.027–0.073 Hz) (Zuo et al.,
2010), as well as higher frequency bands (0.073–0.198 Hz and
0.198–0.25 Hz) have drawn increasing attention in recent years
(Yuan et al., 2014; Wang et al., 2015). Classification has been
widely used in RS-fMRI studies (Yang et al., 2012). However,
few classification studies have examined sub-frequency bands. As
shown in Table 1, the current study found that higher frequency
bands (0.073–0.198 Hz and 0.198–0.25 Hz) had relatively higher
accuracy than lower frequency bands in both dataset-1 and
dataset-2. It should be noted that the low frequency band of
0.01–0.027 Hz showed consistently lower accuracy on different
datasets (mean accuracy of 100% for dataset-1, 90.58% for
dataset-2, 84.87% from dataset-1 to dataset-2, and 86.02% from
dataset-2 to dataset-1). We included the eyeballs because eye
blink is a type of high frequency movement. We predicted that
the high frequency amplitude of the RS-fMRI signal in the
eyeballs would contribute more to accuracy. As we expected,
the eyeballs did exhibit relatively greater weights than other
brain regions in the higher frequency bands (0.073–0.198 Hz
and 0.198–0.25 Hz) (Supplementary Tables 3, 4). As a contrast,
for the conventional frequency band (0.01–0.08 Hz) as well as
it sub-bands (0.01–0.027 Hz and 0.027–0.073 Hz), the primary
sensorimotor cortex and visual cortex had the largest weights. All
of the above results were consistent for dataset-1 and dataset-2.

Feature selection is a minor issue in the current study. Based
on t maps, we compared three methods for feature selection:
peak voxel ALFF (Peak-ALFF), mean ALFF of a spherical ROI
(Mean-ALFF) and ALFF of all voxels of a spherical ROI (All-
ALFF). The accuracy of the three methods was similar. Because
the mean value of a spherical ROI may vary less than in different
validations than the peak voxel, and using the ALFF of all voxels
in a spherical ROI as features increases the dimensionality, we
recommend the Mean-ALFF selection method.

The current study involved several limitations that should
be considered. First, to meet the demands of labels used for
classification, we randomly divided the data into two groups
(i.e., EC—EO group and EO—EC group). However, although we
supposed that different grouping methods would not affect the
results, we did not provide theoretical evidence. Considering that
this type of within-group design is also widely used, future studies
should investigate a mathematical solution. Second, although
there are many methods for dimensionality reduction, we only
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used t-tests in the current study. Future studies should test
other dimensionality reduction methods, which might increase
accuracy and consistency. Third, the classification accuracy of
the low frequency band of 0.01–0.027 Hz appeared to have
low consistency in cross-dataset validation. However, this result
is difficult to interpret. Future studies should examine this
frequency band of the RS-fMRI signal in more detail.
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