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Joint independent component analysis (jICA) can be applied within subject for fusion

of multi-channel event-related potentials (ERP) and functional magnetic resonance

imaging (fMRI), to measure brain function at high spatiotemporal resolution (Mangalathu-

Arumana et al., 2012). However, the impact of experimental design choices on jICA

performance has not been systematically studied. Here, the sensitivity of jICA for

recovering neural sources in individual data was evaluated as a function of imaging

SNR, number of independent representations of the ERP/fMRI data, relationship between

instantiations of the joint ERP/fMRI activity (linear, non-linear, uncoupled), and type of

sources (varying parametrically and non-parametrically across representations of the

data), using computer simulations. Neural sources were simulated with spatiotemporal

and noise attributes derived from experimental data. The best performance, maximizing

both cross-modal data fusion and the separation of brain sources, occurred with a

moderate number of representations of the ERP/fMRI data (10–30), as in a mixed

block/event related experimental design. Importantly, the type of relationship between

instantiations of the ERP/fMRI activity, whether linear, non-linear or uncoupled, did not in

itself impact jICA performance, andwas accurately recovered in the common profiles (i.e.,

mixing coefficients). Thus, jICA provides an unbiased way to characterize the relationship

between ERP and fMRI activity across brain regions, in individual data, rendering

it potentially useful for characterizing pathological conditions in which neurovascular

coupling is adversely affected.

Keywords: fMRI, ERP, EEG, independent component analysis (ICA), multimodal neuroimaging, modeling,

simulation, data fusion

INTRODUCTION

Electrophysiological and hemodynamic measures of brain function vary in terms of their spatial
and temporal resolution and the relation of the measured signals to the underlying neural activity
(direct vs. indirect, respectively). Electroencephalography (EEG) measures brain function on a
millisecond temporal scale and centimeter spatial scale in the form of electrical fields generated
on the scalp by the synchronous activity of large populations of neurons. Functional magnetic
resonance imaging (fMRI) of the blood oxygen level dependent response (BOLD) measures neural
activity indirectly via variations in blood oxygenation that result from changes in the metabolism of
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electrically active neurons; for a review see (Logothetis,
2008). FMRI measures brain function on a millimeter spatial
scale and temporal scale of seconds in the form of slow
hemodynamic responses in clusters of neighboring neurons.
The complementary spatial and temporal scales of EEG and
fMRI, and the possibility of acquiring the activity simultaneously,
has been leveraged to examine brain function at a combined
millisecond temporal and millimeter spatial scale (Bonmassar
et al., 2001; Dale and Halgren, 2001; Horovitz et al., 2002;
Liebenthal et al., 2003, 2010; Mulert et al., 2004; Debener et al.,
2005, 2006; Bénar et al., 2007; Liu and He, 2008; Liu et al., 2010;
Bridwell et al., 2013; Cottereau et al., 2015; Nguyen et al., 2016).
Nevertheless, given the differences in the nature of the activity
in each modality, an outstanding question is the degree to which
they reflect the same neural activity.

Symmetric data fusion techniques provide a mathematical
framework to optimize the integration of multimodal
neuroimaging data such as combined EEG/fMRI (Rosa et al.,
2011; Huster et al., 2012; Uludag and Roebroeck, 2014; Adali
et al., 2015a; Cottereau et al., 2015). Model-driven approaches
rely on a priori assumptions of the relationship between the
activity in each imaging modality in order to fit a common
generative model to the multimodal data (Daunizeau et al., 2007;
Luessi et al., 2011; Rosa et al., 2011; Woolrich and Stephan, 2013;
Nguyen et al., 2014; Uludag and Roebroeck, 2014; Turner et al.,
2016). By explicitly modeling a generative (neural) source for the
observed activity, model-driven approaches enable hypothesis-
driven analyses of EEG/fMRI data. However, they are necessarily
limited by the extent to which the neural sources and the
physiological and physical relationships between neuroimaging
measures are known.

Data-driven approaches, such as those based on blind
source separation, attempt to minimize assumptions about the
relationship between neuroimaging measures (Correa et al.,
2010; Mantini et al., 2010; Sui et al., 2012; Brown et al., 2013;
Adali et al., 2015b). Independent component analysis (ICA)
uses a linear mixing model to identify statistical relationships
between neuroimaging activity when detailed a priori models
are not available (Calhoun et al., 2006). Such approaches allow
neuroimaging datasets from different modalities to interact on
an equal footing. Joint ICA (jICA) has been used to identify
co-variations between EEG event related potentials (ERPs) and
fMRI data across a group of subjects (Group-ICA) (Moosmann
et al., 2008; Calhoun et al., 2009; Doñamayor et al., 2012; Edwards
et al., 2012; Mijović et al., 2012; Adali et al., 2015a, for review see
Sui et al., 2012). We have previously used jICA to identify co-
variations between ERP and fMRI activity across experimental
conditions within-subject (Mangalathu-Arumana et al., 2012).

In our previous study using an auditory oddball task with
four parametrically varying experimental levels (specifically,
four types of deviants detectable at 65, 75, 85, and 95%
accuracy) in each subject, a single jICA-fMRI component
was found to carry all the ERP activity associated with the
task (Mangalathu-Arumana et al., 2012). The joint component
consisted of temporal, parietal and frontal cortical areas activated
at time windows corresponding to the N100 and the P300
ERPs. From a purely analytic standpoint, this finding reflects a

similar (i.e., non-separable) dependence on experimental level
of all the spatiotemporal elements in the joint component.
However, from a physiological standpoint at least two different
interpretations should be considered: (1) A tight functional
association between brain areas resulted in an entire network
effectively functioning in synchrony as a single neural source.
(2) Functionally distinct neural sources were not separated
into independent components, possibly due to low variability
in the data resulting from a small number of independent
representations of the ERP/fMRI activity. Specifically, activity
was averaged across trials for each of experimental condition,
resulting in four separate instantiations of ERP/fMRI activity in
the analysis. To distinguish between these interpretations, task-
related variability in the data can be increased by increasing
the number of independent representations of the ERP/fMRI
data. This can be achieved by analyzing single trials, or multiple
averages over small numbers of trials in each experimental level.
However, for analyses within subject, to increase the number
of representations typically requires reducing the signal-to-noise
ratio (SNR) of each representation (due to constraints on the total
number of trials that can practically be collected within a fixed
time frame).

In data-driven analyses, dimension reduction, vis-a-vis model
order selection techniques (Stoica and Selen, 2004), is often
used to estimate the number of latent sources to avoid
overfitting the data. The process of dimension reduction also
acts to increase SNR by “filtering” irrelevant signals (i.e., noise).
Eigenvalue-based techniques for model order selection that
combine principal component analysis (PCA) with information
theoretic criteria (e.g., Akaike’s information criterion—AIC, and
minimum descriptor length—MDL) have been incorporated
into ICA toolboxes. However, most model order selection
techniques assume that the underlying latent sources are
Gaussian distributed and the samples (e.g., fMRI voxels, EEG
temporal activity) are independent and identically distributed
(Wax and Kailath, 1985). FMRI and EEG activity often violates
these assumptions which can lead to inaccurate estimates
of model order (Majeed and Avison, 2014). Understanding
how inaccurate model-order estimates impact data-driven
multimodal neuroimaging analyses (such as jICA) is important
for properly interpreting the recovered sources of brain activity.

An objective of the present simulations was to determine
the range of variability in ERP and fMRI activity and the
noise levels under which jICA can successfully retrieve the
spatiotemporal attributes of independent neural sources, within
a framework wherein the accuracy of the model order selection
is not known precisely. Ideally, ERP and fMRI activity generated
by the same neural source would be retrieved in the same joint
component; and activity generated by neural sources that do
not covary in space and/or time would be retrieved in different
components. The impact of neuroimaging variability and noise
level on jICA performance was examined in the context of both
parametrically varying sources (i.e., systematically varying across
representations of the ERP/fMRI data, effectively forming a single
functional network), and non-parametrically varying sources
(i.e., varying independently across representations of the data,
effectively forming independent functional networks).
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A second objective of the study was to test the performance
of jICA when the relationship between ERP and fMRI measures
of brain activity is linear and non-linear. Changes in mass
electrical activity of neurons (measured with ERPs) can produce
linear or non-linear changes in the hemodynamic response
(measured with fMRI), depending on the brain area activated
and the rate and intensity of stimulation. At short inter-stimulus
intervals (below 4 s), the fMRI response can increase non-linearly
relative to the ERP response, especially in cortical association
areas. At longer intervals and in cortical sensory areas, the
relationship is typically linear (Rees et al., 1997; Mechelli et al.,
2000; Birn and Bandettini, 2005; Liu et al., 2010). Brief periods
of synchronous activity in a small neuronal assembly may
generate a negligible change in local metabolic consumption,
and thus may be captured with ERP but not with the much
slower fMRI BOLD response (Babiloni and Cincotti, 2004).
Conversely, neural activity of limited spatial extent may be visible
with BOLD, but located too deep in the brain or electrically
oriented such that it does not elicit a significant ERP (Nunez
and Silberstein, 2000). Pathological conditions can also lead to
highly non-linear (essentially uncoupled) relationships between
neural and hemodynamic measures of brain activity (Girouard
and Iadecola, 2006). While the performance of jICA with linearly
varying signals is relatively well established (Calhoun et al.,
2006; Mangalathu-Arumana et al., 2012), to our knowledge its
application to non-linear relationships has not systematically
been examined.

In order to assess the effects of experimental design and
data quality on jICA performance, simulated fMRI/EEG datasets
representing the activity of three neural sources with distinct
spatiotemporal profiles were constructed using parameters
and constraints obtained experimentally from individual data
(Mangalathu-Arumana et al., 2012). The simulations show that
the ability of jICA to accurately retrieve and separate independent
neural sources improves with neuroimaging SNR and number
of independent representations of the ERP/fMRI data, and
deteriorates when the neuroimaging activity is correlated (i.e.,
vary parametrically) across representations. JICA performance
does not, however, depend on the type of relationship (linear,
non-linear, uncoupled) between instantiations of ERP/fMRI
activity. The simulations also demonstrate how the type of
relationship between ERP and fMRI activity can be retrieved
using the commonmixtures profile across linked ERP/fMRI jICA
components.

MATERIALS AND METHODS

Overview of Computational Model and
Simulations
In order to characterize the trade-offs between choices in
experimental design and jICA performance, the ability of jICA to
recover brain activity measured with fMRI and ERP in space and
time was examined for parametrically and non-parametrically
varying sources along three dimensions (summarized in
Figure 1); the number of independent representations of the
ERP/fMRI data (e.g., trial or trial-averaged instantiations of

ERP/fMRI activity), the SNR of fMRI and ERP data, and the
nature of the relationship between the fMRI and ERP activity
(linear, non-linear, uncoupled). Multi-channel ERP waveforms
and whole-brain fMRI maps were simulated for three sources of
brain activity in regions previously implicated in auditory oddball
detection (Liebenthal et al., 2003; Mangalathu-Arumana et al.,
2012), in the right prefrontal cortex, right temporoparietal cortex,
and left motor cortex (Figure 2—top left; blue, yellow, and red
squares, respectively).

Analyses were performed using a 1,024-core high-
performance computing cluster (8 cores/node, 24 GB RAM
per node). Simulations were implemented on the cluster as
a series of distributed processes, where each combination of
SNR and the number of representations of the ERP/fMRI data
was run as an independent simulation on a single node. FMRI
statistical maps were computed in AFNI (https://afni.nimh.nih.
gov/) and loaded into Matlab (Mathworks, MA). Multi-channel
ERP activity in 64 electrodes was created using Brainstorm
to generate potential field maps from current source density
profiles defined on the cortical surface. JICA was performed
on the concatenated ERP/fMRI datasets using Matlab and the
Fusion ICA Toolbox (http://mialab.mrn.org/software/fit/).

Simulated Brain Activity
Three generative sources of activity, with different locations
in the brain and different temporal profiles, were simulated
to examine the effect of the spatial and temporal relationship
between sources on jICA performance. FMRI activity of the
sources was simulated as activation foci in a 3D whole brain
MRI volume (64× 64× 33 voxels) in Talaraich space (Talaraich,
1988), using AFNI (Cox, 1996). Each source consisted of a
cube (5 × 5 × 5 voxels, 4,000 µL) of active voxels with
a homogeneous BOLD response. The magnitude of BOLD
response for each source did not have detailed temporal structure
but was scaled across representations of the data to simulate
condition-dependent changes based on the experimental design
(Figures 1C,D).

ERP activity of the sources was defined spatially on the
cortical surface of the Colin brain (Holmes et al., 1998), as
implemented in Brainstorm (Brainstorm 3.1), (Tadel et al., 2011).
The cortical surface consisted of a mesh of 15,000 vertices
with sample electric dipoles positioned at each vertex and
oriented perpendicular to the cortical surface. Active vertices
for each source were determined by projecting the volumetric
fMRI activation foci to the cortical surface using Freesurfer (v
5.0), (Dale et al., 1999; Fischl et al., 1999). For each source,
the spatial distribution of volumetric activity projected to the
cortical surface was assigned a 1,000ms time-varying current
density profile selected from three forms found empirically
(uniphasic or biphasic peak, and no response). The current
density profiles for sources in right temporoparietal and left
motor cortex were simulated as a gaussian-weighted biphasic
sinusoid peaking at 100ms and a uniphasic sinusoid peaking at
800ms, respectively (Figure 2A, on the right). The prefrontal
source was simulated as visible with fMRI but with no ERP
response (i.e., it was uncoupled). Multi-channel ERP waveforms
were simulated at 62 scalp electrode locations by forward
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FIGURE 1 | Experimental parameters tested in the computational simulations. Illustration of the parameter space tested: (A) SNR vs. number of independent

representations of the data (e.g., trials, trial averages of joint ERP/fMRI activity etc.), (B) linear and non-linear relationships between instantiations of ERP and fMRI

activity, and sources that vary (C) parametrically and (D) non-parametrically (shown here for a linear relationship between fMRI and ERP) within an experimental

design. In the parametric experimental design, the change in measured ERP/fMRI amplitudes of separate neural sources (S1–S3; red square, green circle, blue x

respectively) varied systematically across representations of the data. In the non-parametric experimental design, the changes in measured ERP/fMRI amplitudes were

different for each source across representations of the data.

projecting the current density profiles to the scalp surface
of the Colin brain, using a 3-shell sphere head model, and
the template 62 electrode locations of the 10–20 system, in
Brainstorm.

ERP—fMRI Relationship
The relationship between the amplitudes of ERP and fMRI
activity was simulated as either linear or non-linear to
determine whether the jICA linear model could reliably
recover non-linear signal relationships. For simulations with a
linear ERP/fMRI relationship, the variation in the magnitude
of fMRI activity across independent representations of the
data was proportional to the variation in peak amplitude
of the ERP (fMRImag = b∗ERPpeak). Simulations with a
non-linear ERP/fMRI relationship where characterized by a
saturating exponential across representations, [fMRImag =
1−exp(b∗ERPpeak)]. In all cases, the frontal source was simulated
as an ERP-blind source such that ERPpeak = 0.

Parametric and Non-parametric
Experimental Design
In separate simulations, the change in fMRI and ERP
amplitudes across representations was designed to be correlated

or uncorrelated, in order to characterize the impact of
this latent variable on jICA performance. The change in
fMRI and ERP amplitudes across representations was defined
by the experimental design: In a parametric experimental
design, the physiological activity varied parametrically across
representations of the data, reflecting a systematic relationship
with the experimental condition (for example, the stimulus level
or task difficulty). In a non-parametric experimental design,
the physiological activity varied non-systematically, reflecting
a random relationship with the experimental condition (for
example, if each representation of the joint ERP/fMRI data is a
different unrelated experimental condition). In the parametric
experimental design simulated here, the fMRI and ERP signal
amplitudes for the three sources varied in coordination, resulting
in a correlation between sources, effectively simulating a single
functional brain network. In the non-parametric experimental
design, changes in fMRI and ERP signal amplitudes were
uncorrelated across representations of the data and between

sources. Thus, ERP/fMRI sources were functionally independent,
each presenting with a different random pattern of activation,
effectively simulating three separate brain networks. A graphical
illustration of the differences between the parametric and non-
parametric design is shown in Figures 1C,D.
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FIGURE 2 | Simulation work-flow. (A) Three sources were simulated, with fMRI activity in the right prefrontal cortex, right temporoparietal cortex, and left motor cortex

(left panel—blue, yellow and red squares respectively). Volumetric fMRI data corresponding to the right temporoparietal and left motor sources were projected onto a

cortical surface mesh and simulated with gaussian-weighted sinusoidal temporal profiles (right panel). The fMRI and ERP activity of the temporoparietal and motor

sources co-varied linearly (simulation #1) or non-linearly [f(x) = 1−exp(x), simulation #2], and the prefrontal source was uncoupled [f(x) = 0]. (B) ERP topographical

maps (shown here for a single source at three time points) were generated by forward projecting the temporoparietal and motor sources onto the scalp partition of the

(Continued)
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FIGURE 2 | Colin head model. (C) The simulated fMRI and ERP datasets were initially concatenated into a single row to create a joint-matrix across imaging

modalities and independent representations of the data (Mangalathu-Arumana et al., 2012). PCA was applied to the joint-matrix to whiten the signal and to limit the

dimensionality of the dataset to twenty components. JICA was then performed on the PCA components. The resulting jICA components consisted of a spatial

jICA-fMRI map and a spatiotemporal jICA-ERP map. (D) Source maps of the jICA-ERP channel data were computed and projected onto the Colin cortical surface

model to facilitate comparison with the jICA-fMRI maps.

SNR and Number of Independent
Representations of the ERP/fMRI Data
The ability of jICA to accurately retrieve the sources was
examined as a function of the number of independent
representations of the ERP/fMRI data (22 values spanning
the range 4–360) and the imaging peak SNR (PSNR), (22
linked fMRI/EEG values spanning the range −2 to 16.6 dB
for fMRI activity and −8.6 to 10.9 dB for ERP activity),
defined as the ratio between the squared maximum signal
amplitude and mean-square error of the noise. The range
of PSNRs in each imaging modality was selected based on
experimental data for a single trial (the lowest PSNR) and an
average of 72 trials of the same experimental condition (the
highest PSNR) (Mangalathu-Arumana et al., 2012). This range
encompasses two principal types of experimental designs, one
with a small number of independent representations and high
PSNR per representation (achieved through averaging across
multiple repetitions of each experimental condition), and one
with a large number of independent representations and low
PSNR per representation (achieved by considering each trial
as an independent representation of the data). A total of 484
simulations were performed for each combination of fMRI-
ERP coupling (linear or non-linear) and experimental design
(parametric or non-parametric).

Noise was added to the ERP and fMRI activity to simulate
the different PSNR levels. For ERP signals, noise was simulated
at the electrode interface as a zero mean Gaussian process and
added to the forward projected current source density profiles
at each electrode. The variance of the noise was specified as the
ERP signal amplitude in the post-stimulus window divided by the
standard deviation of the prestimulus baseline. For fMRI signals,
Gaussian noise was applied at each voxel. The variance of the
noise was specified as the amplitude of the fMRI signal divided
by the standard deviation of a zero-mean noise.

JICA
The fusion of fMRI and ERP data was performed using Multi-
run jICA (Figure 2C; Mangalathu-Arumana et al., 2012). In
Multi-run jICA, the variation in ERP and fMRI activity is
described across independent representations of the data (e.g.,
experimental levels) in a single subject, as opposed to across
subjects. In each simulation, jICA was used to extract jointly
varying (across experimental levels) ERP and fMRI signal
components that maximized independence in space and time.

Prior to jICA, fMRI, and ERP data sets were concatenated to
create a joint-matrix, where each row consisted of the vectorized
fMRI volume and ERP temporal profile across electrodes for a
single observation. PCAwas applied to the joint-matrix to whiten
the signal and reduce the signal subspace to 20 components

(for simulations containing more than 20 representations).
JICA was then performed on the PCA-extracted components
using the infomax algorithm (Bell and Sejnowski, 1995). Each
joint component consisted of a spatial jICA-fMRI map and a
spatiotemporal jICA-ERP map, containing linear projections of
the fMRI and ERP signals covarying across representations of the
data that maximized the statistical independence between jICA
components.

jICA-ERP components were submitted to distributed
source reconstruction to facilitate spatial comparisons with the
corresponding jICA-fMRI activity and the generative source(s).
Source localization of the jICA-ERP maps was performed in
Brainstorm (http://neuroimage.usc.edu/brainstorm) using the
weighted minimum norm estimate (wMNE) to solve the inverse
problem for a distributed representation of electric dipoles
located at each vertex on the cortical surface model and oriented
perpendicular to the cortical surface (Brainstorm 3.0, Matlab,
2010b). The Colin head volume conductor and cortical surface
models used to forward project the generative sources were used
to reconstruct the cortical source activity from each jICA-ERP
component.

Statistical Analysis
JICA-fMRI maps were amplitude thresholded at p < 0.01 relative
to the normal distribution of activity across all voxels and jICA-
fMRI components. A corrected map-wise cluster threshold of
α < 0.05 was applied to identify regions of significant activity;
defined relative to the chance distribution of cluster sizes across
jICA-fMRI components, computed by spatial randomization
of the voxel-wise activity within each component. JICA-ERP
source maps were amplitude thresholded at p < 0.01 relative to
the normal distribution of the post-stimulus activity across all
vertices and jICA-ERP components.

Source Detection
The extent to which the jth ERP/fMRI source was extracted into
the nth jICA component was characterized using the equivalence
(spatial for fMRI, temporal for ERP) between the activity within
the jICA component and the generative “true” sources. For fMRI,
the relative contribution of the nth jICA-fMRI component to the
activity of the generative source was defined as:

s
fMRI
jn =

ajn
∑N

n=1

∣

∣ajn
∣

∣

(1)

where (ajn) is the average activity across voxels in the true source
volume, and N is the number of jICA components.

For ERP, the contribution of the nth jICA-ERP component to
the jth source was defined using temporal correlation of activity
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across the source normalized components,

SERPjn =

M
∑

m=1
|rjnm|

N
∑

n=1

M
∑

m=1
|rjnm|

(2)

where rjnm denotes the correlation for the mth vertex of the true
source. For the uncoupled prefrontal source, with no generative
ERP model, sERP was evaluated using the ERP profile from the
spatially nearest (temporal) source.

Recovering the Relationship between ERP
and fMRI Activity Using jICA
In jICA of ERP and fMRI activity, the samples in each imaging
modality are constrained by the same mixing matrix and are
therefore correlated across representations of the ERP/fMRI data,
reflecting the theoretical assumption that the fMRI and ERP
activity are driven by a common neural source. In practice, ERP
and fMRI activity from a common neural source may not be fully
correlated. Such “uncoupling” may be due to differences in the
sensitivity of each imaging modality to the location and temporal
course of activity, and/or to non-linearities in neurovascular
coupling (Zhang et al., 2008). When uncoupling occurs, fMRI
and ERP measures from a neural source may be separated into
more than one joint component; however, the components retain
the spatial and/or temporal properties inherent to the common
neural source.

The spatiotemporal overlap between components associated
with a common neural source can be used to link them and
recover the relationship between the neuroimaging measures.
For each source, the relationship between ERP and fMRI activity
can be recovered from the weighted mixing coefficients of each
imaging modality (AERP, AfMRI),

AERP = DAQSERP

AfMRI = DAQSfMRI

whereD is the pseudo-inverse of the q× nwhiteningmatrix used
to reduce the model order from q representations of the data to
n components (n ≤ q), A is the n × n mixing matrix estimated
during jICA, SERP is a n × l matrix containing the ERP portion
of the source matrix defined for l samples (electrodes x time)
across n components, SfMRI is a n× pmatrix containing the fMRI
portion of the source matrix defined for p samples (voxels) across
n components, and Q is a n × n sparse matrix with unit values
along the diagonal specifying linked jICA components for the
neural source being reconstructed. For the within-subject version
of jICA used here, this process returns the relationship between
ERP and fMRI signals across representations for neural sources
that cannot be represented by the implicit linear relationship
between fMRI and ERP within a single jICA component.

RESULTS

We examined the effect on within-subject jICA performance
of several variables relevant to the fusion of ERP and fMRI

(imaging SNR and number of independent representations of the
data) as a function of the type of sources (parametrically, non-
parametrically varying) and the relationship between changes
in ERP and fMRI signal amplitude (linear, non-linear). The
first set of simulations examined source recovery in the context
of a parametric design and a linear (section Linear ERP-
fMRI Relationship and Parametric Data Structure) or non-linear
(section Non-linear ERP-fMRI Relationship and Parametric
Experimental Design) relationship between ERP and fMRI
signal amplitudes. The second set of simulations examined
source recovery in the context of a non-parametric design
(section Linear ERP-fMRI Relationship and Non-parametric
Experimental Design).

Linear ERP-fMRI Relationship and
Parametric Data Structure
The first set of simulations examined jICA source recovery in
the context of a parametric experimental design as described in
sections Parametric and Non-parametric Experimental Design
to SNR, and Number of Independent Representations of
the ERP/fMRI Data. For these simulations, a systematic
relationship existed between the experimental condition and
the instantiations of the joint ERP/fMRI activity of all sources,
resulting in a high functional correlation between the sources.

Effect of SNR and Number of Independent
Representations of the Data on Source
Recovery
Figure 3 shows the degree to which each simulated source was
extracted into a single component, as a function of the imaging
PSNR and number of independent representations of the joint
ERP/fMRI data. The degree of extraction was calculated using the
ERP and fMRI source detection metrics, and could vary between
1 (signifying that all the source activity measured with ERP or
fMRI was assigned to a single joint component) and 0 (signifying
that no source activity was measured). A value of 0.5 indicates
that half of the source activity was assigned to one component
and the other half to one (or more) other component/s. Note
that this analysis does not inform on whether the ERP and
fMRI activity from each source was assigned to the same (joint)
component or to different components.

The dashed line in each graph represents the
√
N relationship

between SNR and number of independent representations of the
data (e.g., trials, trial averages, etc.) in a typical neuroimaging
experiment with a total of 360 measurements of ERP/fMRI
activity (Mangalathu-Arumana et al., 2012), as a reference.
In a typical experiment with a limited number of imaging
measurements, there is a trade-off between PSNR and number
of independent representations of the data, whereby a few
experimental conditions (i.e., small number of representations)
may be measured at high PSNR (averaging across trials) or many
experimental conditions (i.e., large number of representations)
may be measured at low PSNR (averaging across few trials for
each condition, or no averaging as in a trial-wise experimental
design).
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FIGURE 3 | Maximum source detection values for within-subject jICA in a parametric experimental design. The degree of recovery by a single component of fMRI and

ERP activity associated with each of the three sources, measured as the maximum fMRI and ERP source detection values across jICA components, [maxn (s
fMRI) and

maxn(s
ERP ) respectively], is shown as a function of peak SNR and number of independent representations of the ERP/fMRI data. The motor (uniphasic) and

temporoparietal (biphasic) sources were simulated with linear coupling between the ERP and fMRI activity. The uncoupled prefrontal source consisted of an fMRI

response only. Source detection values range 0–1, with a value of 1 corresponding to extraction of the complete source activity into a single joint component. A value

of 0.5 indicates that 50% of the source activity was extracted into one component and the remaining activity was attributed to at least one additional component. A

value of 0 indicates a finding of no activity associated with the source. The dashed line in each graph illustrates the
√
N relationship between SNR and number of

independent representations of the data (e.g., trials, trial averages, etc.) in a typical experimental design (Mangalathu-Arumana et al., 2012). In an experimental design

with a fixed number of trials, ERP/fMRI activity characterized by high peak SNR, may reflect trial averaging across a few experimental conditions while ERP/fMRI

activity characterized by low peak SNR may reflect activity across many individual trials.

The representation of ERP activity within a single jICA
component (Figure 3, left), maxn(s

ERP), ranged 0.7–0.9 for
the motor source (with uniphasic ERP), 0.5–0.9 for the
temporoparietal source (with biphasic ERP), and 0.1–0.6 for
the prefrontal source (with uncoupled ERP). The recovery
of the motor source by a single component systematically
decreased as the number of ERP/fMRI representations increased.
The temporoparietal source showed a reverse trend, and was
increasingly extracted into a single component as the number
of ERP/fMRI representations increased. The prefrontal source
had no ERP response associated with it. When the number
of representations was small, residual ERP activity from the
spatially nearest (temporoparietal) source was associated with
the prefrontal fMRI source, however, the correlation was low
(r2 ≤ 0.2).

Figure 4 shows the temporal profiles of the jICA-ERP activity
associated with the temporoparietal and motor sources (black)
overlaid on the temporal profiles of the respective simulated
sources (blue); at high SNR (=3.5) with the independent
representations of the ERP/fMRI data corresponding to
6 experimental conditions (Figure 4A), and at low SNR
(= 0.37) with ERP/fMRI representations corresponding to
360 trials (Figure 4B). The temporal profiles of the original
and reconstructed sources were highly correlated (r2 > 0.98)
in both cases, indicating accurate extraction of the sources
with jICA.

The recovery of fMRI activity within a single jICA component
(Figure 3, right), maxn(s

fMRI), ranged 0.8–1 for themotor source,
0.5–1 for the temporoparietal source and 0.8–1 for the prefrontal
source. In each case, the recovery of the fMRI source into a single
component increased with imaging SNR and decreased with the
number of neuroimaging representations.

Effect of Imaging SNR and Number of
Independent Representations of the Data
on Source Separation
Figure 5 shows the recovery of the motor (upper panels),
temporoparietal (middle panels), and prefrontal (lower panels)
sources across all 20 jICA components, as a function of the
number of ERP/fMRI representations for high (A) and low (B)
SNR. For each source, the ERP and fMRI activity recovered
in each component is characterized by the ERP (sERP; lower
triangles) and fMRI (sfMRI; upper triangles) source detection
values. Source detection values exceeding a threshold of 0.1
(p < 0.05) are shown, for clarity. This depiction shows the extent
to which, ERP and fMRI signals associated with each source were
captured in the same (max sERP and sfMRI present in the same
rectangle) or different (max sERPand sfMRI in upper and lower
portions of different rectangles) joint components.

The simulation results show that the fMRI activity
associated with all three sources is recovered in the same
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FIGURE 4 | Temporal profiles of simulated ERP and retrieved jICA-ERP responses for representative vertices of the temporoparietal (left) and motor (right) sources.

Temporal profiles are shown for the jICA-ERP source density (black line) and the simulated ERP source density profile (blue line; shown here without noise added for

visual clarity) for, (A) high SNR (=10.9 dB) and a small number of independent ERP/fMRI representations (e.g., 6 experimental conditions) and (B) low SNR (=−8.6

dB) and a high number of independent ERP/fMRI representations (360 trials).

joint component, irrespective of the SNR and number of
independent representations of the ERP/fMRI data (component
20—upper right triangles). This finding is consistent with our
previous empirical jICA results showing that fMRI activity
associated with different neural sources of the P300 were carried
by a single component in a parametric experimental paradigm
(Mangalathu-Arumana et al., 2012). In contrast, the ERP activity
associated with the motor and temporoparietal sources was
consistently recovered into separate components. It is worth
noting that while ICA does not inherently order components,
sources that also account for a majority of the signal variance
(such as the common fMRI source) will be consistently extracted
(and ordered) during PCA dimension reduction (representations
>20).

For the motor source (with uniphasic ERP), ERP and fMRI
responses were recovered in the same component (colored
squares) at both low and high SNR. A different trend was
observed for the temporoparietal source (with biphasic ERP),
wherein ERP and fMRI activity was increasingly recovered
into different components as the number of independent
representations increased (Figure 5—the point of component
separation is indicated by a black arrow). At high SNR, residual
fMRI activity was associated with the ERP component after the

point of separation. For example, with 20 representations at
high SNR, component 2 contained ERP activity and residual
fMRI activity, and component 20 contained the primary fMRI
activity. At low SNR, residual activity linking the fMRI and ERP
components was observed for up to 50 representations of the
ERP/fMRI data.

For the prefrontal source (with no ERP), ERP source
detection was characterized relative to the spatially nearest
(temporoparietal) source and was consistently low (<0.2). In no
cases were the fMRI activity of the true prefrontal source and ERP
activity of the temporoparietal source recovered into the same
jICA component.

Non-linear ERP-fMRI Relationship and
Parametric Experimental Design
In this set of simulations, the relationship between changes in
ERP and fMRI signal amplitudes was linear for the motor source
and non-linear [1-exp(x)] for the temporoparietal source. The
prefrontal source remained uncoupled as before. Changes in the
ERP and fMRI activity of the three sources varied systematically
across representations (trials, trial averages, etc.), consistent with
a parametric experimental design, resulting in a high functional
correlation between the sources.
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FIGURE 5 | JICA source segregation with a linear relationship between fMRI and ERP activity in a parametric experimental design. JICA source detection values for

ERP and fMRI (lower and upper triangles, respectively) of the motor (top panels), temporoparietal (middle panels) and prefrontal (lower panels) sources are shown for

(A) high (ERP = 10.9; fMRI = 16.6 dB) and (B) low (ERP= −8.6; fMRI= −2 dB) PNSR. For the prefrontal source, ERP source detection values were calculated with

respect to the spatially nearest (temporoparietal) source. The black arrow (bottom panels) indicates the number of independent representations of the ERP/fMRI data

beyond which motor and temporoparietal ERP sources were separated into different components. The color bar denotes the source detection values of the original

sources recovered in each component (p < 0.05 threshold).

JICA performance was largely similar when the relationship
between changes in fMRI and ERP signal amplitudes was non-
linear. For the temporoparietal (biphasic) source, ERP and fMRI
activity was recovered in different components (Figure 6). For
small and moderate numbers of ERP/fMRI representations (<30
for high SNR;<50 for low SNR), the joint component containing
the temporoparietal fMRI activity also contained significant
residual ERP activity (p < 0.05), effectively linking the two
components. For large numbers of ERP/fMRI representations
(>50), the fMRI and ERP activity was recovered into different
components. In contrast, ERP and fMRI activity associated with
the motor (uniphasic) source was extracted into the same joint

component regardless of the number of representations. FMRI

activity associated with the temporoparietal source was also
present in the joint component representing the motor source,

reflecting the co-variation of sources across representations that

is inherent to the parametric data structure and typical of most
experimental designs.

Linear ERP-fMRI Relationship and
Non-parametric Experimental Design
In a final set of simulations, the impact of a non-parametric
experimental design on jICA performance was examined. In
this case, ERP-fMRI signal amplitudes were linearly coupled but
varied randomly across independent representations of the data
and between sources.

Similar to the results for the parametric experimental design,
source detection with linearly covarying fMRI and ERP signals
increased with SNR and number of independent representations
of the data. Source detection values for fMRI ranged 0.4–1
(Supplementary Figure 1, right) for the three sources. However,
for the non-parametric experimental design, the recovery of
fMRI activity into a single joint component was dependent on
SNR and the number of representations. Extraction into a single
component was less likely at low SNRs and for small numbers of
representations, (maxn(s

fMRI)= [0.4, 0.6]), and increased quickly
along both dimensions (maxn(s

fMRI)= [0.8, 1]).
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FIGURE 6 | JICA source segregation with a non-linear (exponential) relationship between fMRI and ERP activity in a parametric experimental design. JICA source

detection values for ERP and fMRI activity (lower and upper triangles, respectively) corresponding to the motor (linear relationship—top panels) and temporoparietal

(non-linear relationship—lower panels) sources, at (A) high (ERP = 10.9; fMRI = 16.6 dB) and (B) low (ERP = −8.6; fMRI = −2 dB) PSNR. The inset illustrates the

temporal profile of the biphasic source when it is split between a primary ERP component and a linked residual in the fMRI component. Other labeling conventions are

the same as in Figure 5.

Similar to the parametric experimental design, jICA source
detection for ERPs ranged 0.7–0.9 for the temporoparietal and
motor sources, and 0.1–0.3 for the prefrontal (uncoupled) source
(Supplementary Figure 1, left). Recovery of the temporoparietal
(biphasic) ERP activity into a single joint component increased
with SNR and number of representations of the ERP/fMRI data.
Source detection of the motor (uniphasic) ERP activity decreased
with the number of representations, indicating a splitting of the
ERP activity across multiple components.

Figure 7 shows the sources recovered across all jICA
components. At high SNR (Figure 7A), the ERP and fMRI
activity for each source was recovered into the same joint
component for fewer than six independent representations of
the data (e.g., experimental conditions). For larger numbers
of representations, fMRI and ERP activity was recovered into
separate components, with no overlap. At low SNR (Figure 7B),
temporoparietal ERP and fMRI activity was recovered into a
single component for fewer than 15 representations. As the
number of representations increased, primary fMRI activity was
recovered into a separate component, with residual fMRI activity
linked to the ERP response for up to 80 representations of the
ERP/fMRI data. Similar trends were observed at low SNR for the
motor source.

Recovering the Relationship between ERP
and fMRI Activity Using jICA
Figure 8 shows the linear (left panel) and non-linear (right panel)
relationships between ERP and fMRI activity recovered from

the weighted jICA mixing coefficients of the temporoparietal
(biphasic) source with 15 representations of the ERP/fMRI data.
In both cases, the ERP and fMRI activity was split across
two or more components, where one component contained
primary activity from one modality (e.g., ERP) and residual
activity from the other modality (e.g., fMRI). Both the linear
and non-linear relationships between ERP and fMRI signals
were accurately recovered. The result suggests that the jICA
mixing profiles, weighted by their component activity, can be
used to link multi-modal activity correlated along overlapping
dimensions, e.g., in space and time for ERP, and in space
for fMRI.

DISCUSSION

We used computer simulations to examine the performance of
jICA as a function of imaging SNR, number of independent
representations of the ERP/fMRI data (e.g., trials, trial averages,
etc.), the ERP temporal profile (uniphasic, biphasic), and
the relationship between the ERP and fMRI signals (linear,
non-linear, uncoupled), for parametric and non-parametric
experimental designs. JICA performance was evaluated based on:
(1) The ability to retrieve the spatial and temporal attributes of
each neural source in a single joint ERP/fMRI component (or
to link separate ERP and fMRI components reflecting the same
neural source); and (2) The ability to retrieve activity associated
with spatiotemporally independent neural sources into separate
components. The simulations demonstrate that the recovery of
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FIGURE 7 | JICA source segregation with a linear relationship between fMRI and ERP sources in a non-parametric experimental design. JICA source detection values

for ERP and fMRI activity (lower and upper triangles, respectively) corresponding to the motor (top panels) and temporoparietal (lower panels) sources, at (A) high

(ERP = 10.9; fMRI = 16.6 dB) and (B) low (ERP = −8.6; fMRI = −2 dB) PNSR. Other labeling conventions are the same as in Figure 5.

FIGURE 8 | Relationship between fMRI and ERP activity of the temporoparietal source extracted using the weighted sum of jICA mixing coefficients, when the

relationship was simulated as linear (left) and non-linear (exponential—right). The relationship is shown following jICA of a parametric experimental paradigm with 15

representations of the ERP/fMRI data (PNSR; ERP = −3 dB, fMRI = 5.7 dB). The data points represent the fMRI and ERP relationship for all components containing

significant activity associated with the source (p < 0.05). The original simulated coupling relationship is denoted by the solid line.

ERP and fMRI activity from a common neural source into a single
joint component depends on SNR, number of representations of
the neuroimaging data, and the type of experimental design. The
results provide quantitative estimates of jICA’s performance in
recovering neuroimaging activity across these dimensions, that
can be used to guide ERP/fMRI experimental design and data
fusion analyses.

When neural sources are correlated across representations of
the ERP/fMRI data, as in a parametric experimental design, the
simulations showed that fMRI activity was consistently retrieved
into a single jICA component, reflecting a functionally defined

brain network. Whether ERP activity was retrieved into the same
(single) component as the fMRI activity depended on the source
temporal profile: for the motor source (with a uniphasic ERP
profile) it was, but for the temporoparietal source (with a biphasic
ERP temporal profile) activity was recovered in a separate
component that contained residual fMRI activity from the same
source. This finding is consistent with prior experimental results
(Mangalathu-Arumana et al., 2012), and favors the interpretation
that jICA applied within-subject recovers functional networks
irrespective of differences in the temporal patterns of activity
within the brain areas that define the network. Put simply,
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each combination of linked jICA components together defines
the spatiotemporal profile of a functionally independent brain
network. When neural sources vary independently across
representations, as in a non-parametric experimental design,
the recovery of fMRI activity into a separate component for
each source increases with imaging SNR and the number
of representations of the ERP/fMRI data. This outcome is
expected for jICA, and ICA approaches more generally,
since in this scenario the sources reflect distinct functional
networks whose spatial (and temporal) patterns of activity are
uncorrelated.

The finding, observed in both the parametric and non-
parametric experimental designs, that ERP and fMRI activity
were recovered into different jICA components as SNR and
the number of neuroimaging representations increased is
consistent with simulations examining the effect of information
diversity and order selection on the outcome of data-driven
fusion analyses (Adali et al., 2015b). In neuroimage fusion
analyses, over-parsing the data due to improper order selection
can manifest as decoupling between neuroimaging measures
originating from a common neural source (e.g., Figure 7 for
large numbers of representations). This effect is also impacted
by SNR, dependencies between representations and the relative
diversity of the multimodal signals themselves. ERP, compared to
fMRI, activity is generally more variable across representations
of the data (in both temporal and spatial dimensions) and
therefore contributes more prominently to the separation of
independent sources with jICA. When the model order is
incorrect, differences in the spatiotemporal patterns of ERP
and fMRI activity increasingly dominate the source separation
as SNR and the number of representations of the data
increase.

The simulations show that JICA performance is more
robust to incorrect estimates of model order at low SNR and
for dependencies between representations of the data (i.e.,
task levels in a parametric experimental designs). In these
conditions, the residual ERP activity is maintained within
the fMRI component associated with the same neural source.
These residual interactions between components can be used
both to recover common neural sources when model order is
incorrect and, when combined with the jICA mixing coefficients,
to recover non-linear relationships between ERP and fMRI
activity.

A limitation of jICA for multimodal neuroimage fusion
lies in the presumption of a common mixing profile between
neuroimaging measures. For the within subject ERP/fMRI fusion
analysis presented here, this constraint implies that the fMRI
and ERP activity associated with a source covaries across
independent representations of the data (i.e., experimental
conditions). However, under certain circumstances, differences
in the origin (neural vs. hemodynamic) and spatiotemporal
resolution of the ERP and fMRI signals can lead to non-linear
and uncoupling relationships. In such cases, jICA can recover
the underlying neural sources and can estimate the non-linear
relationship using the weighted sum of jICA mixing coefficients
across linked components. In spite of this, it will be important
for future studies to compare within subject jICA with other

data-driven approaches, including canonical correlation analysis
(CCA), parallel ICA, and independent vector analysis (IVA),
to identify the conditions in which each is most appropriate
for multimodal analysis of neuroimaging data within subject
(Correa et al., 2008, 2010; Calhoun and Adali, 2009; Adali et al.,
2015b). For example, by relaxing the constraint of a common
mixing profile, these approaches can directly estimate non-linear
and uncoupling relationships between imaging modalities and
may be more sensitive to variations across brain networks.
In contrast, for ERP/fMRI analysis within subject, where the
number of independent representations of the data is small and
the association between imaging modalities is mostly linear, jICA
may provide a more reliable estimate of the underlying brain
networks (Adali et al., 2015b).

In sum, the simulations presented here provide a framework
for understanding the impact of experimental design on jICA
of multimodal neuroimaging data. When jICA is applied
within-subject, the separation of independent brain sources
is maximized in a non-parametric experimental design, but
is more susceptible to a loss of correspondence between
ERP and fMRI signals at high SNR when model order is
over-estimated. The best performance, maximizing both cross-
modal data fusion and the recovery of neural sources into
components that define functional brain networks, occurs for
a moderate number of independent representations of the
ERP/fMRI data (∼10–30), as in a mixed block/event related
experimental design. Importantly, the type of relationship
between ERP and fMRI activity, whether linear, non-linear
or uncoupled, does not in itself impact jICA performance.
Data-driven approaches are particularly advantageous when the
relationship between ERP and fMRI activity is unknown, or
when it is suspected to be non-linear or uncoupled due to
an underlying pathology. In jICA, the type of relationship
between ERP and fMRI activity is accurately represented in the
common profiles (i.e., mixing coefficients).When applied within-
subject, jICA provides an unbiased approach to characterize
the relationship between ERP and fMRI activity across brain
regions.
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Supplementary Figure 1 | Maximum source detection values for within-subject

jICA in a non-parametric experimental paradigm. JICA source separation of the

fMRI and ERP activity, computed as the maximum fMRI and ERP source

detection values across jICA components, [maxn(s
fMRI ) and maxn(s

ERP )

respectively], is shown for the three sources as a function of the peak SNR

and number of independent representations of the ERP/fMRI data. The motor

and temporoparietal sources were simulated with linear coupling between the

ERP and fMRI activity. The prefrontal source, consisting of an fMRI response

only, was uncoupled. Other labeling conventions are the same as in

Figure 3.
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