
ORIGINAL RESEARCH
published: 09 February 2018

doi: 10.3389/fnins.2018.00023

Frontiers in Neuroscience | www.frontiersin.org 1 February 2018 | Volume 12 | Article 23

Edited by:

Jeffrey L. Krichmar,

University of California, Irvine,

United States

Reviewed by:

Thomas Nowotny,

University of Sussex, United Kingdom

Garrick Orchard,

National University of Singapore,

Singapore

*Correspondence:

Jithendar Anumula

anumula@ini.uzh.ch

†
Present Address:

Daniel Neil,

BenevolentAI, New York, NY,

United States

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 07 September 2017

Accepted: 11 January 2018

Published: 09 February 2018

Citation:

Anumula J, Neil D, Delbruck T and

Liu S-C (2018) Feature

Representations for Neuromorphic

Audio Spike Streams.

Front. Neurosci. 12:23.

doi: 10.3389/fnins.2018.00023

Feature Representations for
Neuromorphic Audio Spike Streams
Jithendar Anumula*, Daniel Neil †, Tobi Delbruck and Shih-Chii Liu

Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland

Event-driven neuromorphic spiking sensors such as the silicon retina and the silicon

cochlea encode the external sensory stimuli as asynchronous streams of spikes across

different channels or pixels. Combining state-of-art deep neural networks with the

asynchronous outputs of these sensors has produced encouraging results on some

datasets but remains challenging. While the lack of effective spiking networks to process

the spike streams is one reason, the other reason is that the pre-processing methods

required to convert the spike streams to frame-based features needed for the deep

networks still require further investigation. This work investigates the effectiveness of

synchronous and asynchronous frame-based features generated using spike count

and constant event binning in combination with the use of a recurrent neural network

for solving a classification task using N-TIDIGITS18 dataset. This spike-based dataset

consists of recordings from the Dynamic Audio Sensor, a spiking silicon cochlea sensor, in

response to the TIDIGITS audio dataset. We also propose a new pre-processing method

which applies an exponential kernel on the output cochlea spikes so that the interspike

timing information is better preserved. The results from the N-TIDIGITS18 dataset show

that the exponential features perform better than the spike count features, with over 91%

accuracy on the digit classification task. This accuracy corresponds to an improvement

of at least 2.5% over the use of spike count features, establishing a new state of the art

for this dataset.

Keywords: dynamic audio sensor, spike feature generation, exponential kernels, recurrent neural network, audio

word classification

1. INTRODUCTION

The event processing methods for the asynchronous spikes of event-based sensors such as the
Dynamic Vision Sensor (DVS) (Lichtsteiner et al., 2008; Berner et al., 2013; Posch et al., 2014;
Yang et al., 2015) and the Dynamic Audio Sensor (DAS) (Liu et al., 2014; Yang et al., 2016) fall
roughly into two categories: either by the use of neural network methods or machine learning
algorithms. These methods have been primarily developed for event-based vision sensors and with
the availability of DVS datasets (Orchard et al., 2015; Serrano-Gotarredona and Linares-Barranco,
2015; Barranco et al., 2016), performances of these methods can be compared.

In recent years, the field of deep learning has seen major developments leading to networks that
achieve state-of-art performance on complex tasks such as speech recognition and visual object
recognition (Schmidhuber, 2014; LeCun et al., 2015). With event-based sensors finding increasing
relevance in event-driven artificial sensory or cognitive systems, there has been a new effort in
interfacing these sensors with these powerful machine learning networks. However, deep learning
frameworks typically use frame-based data. To interface the output of the event-based sensors to the

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00023
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00023&domain=pdf&date_stamp=2018-02-09
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:anumula@ini.uzh.ch
https://doi.org/10.3389/fnins.2018.00023
https://www.frontiersin.org/articles/10.3389/fnins.2018.00023/full
http://loop.frontiersin.org/people/474361/overview
http://loop.frontiersin.org/people/33599/overview
http://loop.frontiersin.org/people/2614/overview
http://loop.frontiersin.org/people/14463/overview

Anumula et al. Feature Representations for Audio Spikes

deep network, there are two alternative methods. The first
method is to present the spikes to spiking deep networks as
has been reported (Farabet et al., 2012; Pérez-Carrasco et al.,
2013; Zhao et al., 2015; Esser et al., 2016; Amir et al., 2017).
By using conversion methods that convert pre-trained standard
deep networks into equivalent-accurate spiking networks (Diehl
et al., 2015; Rueckauer et al., 2017) or by using the training
methods from deep learning on networks that capture the
underlying parameters of the spiking neuron (O’Connor et al.,
2013; Stromatias et al., 2015), we are starting to see spiking
deep networks that can be competitive with the standard deep
networks.

Another method is to create either synchronous or
asynchronous feature frames from the spikes before presentation
to the time-stepped deep networks. This method has seen success
in the field of neuromorphic vision primarily, as pre-processing
methods produce frames from event-driven sensor data to
use as inputs to deep networks for classification tasks (Moeys
et al., 2016; Neil and Liu, 2016; Lungu et al., 2017). Although
these pre-processing methods are outperformed on standard
classification tasks by the methods using the traditional frame
based sensors, they can help reduce computation by using the
data driven nature of the sensors and processing the networks
only when the sensor produces events.

This work aims to methodically examine existing and novel
spike pre-processing methods for processing the output of
the DAS for use with deep networks and machine learning
algorithms, in particular for real-time applications. We consider
two existing feature extraction methods that generate feature
frames using spike counts within a fixed time bin and constant
spike count (event) bins respectively. We also propose a
new pre-processing method that generates feature frames by
applying an exponential kernel to each event. We compare
the performances of the different pre-processing methods by
combining them with deep learning recurrent neural networks
which include gated units (Chung et al., 2014; Neil et al.,
2016) and testing the networks on two audio classification tasks
(isolated recordings and connected streams) using a recorded
audio spike dataset called N-TIDIGITS18. This dataset consists
of spike recordings from a Dynamic Audio Sensor in response to
the TIDIGITS (Leonard and Doddington, 1993) audio dataset.

2. METHODS

This section presents a description of the hardware cochlea
sensors, details the feature generation methods, including the
proposed exponential feature generation method and briefly
describes the deep network architectures used in this study.

2.1. Dynamic Audio Sensor
The Dynamic Audio Sensor is a binaural silicon cochlea
system, with each ear connected to a set of 64 bandpass
filters whose center frequencies are logarithmically distributed
from approximately 50 Hz to 20 kHz. The events are then
asynchronously generated from each of the filters. A silicon
cochlea sensor using half wave rectification for the generation
of events is the CochleaAMS1b (Chan et al., 2007) and the

CochleaAMS1c (Liu et al., 2014), while a cochlea sensor using
asynchronous delta modulation for the generation of events
is the CochLP (Yang et al., 2016). The CochleaAMS1c sensor
is an improved design of the CochleaAMS1b. Each channel
of the CochleaAMS1b and CochleaAMS1c has four neurons
and each neuron implements a different threshold level for
spike generation. In many of the experiments, only the events
from a single neuron of one ear are used. An example output
for the CochleaAMS1c is shown in Figure 1. The methods
evaluated in this work were carried out on recordings from the
CochleaAMS1b and CochleaAMS1c, while they will be evaluated
on CochLP in the future.

2.2. Feature Extraction Methods
The event data from the cochlea sensors can be converted to
frame-based features through multiple methods. One commonly
used feature type is the Spike Count (SC) feature (Zai et al.,
2015; Anumula et al., 2017), that is generated by the creation of
a histogram across the frequency channels of the events within
a time window. In the case of the DAS, the feature vector for
each time frame is, at maximum, a 64-length vector where each
element consists of the number of events in that frequency
channel. The two main variants of SC features are time-binned
and event-binned features. Their formulation is described below.

2.2.1. Raw Spikes
An audio event stream can be mathematically represented as

ei =
[
ti, fi

]
, i ∈ N (1)

where ei is the ith event from the frequency channel fi in the event
stream at time ti. The fi can range between 1 and Nc where Nc is
the number of frequency channels in the sensor. Also note that
the events are time ordered, i.e., for i < j, ti ≤ tj. These raw
spike information can be processed directly as a sequence by the

FIGURE 1 | CochleaAMS1c spike output example. The y-axis indicates the 64

frequency channels of the sensor with lower frequency channels at the top.

The spikes are in response to the spoken digit sequence “5-8-9-9-2” from the

speaker “IM” in the TIDIGITS dataset. The five digits in the sequence can be

clearly seen to be apart with significant gaps between them in the encoded

sample above. This example also demonstrates the data driven nature of the

sensor where it outputs events only when there’s a stimulus in the environment.

Frontiers in Neuroscience | www.frontiersin.org 2 February 2018 | Volume 12 | Article 23

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Anumula et al. Feature Representations for Audio Spikes

recurrent networks. Such a method is not usually feasible though
because of the inability of the standard recurrent networks to
process longer sequences, but they can be efficiently processed
through the Phased LSTM, a recently introduced gated recurrent
network architecture (Neil et al., 2016).

2.2.2. Time-Binned Spike Count Features
For the generation of time binned Spike Count features, the
frame duration for generating the feature is of fixed time
length. Time-binned SC features have been used for the speaker
identification task using spike recordings generated from the
TIMIT dataset (Liu et al., 2010; Li et al., 2012), the YOHO
dataset (Chakrabartty and Liu, 2010), and real-world DAS
recordings (Anumula et al., 2017).

The time-binned SC features Ftb for a time window length of
Tl are defined as follows:

Ftbj
(
f
)
= card({ei | Tl · (j− 1) ≤ ti < Tl · j, fi = f }) (2)

where Ftbj is the jth frame of the features, card() is the cardinality

of a set, · is the standard multiplication operator, and f is the
position of the frequency channel.

Figure 2 shows how the time-binned SC features are
generated from the spikes.

2.2.3. Event-Binned Spike Count Features
Event-binned SC features consist of frames in which there are a
fixed number of events. Unlike time-binned spike count features,
event binning is a data driven approach and eliminates the
need for input normalization. These features have been used for
both the DVS and the DAS. In the robot predator-prey scenario
in Moeys et al. (2016), the DVS retina data is integrated into 36×

FIGURE 2 | Generation of time-binned Spike Count features. Three channels

are shown in this example. The fixed length time windows used for binning the

events are non overlapping and of unit time length. In frame 2 , there is 1 event

in channel 1, 1 event in channel 2 and 3 events in channel 3, and hence the

corresponding feature is (1, 1, 3).

36 frames as 2D histograms obtained by integrating 5,000 events
in 200 possible gray level values. Since the DVS frames are sparse,
active DVS frame pixels accumulate about 50 events. Constant-
event frames from the spiking TIMIT dataset have also been used
together with a Support Vector Machine Classifier in a speaker
identification task (Li et al., 2012).

The event-binned spike count features Feb are defined as
follows. The jth frame is given by

Febj
(
f
)
= card({ei | E · (j− 1) ≤ i < E · j, fi = f }) (3)

where card() is the cardinality of a set, · is the standard
multiplication operation, f is the position of the frequency
channel and E is the number of events binned into a single frame.

Figure 3 shows how the event-binned spike count features are
generated from the spikes.

2.2.4. Comparison of Time Binning and Event Binning
Although both methods capture the distribution of the events
across the frequency channels, there is a difference between the
features generated from these methods. The main difference
is that the time window used for time binning is of constant
length, while the time window of the event-binned features are
of varying lengths. The lengths depend on the input event rate
over time. This can be seen in the examples of time-binned and
event-binned SC features for a single word as shown in Figure 4

and for a sentence as shown in Figure 5. In Figure 5, it can
be seen that the information about silences in the sentence is
temporally smeared in the event-binned features. This property
is not desirable as it could be a disadvantage when trying to
extract information that depend on the silence periods within the

FIGURE 3 | Generation of event-binned Spike Count features. Three channels

are shown in this example. Every time window frame used for binning the

events has 6 events and there is no overlap of events between consecutive

time window frames. In the second time frame, the 6 events are distributed as

1, 1, and 4 across channels 1, 2, and 3, respectively, hence the corresponding

feature is (1, 1, 4).

Frontiers in Neuroscience | www.frontiersin.org 3 February 2018 | Volume 12 | Article 23

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Anumula et al. Feature Representations for Audio Spikes

FIGURE 4 | Spike Count features for a digit sample “2”. The time window length for time binning in (A) is 5 ms and the number of events in a single frame for event

binning in (B) is 25. There does not seem to be a clear advantage of choosing event binning over time binning when it comes to individual digits. Note that event

binning for this example produces fewer frames compared to the time binning.

FIGURE 5 | Spike Count features for a digit sequence “5-8-9-9-2”. The time window length for time binning in (A) is 5 ms and the number of events in a single frame

for event binning in (B) is 25. The event binning method does not completely encode the timing information in the sample. Also, the silence periods between the digits

is absent in the event-binned features.

sentences, unless silence segmentation is done before generating
the features.

2.2.5. Data-Driven Time-Binned Spike Count Features
Further, a data-driven time-binning method is introduced and
employed in this work. In contrast to the previous time-binned
SC features described in section 2.2.2, a feature frame is not
processed if no spikes occurred within the corresponding time
bin. In addition, this method specifically uses a brief time-bin
length. This allows fewer inputs compared to time-binned spike
counts (as a fixed-size vector is either presented or skipped), and
far fewer inputs to be presented to the network compared to
sequentially presenting raw events while maintaining much of
the time resolution. Here, using a short time-bin length allows a
high degree of spike time accuracy to bemaintained, as individual
spikes have correct timestamps discretized to the bin length.
These data-driven time-binned SC features Fd can be defined as

Fdj = Ftbi , where i is such thatmax
(
Ftbi

)
> 0 and

card
(
{k | k ≤ i,max

(
Ftbk

)
> 0}

)
= j (4)

2.2.6. Exponential Features
Finally, we introduce a real-valued feature representation that is
more amenable to training deep neural networks. This feature is
created by convolving each spike with an exponential kernel, that
captures the timing information carried by the spikes and has
been used in various models, for e.g., Abdollahi and Liu (2011)
and Lagorce et al. (2015, 2016). Exponentials are frequently used
in neuronal models such as the exponential integrate-and-fire
model (Brette and Gerstner, 2005). Although other kernels such
as the Gaussian kernels used in the analysis of neuronal firing
patterns (Szűcs, 1998) can also be used, we restrict our study here
to exponential kernels because they can be applied easier to create
real-time features. The resulting output after the convolution
is sometimes treated as a real-valued time surface as described
in Lagorce et al. (2016). These exponential features have also been
used in classification tasks such as image classification (Tapson
et al., 2013; Cohen et al., 2016). We first describe the creation of
the exponential features and then the binning methods used on
these features.
For an audio event stream defined as in Equation (1), the
exponential feature Fei for an event ei is constructed by first

Frontiers in Neuroscience | www.frontiersin.org 4 February 2018 | Volume 12 | Article 23

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Anumula et al. Feature Representations for Audio Spikes

defining a time context Ti for the event. The time context is
an Nc dimensional vector where Nc is the number of frequency
channels in the audio sensor and is defined as

Ti

(
f
)
= max

j≤i

{
tj | fj = f

}
(5)

where f is the position of a frequency channel. The exponential
feature for an event is then defined as

Fei
(
f
)
= e−(ti−Ti(f))/τ (6)

An illustration describing the generation of the exponential
features for the events is shown in Figure 6.
Once these exponential features are created, the events are binned
into time window frames either through time binning or event
binning like in the SC features, and the average of the exponential
features for the events in the time window frame is used as the
exponential feature for the frame. For the rest of the paper, we use
the term “exponential features" to mean exponential features for
a frame. Examples of time binning and event binning exponential

FIGURE 6 | Generation of exponential features for events. Three channels are

shown in this example. The time constant parameter t used for generating the

features is 1 time unit. The events streams are shown in (A), the zoomed-in

picture of the events in the second frame are shown in (B), and the

exponential features for this frame is shown in (C). Consider the event at time

t = 2.2, labeled S1. In channel 1, the closest event in time to the current event

occurred 0.3 time units before, and thus the corresponding feature value for

the channel 1 in the exponential feature vector for event S1 is e−(0.3/1).

Similarly for channel 3, the closest event in time to the current event occurred

0.7 time units before, and thus the corresponding entry for channel 3 in the

exponential feature for S1 is e−(0.7/1). For channel 2, since the current event is

at channel 2, the exponential feature value at channel 2 is e−(0/1)=1.

features for a single word are shown in Figure 7 and for a
sentence are shown in Figure 8.

For a real-time implementation, the exponential features are
computed recursively as follows.

Fei
(
f
)
=

{
e−(ti−ti−1)/τFei−1

(
f
)
, if f 6= fi

1, if f = fi
(7)

With Fe0 initialized to a zero vector, it can easily be seen
that the above implementation corresponds to the definition in
Equation (6).

2.3. Recurrent Neural Networks
Convolutional Neural Networks are typically used in vision
classification tasks and have been successfully used together
with the Dynamic Vision Sensor (Moeys et al., 2016). These
networks have a feedforward architecture where the neurons in
one layer only drive the neurons in the upper layers. However,
recurrent neural networks (RNNs) in which neurons in one
layer recurrently receive input from neurons in the same layer,
are more generally used when the inputs consist of temporal
sequences.
Given a sequence x = (x1, x2, . . . , xT), the RNN layer updates its
hidden state ht with t ∈ {0, 1, 2, . . . ,T}, with h0 being the initial
state and ht = φ

(
ht−1, xt

)
, where φ is a non-linear function.

Generally, the update function for the hidden state is of the form
ht = ϕ

(
Uht−1 +Wxt

)
, where U andW are connection matrices

of appropriate sizes and ϕ is an activation function such as a
logistic sigmoid or the hyperbolic tangent (Chung et al., 2014).
Training RNNs using gradient descent to learn long term
time dependencies in the input is difficult because of the
vanishing/exploding gradient problem (Bengio et al., 1994). In
order to counter this problem, the Long-Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) neuron model was
proposed. This model has an activation function that is managed
by different gates acting like a memory control for the neuron.
The subsequently proposed Gated Recurrent Unit (GRU) (Cho
et al., 2014) model performs well on similar tasks and has the
advantage of using fewer parameters. In our experiments, we use
both GRU and LSTM RNNs and the following sections introduce
these models.

2.3.1. Long-Short Term Memory
The form of LSTM used in this work derives from Graves (2013):

it = σi(Wxixt +Whiht−1 + wci ⊙ ct−1 + bi) (8)

ft = σf (Wxf xt +Whf ht−1 + wcf ⊙ ct−1 + bf) (9)

ct = ft ⊙ ct−1 + it ⊙ σc(Wxcxt +Whcht−1 + bc) (10)

ot = σo(Wxoxt +Whoht−1 + wco ⊙ ct + bo) (11)

ht = ot ⊙ σh(ct) (12)

The introduction of gating functions in Hochreiter and
Schmidhuber (1997) differed from traditional RNNs, and allowed
substantially easier training for recurrent networks. The gate
activation vectors, it , ft , ot , represent the input, forget, and output
gates respectively. Each neuron stores an internal cell activation

Frontiers in Neuroscience | www.frontiersin.org 5 February 2018 | Volume 12 | Article 23

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Anumula et al. Feature Representations for Audio Spikes

FIGURE 7 | Exponential feature examples for the same word as in Figure 4. The time window length for time binning in (A) is 5 ms and the number of events in a

single frame for event binning in (B) is 25. One main difference between the spike count features and the exponential features is that the exponential feature values are

in the range between 0 and 1, while the spike count feature values depend on the volume of the spikes in the time window.

FIGURE 8 | Exponential feature examples for the same sequence as in Figure 5. The window length for time binning in (A) is 5 ms and the number of events in a

single frame for event binning in (B) is 25.

vector ct , while the input and hidden state vectors are xt and ht ,
respectively. A sigmoidal nonlinearity, y = 1/(1+e−x), is applied
to constrain the gates to lie between 0 and 1, and applied to the
gates with σi, σf , and σo for the input, forget, and output gates.
For these gates, each gate has a weight parameter for the input
x and the hidden state h, resulting Wxi and Whi, Wxf and Whf ,
Wxo andWho for the input, forget, and hidden gates, respectively.
Additionally, each gate has a bias bi, bf , and bo for the input,
forget, and output gates. The⊙ notation signifies an elementwise
(Hadamard) product, implying that each cell state ct is a linear
interpolation between the previous cell state (controlled by ft)
and the new cell state (controlled by it). Finally, the cell state is
transformed by the output gate ot to produce a new hidden state
ht . Optionally, peephole connections, Gers and Schmidhuber
(2000)wci,wcf , andwco, are commonly employed for the cell state
ct to further influence the input, forget, and output gates.

2.3.2. Gated Recurrent Units
Another commonly used gated architecture is the GRU
architecture. The primary difference compared to LSTM is the
removal of one gate, which results in faster training and execution
time while achieving approximately the same accuracy in most

tasks. The form employed in this work is the most common
implementation from Chung et al. (2014):

rt = σr(Wxrxt +Whrht−1 + br) (13)

ut = σu(Wxuxt +Whuht−1 + bu) (14)

ct = σc(Wxcxt + rt ⊙ (Whcht−1)+ bc) (15)

ht = (1− ut)⊙ ht−1 + ut ⊙ ct (16)

Similar to the above, there are the gate states rt and ut , referred
to as the reset and update gates, as well as a combination gate
and state ct called the candidate state. As above, each consists
of the application of a matrix multiplication of a weight vector
(Wxr , Wxu, Wxc) to the input (xt), as well as another matrix
multiplication of a weight vector (Whr ,Whu,Wxc) to the previous
hidden state (ht−1), for the reset, update, and candidate gates
respectively. For the two pure gates, these two terms are summed
with a bias (br and bu) and the logistic sigmoid nonlinearity
y = 1/(1+ e−x) is applied to constrain each gate to lie between
0 and 1. For the candidate state, the reset gate is applied
elementwise to the previous hidden state, and the bias bc is added
before the candidate state is transformed nonlinearly using the
same logistic sigmoid. Finally, the new hidden state ht is the result

Frontiers in Neuroscience | www.frontiersin.org 6 February 2018 | Volume 12 | Article 23

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Anumula et al. Feature Representations for Audio Spikes

of a linear mixture of the update gate elementwise applied to the
candidate state, and the previous hidden state controlled by the
complement of the update gate.

2.3.3. Phased LSTM
The Phased LSTM model, which was introduced in Neil et al.
(2016), equips the LSTM model with the ability to process
irregularly-sampled continuous-time sequences through the
application of a novel time gate kt . This time gate, similar to
other gates, produces a continuous value between 0 and 1 but is
instead controlled by an external timing input. Each neuron has
independent, learnable timing parameters that allow the neuron’s
time gate to execute a rhythmic wake-sleep cycle over time.When
the time gate is open (close to 1), the neuron performs as a normal
LSTM neuron does; when the time gate closes (close to 0), the
neuron performs no updates until its next wake period. Other
neurons, however, can still inspect a sleeping neuron’s state.
When continuous time sequences are applied, the timestamp of
the event controls which subset of neurons are updated, and
permits calculations based on the rhythmic wake-sleep cycle of
the neurons in response timestamp itself.

Rigorously, the opening and closing of the gate is a periodic
oscillation controlled by three parameters: a period τ that
controls the duration, a shift s that applies a phase shift offset, and
an on ratio ron that determines the duration of the open period.
The time (khronos) gate kt can be calculated as:

φi,t =
(t − si) mod τi

τi
, ki,t =





2φi,t

ron,i
, if φi,t <

1

2
ron,i

2−
2φi,t

ron,i
, if

1

2
ron,i < φi,t < ron,i

αφi,t , otherwise

(17)

The neuron index i indicates which parameters are neuron-
specific (φi,t , ki,t , si, τi, ron,i) and which are global (t, α). Here, φi,t

is introduced as an auxiliary variable to represent the percentage
of the phase within the rhythmic cycle, ranging from 0 to 100%.
There are three piecewise phases of the operation of the gate
functionally represented in Equation (17): an open and rising
phase (during the first half of ron), an open and falling phase
(during the second half of ron) and an off phase. The linear
slopes of the rising and falling phase have a constant gradient to
preserve strong gradient information, in the same manner that
allows ReLUs to train so well (LeCun et al., 2015). Further, note
a leak is applied during the off phase with analogy to the leaky
rectified linear unit (He et al., 2015) to permit the flow of gradient
information even when the neuron is off. However, after training,
the leak can be set to zero (i.e., α = 0) and thus truly off, so
no updates need be performed when the neuron is in the closed
or sleep phase of the cycle. This continuous-time equation is
defined at all time points t but requires no computation between
sampled data points, allowing irregularly-spaced points in time to
be effectively used within this framework as the neurons have an
explicit model of time. The LSTM equations from above can then
be rewritten to permit arbitrary time points j rather than timestep

indices, using a proposed cell state c̃j and proposed hidden state

h̃j controlled by the time gate kj:

ij = σi(Wxixj +Whihj−1 + wci ⊙ cj−1 + bi) (18)

fj = σf (Wxf xj +Whf hj−1 + wcf ⊙ cj−1 + bf) (19)

c̃j = fj ⊙ cj−1 + ij ⊙ σc(Wxcxj +Whchj−1 + bc),

cj = kj ⊙ c̃j + (1− kj)⊙ cj−1 (20)

oj = σo(Wxoxt +Who + wco ⊙ c̃j + bo) (21)

h̃j = oj ⊙ σh(c̃j),

hj = kj ⊙ h̃j + (1− kj)⊙ hj−1 (22)

The sparseness in time of computation (typically, with ron
set to 5%) allows this implementation to be far sparser
than traditional gated implementations in computation while
maintaining high performance. Furthermore, as timesteps are
no longer required and the neuron has an explicit model of
time, even raw spike events can be directly used with Phased
LSTM. For further information, refer to the formulation of
Phased LSTM in Neil et al. (2016) or one of its publicly-available
implementations1,2.

2.4. Datasets
This paper introduces the N-TIDIGITS18 dataset by playing the
audio files from the TIDIGITS dataset to the CochleaAMS1b
sensor. The dataset is publicly accessible at http://sensors.ini.uzh.
ch/databases.html. The dataset includes both single digits and
connected digit sequences, with a vocabulary consisting of 11
digits (“oh,” “zero” and the digits “1” to “9”). Each digit sequence
is of length 1–7 spoken digits. There is a total of 55 male and 56
female speakers in the training set with a total of 8,623 training
samples, while the testing set has a total of 56 male and 53 female
speakers with a total of 8,700 testing samples.

The entire dataset is used or a reduced version of the dataset
is used where only the single digit samples are used for training
and testing. In the single digits dataset, there are two samples
for each of the 11 single digits from every speaker, with a total
of 2,464 training samples and 2,486 testing samples. The N-
TIDIGITS18 dataset with all the samples was used to train a
sequence classification task while the digit samples were used to
train a digit recognition task. For most of our training, unless
specified, we only use events from one ear and one neuron.

2.5. Network Architectures and Training
Criterion
2.5.1. GRU/LSTM Architectures
Two network models were trained separately for the digit
recognition task and the sequence classification task. For the
digit recognition task, the network consists of 2 GRU layers
with 100 units each, followed by a fully connected layer of
100 units with a ReLU activation followed by a Softmax
classification layer. For the sequence classification task, each

1https://github.com/dannyneil/public_plstm
2https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/PhasedLSTMCell

Frontiers in Neuroscience | www.frontiersin.org 7 February 2018 | Volume 12 | Article 23

http://sensors.ini.uzh.ch/databases.html
http://sensors.ini.uzh.ch/databases.html
https://github.com/dannyneil/public_plstm
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/PhasedLSTMCell
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Anumula et al. Feature Representations for Audio Spikes

network consists of a fully connected layer of 100 units with SELU
activation (Klambauer et al., 2017) followed by 2 LSTM layers
of 100 units each followed by the final classification layer. The
recently introduced SELU activation helps with regularization
of the network by pushing the neuronal activations of the
corresponding layer to zero mean and unit variance without the
need for batch normalization. The SELU activation function was
used over other activation functions mainly because the overall
accuracy was significantly improved by using it.

The network for the digit recognition task was trained using
a categorical cross entropy objective, while the network for the
sequence classification task was trained using the Connectionist
Temporal Classification (CTC) objective (Graves et al., 2006).
For the CTC objective on sequence classification, the accuracy
metrics used were the label error rate and the phrase error rate.
For the label error rate, we first calculate the average edit distance
(Levenshtein, 1966) between the correct label sequences and
the corresponding predicted label sequences. The edit distance
between two sequences is the minimum number of insertions,
deletions and substitutions required to transform one into the
other. The label error is then given by the ratio of the calculated
average edit distance and the total number of labels in the correct
label sequences. This metric is not a strict proper fraction for its

value can go above 1. The phrase error rate is given by the ratio
of the correctly predicted label sequences and the total number of
label sequences.

All networks were trained on the Tensorflow framework
(Abadi et al., 2015) using Adam optimizer with a learning rate
of 0.001 over 200 epochs. All the presented accuracy numbers
are based on at least three experimental runs. The network and
simulation parameters are summarized in Table 1.

2.5.2. Phased LSTM Architecture
The single-event architecture was used on the raw input spikes.
Because of the volume of input spikes and the difficulty in
training extremely long sequences, only one neuron (out of four
possible neurons) from one ear was used, resulting in sequences
of approximately 4,000 spikes. Because a raw spike address and
the corresponding spike time was used, an embedding layer of
size 40 was used. As in Neil et al. (2016), a multi-resolution
embedding layer downsamples the address by 1, 2, 4, and 16,
and concatenates the 10-dimensional embedded feature from
each result together. This allows learning features across multiple
pitches (neuron addresses) as well as learning features particular
to each pitch. After the embedding layer, two layers of 250 Phased
LSTM neurons are included, with period τ ∼ exp(U(0, 3))

TABLE 1 | Summary of the different training parameters used in this study.

Network Model architecture Batch size No.of epochs

GRU RNN 2x 100 GRU - 100 Dense (ReLU) - 10 Softmax 128 200

LSTM RNN 100 Dense (SELU) - 2x 100 LSTM - 10 Dense 128 200

Phased LSTM 2x 250 Phased LSTM - 10 Dense 16 50

Tha Adam optimizer with a learning of 0.001 was used for all the networks.

TABLE 2 | Summary of investigated models on N-TIDIGITS18 dataset.

Feature type Sensor Task Classifier Accuracy (%)

MFCC Digit GRU RNN 97.90

Binned frames (fixed bins/sample)* AMS1b Digit SVM 95.08

Constant time bins** AMS1b Digit CNN 87.65

Constant time bins** AMS1b Digit GRU RNN 82.82

Single events (raw data) AMS1b Digit Phased LSTM 87.75

Data-driven time-binned features AMS1b Digit Phased LSTM 91.25a

Constant time bins AMS1b Digit GRU RNN 86.4

Exponential features AMS1b Digit GRU RNN 90.9

Constant time bins AMS1c Digit GRU RNN 88.6

Exponential features AMS1c Digit GRU RNN 91.1

Constant time bins AMS1b Sequence LSTM RNN 86.1b

Exponential features AMS1b Sequence LSTM RNN 87.3b

The MFCC features are extracted from the original TIDIGITS dataset.
aEvents from all neurons and both ears used in training.
bLabel accuracy on sequences.

*Abdollahi and Liu (2011).

**Neil and Liu (2016).

Frontiers in Neuroscience | www.frontiersin.org 8 February 2018 | Volume 12 | Article 23

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Anumula et al. Feature Representations for Audio Spikes

milliseconds (with x ∼ U(a, b) implying a random draw of x
from the uniform distribution between limits a and b), shifts
s ∼ U(0, 100) milliseconds, and the on ratio ron = 0.05 resulting
in 5% activity. The output of the second Phased LSTM layer is
fully connected via a dense layer to the ten output classes.

For the N-TIDIGITS18 dataset, only 40% of 0.5 ms time bins
(also timesteps) have data (with an average of 3.6 spikes per
time bin), running at a 2.5× increase in speed over calculating
every timestep. Furthermore, the number of bins are far fewer
in number than the number of input spikes as would be the
case with processing the raw input data. Compared to processing
every spike sequentially in the full dataset (all neurons, all ears),
there are now 30 times fewer timesteps, resulting in a dramatic
decrease in training time when training on data-driven bins.

All Phased LSTM networks were trained on the Lasagne
framework (Dieleman et al., 2015) using the Adam optimizer and
a learning rate of 0.001 over 50 epochs.

3. RESULTS

We present the network accuracy results of the different pre–
processing methods on the audio classification tasks based on the
N-TIDIGITS18 dataset when these features are presented to the
different recurrent models.

3.1. Comparison of Feature
Representations
The performance of the pre–processed features are tested
through two classification tasks. The first is a word recognition
task on the single digit samples in the dataset, and the second
is a sentence prediction task on the connected digit samples.
The classifiers used for different tasks and their performances
on the different feature types are shown in Table 2. The results
in the table show that the networks using the exponential
features consistently perform better than the spike count features
across both the tasks. The Phased LSTM networks which were
used to process either the raw event data or the data-driven
bins outperform the spike count features, and produce similar
accuracies as GRU RNNs with exponential features.

Although the Phased LSTM network takes a longer time to
train because the input sequences of single spikes are longer, one
advantage of this method over the other pre-processing methods
is that there are no hyper parameters that need fine tuning such
as the time window length parameter Tl used for binning or the
tau parameter τ used in the exponential features.

The performance of the method using the binned frames on a
Support Vector Machine (SVM) classifier is better than all the
other methods but this method relies on access to the whole
sample which is then converted into a fixed number of bins
per sample and unfortunately cannot be used on a real-time
recognition system.

3.2. Optimizing Parameters
As discussed in section 3.1, both spike count features and
exponential features have a few hyperparameters that need fine
tuning for optimal performance. The network hyperparameters
were optimized once using a small validation split on the training
data from the N-TIDIGITS18 dataset. The small validation
dataset was created by using 10% of the training samples while
the model was trained on the other 90% of the samples.

The variation of the error rates on the τ parameter and
the Tl parameter for the exponential features in the sequence
classification task are shown in Figures 9A,B, respectively. In
Figure 9A, we can see that the error rate is very high for τ less
than 2 ms, and then remains fairly steady for values of τ till 5
ms and then rises slowly as τ increases. The optimal value of τ is
related to themean inter-spike interval in the frequency channels.
While for low values of τ the features do not properly encode
the history of the events and thus do not perform well, while for
increasing τ the exponential feature values saturate toward 1 and
thus do not provide enough contrast among the features for the
classification tasks to decode properly.

In Figure 9B, we can see that the error rates increase with
larger Tl, because with a bigger Tl, the exponential features get
smeared because of averaging over more events. But it should be
considered that with increasing Tl, the sequences to be processed
become shorter which makes the recurrent network training
easier and efficient.

FIGURE 9 | The effect of τ and time window length parameters on the error rates in the sequence classification task in the case of exponential features. The window

length for time binning in (A) is 5 ms and the value of τ used in (B) is 5.5 ms. Although using the optimal values gives lower error rates, using a larger time window

length than the optimal value of 5 ms would help in having shorter sequences to process.

Frontiers in Neuroscience | www.frontiersin.org 9 February 2018 | Volume 12 | Article 23

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Anumula et al. Feature Representations for Audio Spikes

These plots suggest that the optimal τ is 5.5 ms and the
optimal Tl is 5 ms, which were also the values used in the
experiments for Table 2. Although the optimal value of Tl was
5 ms, using a parameter value of 40 ms would help save training
time and number of computes required to process the network
per unit time since there are fewer frames to process per unit
time. This advantage comes though at the expense of a reduced
accuracy of about 1.6% (88.1% for 5 ms and 86.5% for 40 ms) on
the validation set.

3.3. Comparison of Processing Times for
Feature Generation
To compare the processing times of conventional MFCC with
the SC and exponential filters, we used a Raspberry Pi 3 Model
B, with ARM Cortex A-53 processor. We used a feature frame
rate of 100Hz. We created random data for both the raw audio
and the event data. For raw audio we used a sampling rate of
16 kHz with uniformly sampled data between [−1, 1] at every
sampling point. Since the observed average spike rate was about
3,400Hz for the N-TIDIGITS18 dataset, for the computational
test with event data, we generated Poisson spike trains with a
total spike rate of 4,000Hz. Across 100,000 runs, the average
processing times per frame on the hardware were 5.79ms for the
MFCC features, 0.72ms for the SC features and 2.2 ms for the
exponential features. Thus the event-driven features are faster to
generate by a factor of 2.2X for exponential features and 8X for
SC features. This result is not surprising given the computational
simplicity of the cochlea features afforded by the sensor
preprocessing.

4. DISCUSSION

In this work, we performed a comparative study of the
performance accuracy of a gated recurrent neural network that
processes either the raw audio spikes or framed features extracted
by different spike processing methods. We demonstrate the
use of a recent LSTM model called the Phased LSTM which
operates on raw audio spikes. We compared the performance
accuracy of this model to that of the standard gated recurrent
neural networks, the LSTM and the GRU networks, that
processed framed features extracted by different spike processing
methods.

The results show that it is possible to achieve a good
performance through processing the raw events using the Phased
LSTM model. This model, designed for use on long sequences,
makes use of the inherent timing information present in the
spikes. Although the training time is long because the model has
to learn to process more timesteps, there are no meta-parameters
to tune in the feature generation.

Alternatively, pre-processing the spikes to produce framed
features is appealing because the input sequences to the recurrent
networks will be shorter than the sequence of raw events. For
both the single digit and digit sequence datasets, the network
classification accuracy is higher by approximately 2.5% when
using exponential features over spike count features. It should be

noted that the results are obtained on the N-TIDIGITS18 dataset,
a relatively small dataset. We will investigate in the future if the
higher accuracy from using exponential features extend to larger
datasets.

We hypothesize that the increased accuracy from exponential
features is due to two reasons. First, interspike intervals in the
spike streams carry information useful for the classification task
and therefore exponential features are more desirable. Second,
the encoded exponential feature values are real-valued and
range between 0 and 1 while the spike count feature values
are quantized in discrete quantities of 1. Having real-valued
input features might help during training of the recurrent
networks.

Even though the accuracy results from using the pre-processed
audio spike frames were lower than the results obtained from
using MFCC features, the focus of this work is to present
improved methods for processing the outputs of event driven
sensors in real-time applications. Our evaluation of the average
processing time per frame on a Raspberry Pi shows that
generation of the event-driven features is faster than that of
MFCCs by a factor of 2–8 depending on the cochlea features
used. We also aim towards an event-driven system where
processing would be activated only if there are sufficient spikes
from the sensor, e.g., the processing is inactivated during silent
periods.

The results presented here serve as a baseline for future studies
on algorithms that process spikes from spiking audio sensors. The
pre-processing methods and the LSTM/GRU networks used in
the work above are already implemented in real time (Anumula
et al., 2017) using the jAER framework (Delbruck, 2008). The
N-TIDIGITS18 dataset used in our experiments is publicly
accessible at http://sensors.ini.uzh.ch/databases.html.

AUTHOR CONTRIBUTIONS

JA performed the RNN experiments and contributed to the
writing, DN performed the Phased LSTM experiments and
contributed to the writing, TD contributed to discussions on
the feature extraction methods and assisted in the development
of the hardware infrastructure of the cochlea boards, and S-
CL contributed to the design of the experiments and the
writing.

FUNDING

This work was partially supported by the European Union’s
Horizon 2020 research and innovation program under grant
agreement No 644732.

ACKNOWLEDGMENTS

We thankmembers of the INI Sensors group, particularly, Xiaoya
Li for help with the development of the recording setup. We are
also thankful to the reviewers for their valuable comments toward
improving the manuscript.

Frontiers in Neuroscience | www.frontiersin.org 10 February 2018 | Volume 12 | Article 23

http://sensors.ini.uzh.ch/databases.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Anumula et al. Feature Representations for Audio Spikes

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).

TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Available

online at: http://www.tensorflow.org/

Abdollahi, M., and Liu, S. C. (2011). “Speaker-independent

isolated digit recognition using an aer silicon cochlea,” in 2011

IEEE Biomedical Circuits and Systems Conference (BioCAS)

(San Diego, CA), 269–272. doi: 10.1109/BioCAS.2011.61

07779

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C.,

et al. (2017). “A low power, fully event-based gesture recognition

system,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Honolulu, HI), 7243–7252. doi: 10.1109/CVPR.201

7.781

Anumula, J., Neil, D., Li, X., Delbruck, T., and Liu, S.-C. (2017). “Live

demonstration: event-driven real-time spoken digit recognition system,” in

Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS)

(Baltimore, MD). doi: 10.1109/ISCAS.2017.8050394

Barranco, F., Fermuller, C., Aloimonos, Y., and Delbruck, T. (2016). A dataset

for visual navigation with neuromorphic methods. Front. Neurosci. 10:49.

doi: 10.3389/fnins.2016.00049

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies

with gradient descent is difficult. Trans. Neur. Netw. 5, 157–166.

doi: 10.1109/72.279181

Berner, R., Brandli, C., Yang, M., Liu, S. C., and Delbruck, T. (2013). “A 240 ×

180 10mW 12µs latency sparse-output vision sensor for mobile applications,”

in 2013 Symposium on VLSI Circuits (Kyoto), C186–C187.

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model

as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.

doi: 10.1152/jn.00686.2005

Chakrabartty, S., and Liu, S. C. (2010). “Exploiting spike-based dynamics

in a silicon cochlea for speaker identification,” in Proceedings of 2010

IEEE International Symposium on Circuits and Systems (Paris), 513–516.

doi: 10.1109/ISCAS.2010.5537578

Chan, V., Liu, S. C., and van Schaik, A. (2007). AER EAR: amatched silicon cochlea

pair with address event representation interface. IEEE Trans. Circ. Syst. I Regul.

Papers 54, 48–59. doi: 10.1109/TCSI.2006.887979

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., and Bengio,

Y. (2014). Learning phrase representations using RNN encoder-decoder for

statistical machine translation. CoRR abs/1406.1078.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation

of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555.

Cohen, G. K., Orchard, G., Ieng, S. H., Tapson, J., Benosman, R. B., and van Schaik,

A. (2016). Skimming digits: neuromorphic classification of spike-encoded

images. Front. Neurosci. 10:184. doi: 10.3389/fnins.2016.00184

Delbruck, T. (2008). “Frame-free dynamic digital vision,” in Proceedings of

International Symposium on Secure-Life Electronics, vol. 1 (Tokyo: University

of Tokyo), 21–26.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S. C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney), 1–8. doi: 10.1109/IJCNN.2015.7280696

Dieleman, S., Schlüter, J., Raffel, C., Olson, E., Sønderby, S. K., Nouri, D., et al.

(2015). Lasagne: First Release. doi: 10.5281/zenodo.27878

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,

Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-

efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113, 11441–

11446. doi: 10.1073/pnas.1604850113

Farabet, C., Paz, R., Pėrez-Carrasco, J., Zamarreño-Ramos, C., Linares-Barranco,

A., LeCun, Y., et al. (2012). Comparison between frame-constrained fix-pixel-

value and frame-free spiking-dynamic-pixel convnets for visual processing.

Front. Neurosci. 6:32. doi: 10.3389/fnins.2012.00032

Gers, F. A., and Schmidhuber, J. (2000). “Recurrent nets that time and count,” in

Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural

Networks (IJCNN), Vol. 3 (Como: IEEE), 189–194. doi: 10.1109/IJCNN.2000.8

61302

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). “Connectionist

temporal classification: labelling unsegmented sequence data with recurrent

neural networks,” in Proceedings of the 23rd International Conference on

Machine Learning, ICML ’06 (Pittsburg, CA; New York, NY: ACM), 369–376.

doi: 10.1145/1143844.1143891

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving deep into rectifiers:

surpassing human-level performance on imagenet classification,” in The IEEE

International Conference on Computer Vision (ICCV) (Santiago), 1026–1034.

doi: 10.1109/ICCV.2015.123

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S. (2017). “Self-

normalizing neural networks,” in Advances in Neural Information Processing

Systems 30, eds I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett (Long Beach, CA: Curran Associates, Inc.),

972–981.

Lagorce, X., Ieng, S.-H., Clady, X., Pfeiffer, M., and Benosman, R. B. (2015).

Spatiotemporal features for asynchronous event-based data. Front. Neurosci.

9:46. doi: 10.3389/fnins.2015.00046

Lagorce, X., Orchard, G., Gallupi, F., Shi, B. E., and Benosman, R. (2016). Hots:

a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans.

Patt. Anal. Mach. Intell. 39, 1346–1359. doi: 10.1109/TPAMI.2016.2574707

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

Leonard, R. G., and Doddington, G. (1993). Tidigits ldc93s10. Philadelphia, PA:

Linguistic Data Consortium.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions

and reversals. Sov. Phys. Doklady 10:707.

Li, C.-H., Delbrück, T., and Liu, S.-C. (2012). “Real-time speaker identification

using the AEREAR2 event-based silicon cochlea,” in Proceedings of IEEE

International Symposium on Circuits and Systems (Seoul), 1159–1162.

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128 × 128 120 db 15

µs latency asynchronous temporal contrast vision sensor. IEEE J. Solid State

Circuits 43, 566–576. doi: 10.1109/JSSC.2007.914337

Liu, S.-C., Mesgarani, N., Harris, J., and Hermansky, H. (2010). “The use of spike-

based representations for hardware audition systems,” in Proceedings of IEEE

International Symposium on Circuits and Systems (ISCAS) (Paris), 505–508.

Liu, S. C., van Schaik, A., Minch, B. A., and Delbruck, T. (2014). Asynchronous

binaural spatial audition sensor with 2 × 64 × 4 channel output. IEEE Trans.

Biomed. Circ. Syst. 8, 453–464. doi: 10.1109/TBCAS.2013.2281834

Lungu, I., Corradi, F., and Delbruck, T. (2017). “Live demonstration: convolutional

neural network driven by dynamic vision sensor playing RoShamBo,” in

Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS)

(Baltimore, MD). doi: 10.1109/ISCAS.2017.8050403

Moeys, D. P., Corradi, F., Kerr, E., Vance, P., Das, G., Neil, D., et al. (2016).

“Steering a predator robot using a mixed frame/event-driven convolutional

neural network,” in 2016 Second International Conference on Event-based

Control, Communication, and Signal Processing (EBCCSP) (Krakow), 1–8.

doi: 10.1109/EBCCSP.2016.7605233

Neil, D., and Liu, S. C. (2016). “Effective sensor fusion with event-based sensors

and deep network architectures,” in 2016 IEEE International Symposium on

Circuits and Systems (ISCAS), 2282–2285.

Neil, D., Pfeiffer, M., and Liu, S.-C. (2016). “Phased LSTM: accelerating recurrent

network training for long or event-based sequences,” in Advances in Neural

Information Processing Systems (Barcelona), 3882–3890.

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-time

classification and sensor fusion with a spiking Deep Belief Network. Front.

Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

Orchard, G., Jayawant, A., Cohen, G., and Thakor, N. (2015). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Pérez-Carrasco, J. A., Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona, T.,

Chen, S., et al. (2013). Mapping from frame-driven to frame-free event-driven

vision systems by low-rate rate coding and coincidence processing–application

to feedforward convnets. IEEE Trans. Patt. Anal. Mach. Intell. 35, 2706–2719.

doi: 10.1109/TPAMI.2013.71

Frontiers in Neuroscience | www.frontiersin.org 11 February 2018 | Volume 12 | Article 23

http://www.tensorflow.org/
https://doi.org/10.1109/BioCAS.2011.6107779
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/ISCAS.2017.8050394
https://doi.org/10.3389/fnins.2016.00049
https://doi.org/10.1109/72.279181
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1109/ISCAS.2010.5537578
https://doi.org/10.1109/TCSI.2006.887979
https://doi.org/10.3389/fnins.2016.00184
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.5281/zenodo.27878
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.3389/fnins.2012.00032
https://doi.org/10.1109/IJCNN.2000.861302
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3389/fnins.2015.00046
https://doi.org/10.1109/TPAMI.2016.2574707
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/TBCAS.2013.2281834
https://doi.org/10.1109/ISCAS.2017.8050403
https://doi.org/10.1109/EBCCSP.2016.7605233
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/TPAMI.2013.71
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Anumula et al. Feature Representations for Audio Spikes

Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., and Delbruck, T. (2014).

Retinomorphic event-based vision sensors: bioinspired cameras with spiking

output. Proc. IEEE 102, 1470–1484. doi: 10.1109/JPROC.2014.2346153

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Schmidhuber, J. (2014). Deep learning in neural networks: an overview. CoRR

abs/1404.7828.

Serrano-Gotarredona, T., and Linares-Barranco, B. (2015). Poker-

DVS and MNIST-DVS. Their history, how they were made,

and other details. Front. Neurosci. 9:481. doi: 10.3389/fnins.2015.

00481

Stromatias, E., Neil, D., Pfeiffer, M., Galluppi, F., Furber, S. B., and Liu, S.-C.

(2015). Robustness of spiking Deep Belief Networks to noise and reduced

bit precision of neuro-inspired hardware platforms. Front. Neurosci. 9:222.

doi: 10.3389/fnins.2015.00222

Szűcs, A. (1998). Applications of the spike density function in analysis

of neuronal firing patterns. J. Neurosci. Methods 81, 159–167.

doi: 10.1016/S0165-0270(98)00033-8

Tapson, J., Cohen, G., Afshar, S., Stiefel, K., Buskila, Y., Wang, R., et al. (2013).

Synthesis of neural networks for spatio-temporal spike pattern recognition and

processing. arXiv:1304.7118.

Yang, M., Chien, C. H., Delbruck, T., and Liu, S. C. (2016). “A 0.5V 55 µW

64×2-channel binaural silicon cochlea for event-driven stereo-audio

sensing,” in 2016 IEEE International Solid-State Circuits Conference

(ISSCC) (San Francisco, CA), 388–389. doi: 10.1109/ISSCC.2016.74

18070

Yang, M., Liu, S. C., and Delbruck, T. (2015). A Dynamic Vision Sensor

with 1% temporal contrast sensitivity and in-pixel asynchronous delta

modulator for event encoding. IEEE J. Solid State Circ. 50, 2149–2160.

doi: 10.1109/JSSC.2015.2425886

Zai, A., Bhargava, S., Mesgarani, N., and Liu, S.-C. (2015). Reconstruction of audio

waveforms from spike trains of artificial cochlea models. Front. Neurosci. 9:347.

doi: 10.3389/fnins.2015.00347

Zhao, B., Ding, R., Chen, S., Linares-Barranco, B., and Tang, H. (2015).

Feedforward categorization on AERmotion events using cortex-like features in

a spiking neural network. IEEE Trans. Neural Netw. Learn. Syst. 26, 1963–1978.

doi: 10.1109/TNNLS.2014.2362542

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Anumula, Neil, Delbruck and Liu. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 12 February 2018 | Volume 12 | Article 23

https://doi.org/10.1109/JPROC.2014.2346153
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2015.00481
https://doi.org/10.3389/fnins.2015.00222
https://doi.org/10.1016/S0165-0270(98)00033-8
https://doi.org/10.1109/ISSCC.2016.7418070
https://doi.org/10.1109/JSSC.2015.2425886
https://doi.org/10.3389/fnins.2015.00347
https://doi.org/10.1109/TNNLS.2014.2362542
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Feature Representations for Neuromorphic Audio Spike Streams
	1. Introduction
	2. Methods
	2.1. Dynamic Audio Sensor
	2.2. Feature Extraction Methods
	2.2.1. Raw Spikes
	2.2.2. Time-Binned Spike Count Features
	2.2.3. Event-Binned Spike Count Features
	2.2.4. Comparison of Time Binning and Event Binning
	2.2.5. Data-Driven Time-Binned Spike Count Features
	2.2.6. Exponential Features

	2.3. Recurrent Neural Networks
	2.3.1. Long-Short Term Memory
	2.3.2. Gated Recurrent Units
	2.3.3. Phased LSTM

	2.4. Datasets
	2.5. Network Architectures and Training Criterion
	2.5.1. GRU/LSTM Architectures
	2.5.2. Phased LSTM Architecture

	3. Results
	3.1. Comparison of Feature Representations
	3.2. Optimizing Parameters
	3.3. Comparison of Processing Times for Feature Generation

	4. Discussion
	Author Contributions
	Funding
	Acknowledgments
	References

