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The so-called amyloid hypothesis, that the accumulation and deposition of oligomeric or

fibrillar amyloid β (Aβ) peptide is the primary cause of Alzheimer’s disease (AD), has been

the mainstream concept underlying AD research for over 20 years. However, all attempts

to develop Aβ-targeting drugs to treat AD have ended in failure. Here, we review recent

findings indicating that the main factor underlying the development and progression of

AD is tau, not Aβ, and we describe the deficiencies of the amyloid hypothesis that have

supported the emergence of this idea.

Keywords: Alzheimer’s disease, Aβ, APP, amyloid, tau, PHF

INTRODUCTION

Alzheimer’s disease (AD) is said to account for about 70% of dementia. The affected brain exhibits
astroglyosis, nerve cell atrophy and neuronal loss, and is characterized by the extensive distribution
of two kinds of abnormal structures: so-called senile plaques and neurofibrillary tangles (NFTs).
In the 1980’s, it was shown that senile plaque consists of amyloid fibrils composed of the amyloid
β (Aβ) peptide (Glenner and Wong, 1984; Masters et al., 1985), while NFT contain bundles of
paired helical filaments of the microtubule-associated protein tau by immunochemically (Brion
et al., 1985; Grundke-Iqbal et al., 1986; Nukina and Ihara, 1986) and biochemically (Goedert et al.,
1988; Kondo et al., 1988; Kosik et al., 1988; Wischik et al., 1988b).

Aβ is a peptide consisting of about 40 amino acids, formed by sequential cleavages of amyloid
β precursor protein (APP, http://www.uniprot.org/uniprot/P05067) by β-secretase (BACE 1) and
γ-secretase (a complex containing presenilin 1), as illustrated in Figure 1. APP is a transmembrane
protein associated with neuronal development, neurite outgrowth, and axonal transport (Kang
et al., 1987). On the other hand, tau is a microtubule-associated protein that promotes microtubule
polymerization and stabilization, and the abilities are regulated by phosphorylation (http://www.
uniprot.org/uniprot/P10636).

Studies of AD pathogenesis have mostly been focused on how Aβ and tau form senile plaques
and NFTs, respectively, and how these abnormal structures induce neural degeneration and
neuronal loss.

THE AMYLOID HYPOTHESIS

The amyloid hypothesis (also known as the amyloid cascade hypothesis, the Aβ hypothesis,
etc.) has been the mainstream explanation for the pathogenesis of AD for over 25 years
(Hardy and Allsop, 1991; Selkoe, 1991; Hardy and Higgins, 1992; Hardy and Selkoe,
2002), and may be briefly summarized as follows (Figure 1). In normal subjects, Aβ is
excised from APP by β- and γ-secretase and released outside the cell, where it is rapidly
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FIGURE 1 | Schematic illustration of the structure and metabolism of APP and its derivatives. Dark blue arrows indicate cleavage sites. α-Secretase (TACE/ADAM)

(Buxbaum et al., 1998; Lammich et al., 1999) cleaves the α-site and β-secretase (BACE1, Vassar et al., 1999) cleaves the β-site, affording N-terminal fragments,

sAPPα and sAPP β, and C-terminal fragments, C83 and C99, respectively. C83 and C99 are further cleaved at the γ-sites by γ-secretase complex, which includes

presenilin-1, nicastrin, Aph-1 and Pen2 (Capell et al., 1998; De Strooper et al., 1998; Yu et al., 2000; Francis et al., 2002; Goutte et al., 2002; Takasugi et al., 2003).

AICD and p3/Aβ are produced and released from the membrane. In the normal physiological state, α-secretase cleaves 90% or more of APP and the remaining APP

is cleaved by β-secretase. Therefore, the major products in this APP metabolic pathway are sAPPα, C83, p3, and AICD, and Aβ is a minor product. AICD is rapidly

degraded (Cupers et al., 2001; Kopan and Ilagan, 2004; Kametani and Haga, 2015). Thus, mutations found in familial AD, especially presenilin mutations, may affect

the formation and processing of a variety of products. A part of APP sequence including Aβ is shown. Asterisks indicate APP mutations that have been identified in

familial AD. These pathogenetic mutations of APP cluster near the α-secretase, β-secretase and γ-secretase cleavage sites. These mutations cause accumulation of

APP C-terminal fragments (Tesco et al., 2005; Wiley et al., 2005; Xu et al., 2016a), and such accumulation has been found even in sporadic AD brains (Pera et al.,

2013). Furthermore, mutations in presenilin, a constitutive protein of the γ-secretase complex, reduce γ-secretase activity (Chen et al., 2002; Walker et al., 2005;

Bentahir et al., 2006; Shen and Kelleher, 2007; Xia et al., 2015). Decrease in the catalytic capacity of γ-secretase, which would lead to an increase of APP C-terminal

fragments, facilitates the pathogenesis in sporadic and familial AD (Svedruzic et al., 2015).

degraded or removed. However, in aged subjects or under
pathological conditions, the metabolic ability to degrade Aβ is
decreased, and Aβ peptides may be accumulated. Aβ 40 and
Aβ 42 (more hydrophobic than Aβ 40), containing 40 and
42 amino acid residues, respectively, are major components
of the accumulated Aβ (Figure 1). An increase in the level
of Aβ 42 or an increase in the ratio of Aβ 42 induces Aβ

amyloid fibril formation, and the accumulated Aβ amyloid
fibrils develop into senile plaque, causing neurotoxicity and
induction of tau pathology, leading to neuronal cell death and
neurodegeneration.

The APP gene is on chromosome 21 (Kang et al., 1987),
and the discovery of genetic mutations of APP in early-onset
familial AD (http://www.alzforum.org/mutations), as shown in
Figure 1, appeared to support the amyloid hypothesis. These
pathogenetic mutations of APP are clustered near β-secretase or

γ-secretase cleavage sites, and are associated with an increase in
Aβ42 production and/or a change in the ratio of Aβ42 formation.
Interestingly, Down’s syndrome patients with trisomy 21 exhibit
AD-like pathology by about 40 years of age (Kolata, 1985), and
this was thought to be due to the fact that the amount of APP
in the brain was increased to 1.5 times the normal amount and
the amount of Aβ was also increased (Kolata, 1985). In addition,
APP locus duplication causes autosomal-dominant early-onset
AD with cerebral amyloid angiopathy, with accumulation of
large amounts of Aβ peptides (Delabar et al., 1987; Rovelet-
Lecrux et al., 2006). Moreover, other familial AD mutations
have been identified in presenilin 1/2, which is a component
of γ-secretase (http://www.alzforum.org/mutations) (Figure 1).
These mutations in APP and presenilin are closely linked to the
Aβ production process, providing a rational basis for the idea that
Aβ production and/or Aβ amyloid fibril formation represent the
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central pathogenic cause of AD (Hardy and Allsop, 1991; Selkoe,
1991; Hardy and Higgins, 1992; Hardy and Selkoe, 2002).

PROBLEMS WITH THE AMYLOID
HYPOTHESIS

To investigate the pathogenesis of AD, a number of genetically
modified mouse models were produced in which Aβ is deposited
in the brain. However, although senile plaques (accumulation of
Aβ amyloid fibrils) are formed in these mice, NFT formation
(accumulation of tau) and nerve cell death have not been
observed (Bryan et al., 2009) (http://www.alzforum.org/research-
models/alzheimers-disease). This suggested that extracellular
accumulation of Aβ fibrils is not intrinsically cytotoxic, and also
that Aβ does not induce tau accumulation. As Aβ is a normal
metabolic product of APP and is not itself toxic under normal
physiological conditions, the idea developed that Aβ oligomers
(multimers) were the key toxic agents.

It has been reported that synaptic failures occur from an
early stage in the AD brain and that the levels of synaptic
proteins change (Masliah et al., 2001). Also, a drastic decrease
in the number of synapses is characteristically observed in
AD (Davies et al., 1987). Therefore, it was suggested that Aβ,
which is present abundantly at an early stage after birth in AD
model mice, causes synaptic impairment (William et al., 2012).
Furthermore, it was reported that decrease of dendritic spines,
inhibition of long-term potentiation, promotion of long-term
suppression, and impairment of memory learning occur when
Aβ oligomers (dimers) obtained from AD patients’ brains were
directly transferred to hippocampus of mouse brain (Shankar
et al., 2008). However, although Aβ oligomers and Aβ amyloid
fibrils were present in Aβ42-overexpressing BRI2-Aβ mice, and
amyloid deposits and formation of senile plaques were observed
in the brain, degeneration of nerve cells and neuronal loss
were not observed, and there was no impairment of cognitive
functions (Kim et al., 2007, 2013). These results indicate
that Aβ42, including its oligomers and amyloid fibrils, is not
cytotoxic. In addition, various immunotherapies targeting Aβ in
AD model mice were effective in decreasing Aβ deposition in the
brains, but it did not lead to improvement of actual symptoms
or accumulation of tau (Ostrowitzki et al., 2012; Giacobini and
Gold, 2013; Doody et al., 2014; Salloway et al., 2014).

Recent advances in amyloid imaging have made it possible
to observe Aβ amyloid accumulation in the patient’s brain. As a
result, it has been found that there are many normal patients with
amyloid deposits, and also AD patients with very few amyloid
deposits (Edison et al., 2007; Li et al., 2008). Further, in the
brain of elderly non-demented patients, the distribution of senile
plaques is sometimes as extensive as that of dementia patients
(Davis et al., 1999; Fagan et al., 2009; Price et al., 2009; Chetelat
et al., 2013). This suggests that Aβ amyloid deposition is a
phenomenon of aging, and has no direct relation with the onset
of AD.

Taking these facts into account, it appears that
neurodegeneration/neuronal loss and amyloid deposition
are independent, unrelated phenomena (Chetelat, 2013),
contrary to the amyloid hypothesis.

RECONSIDERATION OF APP AND
PRESENILIN (PS) MUTATIONS IN
FAMILIAL AD

In this section, we will focus on the nature and effects of
mutations that are reported to be associated with familial AD.

In the normal physiological state, α-secretase cleaves 90% or
more of APP and the remaining APP is cleaved by β-secretase,
then γ-secretase cleaves the C-terminal region, as shown in
Figure 1. The major products of this APP metabolic pathway are
sAPPα, C83, p3, and APP intracellular domain (AICD), and Aβ

is a minor product. Moreover, AICD is rapidly degraded (Cupers
et al., 2001; Kopan and Ilagan, 2004; Kametani and Haga, 2015),
suggesting that APP C-terminal fragments (C83, C99, and AICD)
may be toxic and need to be removed (Kametani, 2008; Robakis
and Georgakopoulos, 2014). Thus, when considering the effects
of familial AD mutations, the effects on all the major products of
APP metabolism should be considered.

AD-associated mutations in PS (PS1), a constituent protein of
the γ-secretase complex, reduce γ-secretase activity, leading to
decreased production of Aβ, especially Aβ40 (Chen et al., 2002;
Walker et al., 2005; Bentahir et al., 2006; Shen and Kelleher,
2007; Xia et al., 2015). But, as a result, the proportion of Aβ42
increases and Aβ amyloid is formed. At the same time, APP C-
terminal fragments that should be cleaved by γ-secretase are not
cleaved, and accumulate in the cell membrane (Chen et al., 2002;
Kametani, 2008; Robakis and Georgakopoulos, 2014).

It has also been reported that APP mutation causes
accumulation of APP C-terminal fragments (Tesco et al., 2005,
p.181; Wiley et al., 2005, p. 205; Xu et al., 2016a) and that the
production of APP C-terminal fragment by β-secretase increases
in the brain of patients with sporadic AD (Pera et al., 2013).
Moreover, decrease in the catalytic capacity of γ-secretase, which
would promote accumulation of APP C-terminal fragments,
might facilitate the development of both sporadic and familial
AD with APP mutation (Svedruzic et al., 2015).

Further, γ-secretase inhibitor may accelerate accumulation of
APP C-terminal fragments in brain, if it is used as a therapeutic
agent to suppress Aβ production in AD patients. Notably, the
symptoms of AD worsened in a clinical trial of γ-secretase
inhibitor (Doody et al., 2013).

These indicate that APP C-terminal fragment accumulation
closely links to pathogenesis of sporadic and familial AD.

It was previously reported that APP or APP fragments
accumulated in dystrophic neurites in AD brains (Ishii et al.,
1989) and that the accumulation of APP and its metabolic
fragments induced neurotoxicity and vesicular trafficking
impairment (Yoshikawa et al., 1992; Kametani et al., 2004; Roy
et al., 2005). It has also been reported that synaptic disorders and
dendritic dysplasia occur in the absence of Aβ amyloid deposition
(Boncristiano et al., 2005), and that C-terminal fragments of APP
cause synaptic failure and memory impairment (Tamayev et al.,
2012). Furthermore, transgenic mice expressing the C-terminal
intracellular domain of APP (AICD) developed Alzheimer’s-like
symptoms, such as accumulation of phosphorylated tau and
memory impairment (Ghosal et al., 2009). Also, accumulation
of APP C-terminal fragments triggers the hydrolysis of
cAMP, causing impairment of the cAMP/PKA/CREB pathway
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(Kametani andHaga, 2015). Moreover, APP C-terminal fragment
accumulation alters the subcellular localization of APP and the
distribution of Rab11, and decreases endocytosis and soma-
to-axon transcytosis of LDL (Woodruff et al., 2016), and this
affects axonal vesicle trafficking (Szpankowski et al., 2012; Fu
and Holzbaur, 2013; Gunawardena et al., 2013). These findings
support the idea that APP C-terminal fragment accumulation
causes neuronal impairment.

In addition, sAPPα is involved in neurite outgrowth and has
a neuroprotective effect (Baratchi et al., 2012), and AICD is
involved in signal transduction (Cao and Sudhof, 2001). Thus,
multiple APP domains, including the C-terminus, are required
for normal nervous system function (Klevanski et al., 2015).
Therefore, since APP metabolites play a variety of functions in
the brain, impaired APP metabolism may have a range of effects.

Overall, these findings suggest that the trigger of AD
are closely linked to impairments of APP metabolism and
accumulation of APP C-terminal fragments, rather than Aβ

production and Aβ amyloid formation.

THE TAU HYPOTHESIS

Tau is one of the microtubule-associated proteins that regulate
the stability of tubulin assemblies. The human tau gene is
localized in chromosome 17. Six tau isoforms are expressed
in the adult human brain as a result of mRNA alternative
splicing, with or without exons 2, 3, and 10 (Goedert et al.,
1989a; Figure 2). Exon 10 contains the microtubule-binding
region. Insertion of exon 10 affords 4-repeat (4R) tau isoforms,
while 3-repeat (3R) tau isoforms are produced without exon
10 (Figure 2). Adult human brain expresses both 3R and
4R tau isoforms, which are located mainly in axons of
adult neurons under normal physiological conditions. The tau
hypothesis is that the principle causative substance of AD
is tau.

In AD brains, 3R and 4R tau is accumulated in a
hyperphosphorylated state in the pathological inclusions
(Goedert, 1993; Goedert et al., 1996; Serrano-Pozo et al., 2011;
Iqbal et al., 2016). Ultrastructurally, unique twisted fibrils with
∼80 nm periodicity appearing as paired helical filaments (PHFs)
or related straight filaments (SFs) are observed (Crowther
and Wischik, 1985; Wischik et al., 1988a,b; Crowther et al.,
1989; Goedert et al., 1989b; Greenberg and Davies, 1990; Lee
et al., 1991). These pathological inclusions are referred to as
neurofibrillary tangles (NFTs) if they are formed in neuronal cell
bodies, while they are referred to as threads if they are formed in
dendrites or axons. These findings suggested that mis-sorting of
tau might induce tau pathology (Zempel and Mandelkow, 2014).

Tau pathology is staged according to Braak and Braak (Braak
and Braak, 1991), and appears first in the transentorhinal
region (stages I and II), then spreads to the limbic region
(stages III and IV) and neocortical areas (stages V and IV).
This spreading of tau pathology is strongly correlated with
the extent of cognitive and clinical symptoms. Recent PET
studies have shown that the spatial patterns of tau tracer binding
are closely linked to the patterns of neurodegeneration

and the clinical presentation in AD patients (Bejanin
et al., 2017; Okamura and Yanai, 2017) and that subjective
cognitive decline is indicative of early tauopathy in the
medial temporal lobe, specifically in the entorhinal cortex,
and to a lesser extent with elevated global levels of Aβ

(Scholl et al., 2016; Schwarz et al., 2016; Buckley et al.,
2017). Furthermore, it has been reported that tau lesions
occurred earlier than Aβ accumulation (Braak and Del Tredici,
2014; Johnson et al., 2015). Thus, progression of AD is
strongly associated with tau pathology, rather than Aβ amyloid
accumulation.

Tau pathologies are also seen in other neurodegenerative
dementing disorders, such as frontotemporal dementia and
parkinsonism linked to chromosome 17 (FTDP-17), Pick’s
disease (PiD), progressive supranuclear palsy (PSP), corticobasal
degeneration (CBD), argyrophilic grain disease (AGD), tangle-
only dementia, and chronic traumatic encephalopathies (CTE)
(Iwatsubo et al., 1994; Spillantini et al., 1997, 1998; Hutton
et al., 1998; Poorkaj et al., 1998; Buee and Delacourte, 1999;
Goedert and Hasegawa, 1999; Lee et al., 2001; Kovacs, 2015) In
particular, FTDP-17 patients exhibit many exonic and intronic
mutations in the tau gene (http://www.alzforum.org/mutations),
resulting in tau accumulation (Spillantini et al., 1997, 1998;
Hutton et al., 1998; Poorkaj et al., 1998). These findings
suggest that tau abnormalities cause accumulation of tau and
degeneration of neurons. In other sporadic cases of tauopathies,
including AD, the initial trigger is unclear, but wild-type tau is
accumulated.

What is the tau-induced neurodegeneration? In FTDP-
17, the disease causing tau-mutations cluster near the C-
terminal microtubule binding repeat and impair the ability of
tau to bind microtubules (Hasegawa et al., 1998), suggesting
impairment of the microtubule regulation. Mis-localized tau
also induces impairment of microtubule regulation (Zempel
and Mandelkow, 2014). These taus form aggregation and
fibril seed, and were hyperphosphorylated as described above.
Furthermore, the stability of mutant and hyperphosphorylated
tau increases compared to the normal tau (Yamada et al.,
2015; Bardai et al., 2018). Aberrant interaction of stabilized
tau with filamentous actin induces mis-stabilization of actin
(Fulga et al., 2007), synaptic impairment (Cabrales Fontela et al.,
2017; Zhou et al., 2017; Bardai et al., 2018), and defects in
mitochondrial integrity (DuBoff et al., 2012). Therefore, tau
pathology causes extensive damage in the cell, such as transport
system, cytoskeletal system, signaling system, and mitochondrial
integrity.

PROPAGATION OF TAU PATHOLOGY

In an experimental model of cultured cells and mice, abnormal
tau (amyloid-like fibril tau) converts normal tau to an abnormal
type. Therefore, it has been hypothesized that tau aggregates
form first in a small number of brain cells, from where they
propagate to other regions, resulting in neurodegeneration and
disease. This hypothesis has recently gained attention because it
has been confirmed that tau proliferates and propagates between
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FIGURE 2 | Schematic illustration of functional sites of tau. Six tau isoforms are expressed in the adult human brain as a result of mRNA alternative splicing, with or

without exons 2, 3, and 10. Exon 10 contains the microtubule-binding region. Insertion of exon 10 affords 4-repeat (4R) tau isoforms, while 3-repeat (3R) tau isoforms

are produced without exon 10 (Goedert et al., 1989a). Major tau phosphorylation sites identified in PHF-tau from AD brains are shown. Microtubule binding regions R3

and R4 form the core of tau fibrils (PHF and SF) (Taniguchi-Watanabe et al., 2016; Fitzpatrick et al., 2017).

cells (Clavaguera et al., 2009, 2013; Nonaka et al., 2010; Hasegawa,
2016; Goedert and Spillantini, 2017). The existence of several
human tauopathies with distinct fibril morphologies has led to
the suggestion that different molecular conformers (or strains)
of aggregated tau exist (Goedert and Spillantini, 2017). Although
the transmission mechanism of tau aggregates from cell to cell
is still not clear, tau pathology does spread in the brain in
a well-defined manner; its distribution can be correlated with
the clinical stages of disease (Braak and Braak, 1991), and
it is considered that tau pathology correlates better than Aβ

pathology with clinical features of dementia. Recently, we found
that increase APP with or without familial AD mutations, not
Aβ, may work as a receptor of abnormal tau fibrils and promote
intracellular tau aggregation (Takahashi et al., 2015), suggesting
that APP rather than Aβ may accelerate tau accumulation and
propagation.

AD RISK FACTORS, ApoE4 AND TREM2

Apolipoprotein E (ApoE) is one of the major apolipoproteins
(http://www.uniprot.org/uniprot/P02649). The ApoE gene has
three alleles, ε2, ε3, and ε4, corresponding to isoforms E2,
E3, and E4, respectively. In the central nervous system,
ApoE produced and secreted by astrocytes and microglia
binds to lipoprotein and is taken up into nerve cells via
the ApoE receptor during the developmental stage of the
central nervous system and the repair period after neuronal
damage.

The ApoE4 allele is a genetic risk factor for sporadic AD
(Corder et al., 1993). As the number of ε4 genes increases,
the age of onset of AD declines and the incidence of AD
increases (Maestre et al., 1995), and there is an increased
risk of 3–4 and 8–12 times for one or two copies of
the allele, respectively. It is considered that impaired apoE4
function affects the clearance pathway of Aβ (Zlokovic, 2013;
Robert et al., 2017) and modulates Aβ-induced effects on
inflammatory receptor signaling, including amplification of

detrimental pathways and suppression of beneficial pathways
(Chan et al., 2015; Tai et al., 2015). To examine the role of
ApoE, human ApoE targeted replacement mice were crossed
with mutant human amyloid precursor protein (APP) mice.
In this context, ApoE genotypes only modulate Aβ-mediated
insulin signaling impairment (Chan et al., 2015). Recently,
however, P301S tau transgenic mice were generated on either
a human ApoE knock-in (KI) or ApoE knockout (KO)
background, and developed significant brain atrophy primarily
in the hippocampus, piriform/entorhinal cortex, and amygdala,
accompanied by significant lateral ventricular enlargement (Shi
et al., 2017). ApoE plays an important role in regulating
tau-mediated neurodegeneration and neuroinflammation, with
ApoE4 causing more severe damage and the absence of ApoE
being protective (Shi et al., 2017). These findings indicate that
ApoE4 affects neurodegeneration independently of Aβ and Aβ

amyloid in the context of tau pathology (Shi et al., 2017).
Triggering receptor expressed on myeloid cells 2 (TREM2) is

expressed on the membranes of microglia and is critical for the
response to injury and AD pathology (http://www.uniprot.org/
uniprot/Q9NZC2). TREM2 recognizes lipoproteins including
ApoE, phospholipid and apoptotic cells and is implicated in
microglial phagocytosis. Variants in the TREM2 gene increase
the risk of getting AD. Initially, this was thought to be related
to the elimination of Aβ plaque. TREM2 deficiency in the setting
of pure tauopathy limits gliosis and neuroinflammation, as well
as protecting against brain atrophy, suggesting that TREM2
facilitates a microglial response to tau pathology and/or tau-
mediated damage in the brain (Bemiller et al., 2017; Leyns
et al., 2017). These results are consistent with the findings of
strikingly reduced inflammation and neurodegeneration in mice
lacking ApoE, as described above. Therefore, the TREM2-ApoE
pathway is important for facilitating the microglial response
to damage in the brain, and a functional consequence of
activation of the TREM2-ApoE pathway is that microglia lose
the ability to regulate brain homeostasis (Krasemann et al.,
2017; Ulland et al., 2017). Microglial inflammation promotes
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FIGURE 3 | Proposed sequence of major pathogenic events leading to AD. Aβ amyloidosis and tau pathology are regarded as independent pathological events. AD is

APP trigger tauopathy.

tau-dependent degeneration independently of Aβ and Aβ

amyloid.

APP TRIGGER TAUOPATHY

APP turn over rapidly and easily metabolize (Oltersdorf et al.,
1990; Weidemann et al., 2002). Therefore, impairment of APP
metabolism has a serious effect on cells. Increased APP and/or
its C-terminal fragments induce axonal and synaptic defects
(Rusu et al., 2007; Rodrigues et al., 2012; Deyts et al., 2016;
Xu et al., 2016b), thereby triggering the mis-localization of tau
(Blurton-Jones and Laferla, 2006; Hochgrafe et al., 2013). This
protein modulates motility in a motor-specific manner to direct
intracellular transport (Chaudhary et al., 2017). Mis-localized
tau proteins accumulate, form fibril seeds and propagate (He
et al., 2017). The pathological tau induce further transport
dysfunction (Goldsbury et al., 2006; Rusu et al., 2007), creating
a vicious circle and leading to tau accumulation. Moreover,
since overexpression of APP promoted the seed aggregation
of intracellular tau in cultured cell, suggesting that APP may
function as a receptor of abnormal tau fibrils (Takahashi
et al., 2015). Thus, increased APP may accelerate pathological
incorporation and propagation.

Overall, the results described above suggest that AD is a
disorder that is triggered by impairment of APP metabolism,
and that progresses through tau pathology (Figure 3). It is well-
known that Aβ amyloidosis due to APP metabolic impairment
leads to neuroinflammation, which may further affect the

progression of tau pathology (Leyns and Holtzman, 2017).
So far, there is no evidence that Aβ itself directly affects
tau pathology. We cannot rule out the possibility that APP
metabolic impairment and tau pathology might be initiated
independently in sporadic AD. In any event, there is now
convincing evidence that the main factor causing progression
of AD is tau, not Aβ, and that Aβ amyloidosis and tau
pathology should be regarded as independent pathological
events. Indeed, it was recently shown that the AD risk
factors ApoE4 and TREM2 are linked to tau pathology
(Bemiller et al., 2017; Leyns et al., 2017; Shi et al., 2017).
Moreover, the incidence of type 2 diabetes is increased in
AD patients (Janson et al., 2004), and it was recently shown
that tau protein is involved in the control of brain insulin
signaling (Marciniak et al., 2017). Furthermore, the brains of
patients with primary age-related tauopathy (PART) contain
NFTs that are indistinguishable from those of AD, in the
absence of Aβ amyloid plaques (Crary et al., 2014; Duyckaerts
et al., 2015; Jellinger et al., 2015). Therefore, tau could
contribute to the cognitive and metabolic alterations in patients
with AD.

The unexpected failures of all trials of AD treatment candidate
drugs targeting Aβ can easily be understood if the main factor
causing progression of AD is tau, not Aβ. Indeed, it has already
been reported that the suppression or deletion of tau has a
profound protective effect against brain damage and neurological
deficits (Rapoport et al., 2002; SantaCruz et al., 2005; Roberson
et al., 2007; Miao et al., 2010; Shipton et al., 2011; Bi et al., 2017).
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Thus, suppression of tau production currently seems to be the
most promising target for development of AD therapeutic drugs.

CONCLUSION

The amyloid hypothesis has been the mainstream concept
underlying AD research for over 20 years. However,
reconsideration of APP and presenilin (PS) mutations in
familial AD indicate that the trigger of AD is closely linked to
impairments of APP metabolism and accumulation of APP C-
terminal fragments, rather than Aβ production and Aβ amyloid
formation. Furthermore, all attempts to develop Aβ-targeting
drugs to treat AD have ended in failure and recent findings
indicating that the main factor underlying the development and
progression of AD is tau, not Aβ. Therefore, AD is a disorder that
is triggered by impairment of APP metabolism, and progresses
through tau pathology, not Aβ amyloid.
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