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Major depressive disorder (MDD) is a mental disorder characterized by at least 2 weeks

of low mood, which is present across most situations. Diagnosis of MDD using rest-state

functional magnetic resonance imaging (fMRI) data facesmany challenges due to the high

dimensionality, small samples, noisy and individual variability. To our best knowledge,

no studies aim at classification with effective connectivity and functional connectivity

measures between MDD patients and healthy controls. In this study, we performed a

data-driving classification analysis using the whole brain connectivity measures which

included the functional connectivity from two brain templates and effective connectivity

measures created by the default mode network (DMN), dorsal attention network (DAN),

frontal-parietal network (FPN), and silence network (SN). Effective connectivity measures

were extracted using spectral Dynamic Causal Modeling (spDCM) and transformed into

a vectorial feature space. Linear Support Vector Machine (linear SVM), non-linear SVM,

k-Nearest Neighbor (KNN), and Logistic Regression (LR) were used as the classifiers

to identify the differences between MDD patients and healthy controls. Our results

showed that the highest accuracy achieved 91.67% (p< 0.0001) when using 19 effective

connections and 89.36% when using 6,650 functional connections. The functional

connections with high discriminative power were mainly located within or across the

whole brain resting-state networks while the discriminative effective connections located

in several specific regions, such as posterior cingulate cortex (PCC), ventromedial

prefrontal cortex (vmPFC), dorsal cingulate cortex (dACC), and inferior parietal lobes

(IPL). To further compare the discriminative power of functional connections and effective

connections, a classification analysis only using the functional connections from those

four networks was conducted and the highest accuracy achieved 78.33% (p < 0.0001).

Our study demonstrated that the effective connectivity measures might play a more

important role than functional connectivity in exploring the alterations between patients

and health controls and afford a better mechanistic interpretability. Moreover, our results

showed a diagnostic potential of the effective connectivity for the diagnosis of MDD

patients with high accuracies allowing for earlier prevention or intervention.

Keywords: major depressive disorder, pattern classification, functional connectivity, effective connectivity,

spectral dynamic causal modeling
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INTRODUCTION

Major Depressive Disorder (MDD) is a mental disorder
characterized by at least 2 weeks of low mood that is
presented across most situations (Belmaker and Agam, 2008).
The cause of MDD is complicated which includes psychological,
environmental and genetic factors. The diagnosis of MDD is
based on person’s mental status examinations and experiences
and the most widely used criteria are the Diagnostic and
Statistical Manual of Mental Disorders (DSM-IV-TR) (American
Psychiatric Association, 2000), World Health Organization’s
International Statistical Classification of Diseases and Related
Health Problems (ICD-10) (World Health Organization, 1992).
Those methods base on self-reported symptoms are easily
impacted by human factors, which restricted the diagnosis and
treatment of MDD in advance (Singh et al., 2010; Oyebode, 2013;
Bordini et al., 2017). Undoubtedly, it is important to explore a
more efficient and not based on self-reported symptoms method
for MDD diagnosis.

In recent years, structure abnormalities in MDD have

been reported at a group level in many studies (Kempton

et al., 2011; Schmaal et al., 2017). Some specific brain regions

in MDD patients, such as part of frontal regions, anterior
cingulate, orbitofrontal cortex, hippocampus putamen, and
caudate nucleus show different degree of volume reduction
compared to HC (Lorenzetti et al., 2009; Zhao et al., 2017). The
machine learning method especially multivariate pattern analysis
(MVPA) has been used to explore structural and functional
differences between MDD and healthy controls (HC), suggesting
a promising direction on exploring an efficient diagnosis method
for MDD based on neuroimaging data. MVPA is a widely
used approach in task-related functional magnetic resonance
imaging (fMRI) studies, which treats many consecutive voxels
as a pattern and can improve the sensibility for imperceptible
changes in brain activities (Weil and Rees, 2010). Based on
those structure abnormalities between MDD patients and HC,
many classification approaches based on MVPA are developed
to examine whether those abnormalities can be treated as
an objective biomarker for MDD diagnosis. With a support
vector machine (SVM) and relevance vector machine (RVM)
classifier, MDD patients were distinguished from HC with a
90% accuracy based on T1-weighted “structural” scans (Mwangi
et al., 2012). A single SVM classifier was also used in a multi-
ethnic structural neuroimaging data classification task and the
best performance reached 78.3% (Sankar et al., 2016), which
showed that the structure abnormalities cross the multi-ethnic
group had a similarity pattern and machine learning methods
can learn the pattern to afford classification abilities. The
studies in structural neuroimaging data provide an important
step for developing a potential efficient diagnosis method of
MDD. However, there are some limitations when only structural
neuroimaging data are used for MDD diagnosis. The main
limitation is that there is a slow change in the structural
abnormalities in MDD and only after a long period of time
the structural abnormalities will become significant (Lorenzetti
et al., 2009), which leads to lack of sensitivity for MDD
diagnosis.

Except for structural neuroimaging data, functional
neuroimaging data have attracted more and more attention
in investigating the pathophysiology of MDD, as we can obtain
the active brain status from the functional images. Our human
brain is considered as an integrated network, which consists of
anatomically separated but functionally linked brain regions
(van den Heuvel and Hulshoff Pol, 2010). Many studies using
the fMRI technique reveal that the pathophysiology of MDD
involves a large-scale dysfunction in functional brain networks
(Kaiser et al., 2015; Lv et al., 2016; Williams, 2017; Whitton
et al., 2018). The functional connectivity (FC) is used as a most
common measure for exploring the functional brain networks.
FC, which represents the correlation between the time series
of anatomically separated brain regions, has been used to
investigate the dysfunctions in many mental disorder diseases,
such as social anxiety disorder (Liao et al., 2010), depression
disorder (Dørum et al., 2017). MDD patients showed decreased
FC alterations in the bilateral amygdala, left anterior insula,
left frontal pole, bilateral lingual gyrus comparing to HC (Veer
et al., 2010). The resting-state networks distinctly at rest have
been confirmed in many studies (Betzel et al., 2014; Nashiro
et al., 2017), which mainly include the default mode network
(DMN), visual network (VN), sensorimotor network (SMN),
attention network (AN), salience network (SN) and fronto-
parietal network (FPN) (van den Heuvel and Hulshoff Pol, 2010;
Rosazza and Minati, 2011). DMN activates “by default” when a
person is not involved in a specific task and deactivates during
specific tasks, such as a cognitive task and attention task, which
commonly consists of the medial prefrontal cortex (mPFC),
bilateral inferior parietal lobule (LP) and posterior cingulate
cortex (PCC) (Raichle, 2015). Besides, the altered dynamics
functional brain networks in MDD patients have been reported
in the dorsal attention network (DAN), FPN, and SN (Sambataro
et al., 2017). SN consisting of the anterior cingulate cortex (ACC)
and bilateral rostrolateral prefrontal cortex (RPFC), shows a
significant increased power of the low frequency oscillations
(LFO) during the task performance in MDD patients (Zhang
et al., 2014). DAN, including the bilateral frontal eye field (FEF)
and intraparietal sulcus (IPS), shows an altered amplitude of
Low frequency oscillation (LFO) and reduced FC, revealing that
the orienting attention dysfunction in DAN may be a possible
pathophysiology of MDD (Corbetta et al., 2008). FPN, also
referred to the executive network, is consisted of the bilateral
prefrontal cortex (LPFC) and posterior parietal cortex (PPC)
(Kaas et al., 2017; Ray et al., 2017). Ineffective transmission of
information between prefrontal and parietal regions may be a
main reason for MDD (Brzezicka, 2013). Many studies have
found significantly altered connections in other resting-state
network such as SMN and VN in MDD patients (Yao et al.,
2009; Veer et al., 2010; Wei et al., 2015; Sambataro et al., 2017).
Abnormal FC in MDD patients in the resting-state networks
has been used as a biomarker for MDD diagnosis (Dørum et al.,
2017). Using FC from 15 regions of interest (ROI) as features and
SVM as a trained classifier for identifying MDD patients from
HC, the accuracy achieved 83.3%, suggesting that resting-state
FC can be used as a biomarker for MDD diagnosis (Craddock
et al., 2009). Further more, different neurophysiological subtypes
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of depression were successfully distinguished only using FC
in a MRI study (Drysdale et al., 2017), indicating the strong
discriminative power of FC.

Although FC has a good performance in exploring the
abnormalities of functional brain networks, it is not an efficient
approach when we want to further understand the mechanism
under the observed abnormalities, since FC simply represents
the correlation between two brain regions. Effective connectivity
(EC) is a more complex and efficient measure to examine
the dynamic changes, which describes the causal influences
that neural units exert over another (Friston, 1994). Using EC
during an emotion-relevant task, the adolescents with MDD
shows a significantly different connection from the amygdala
to subgenual ACC (Schlösser et al., 2008). EC among several
resting-state networks (such as DMN, AN, and FPN) altered
significantly comparing to HC, which reveals that EC may be
used as a biomarker for MDD diagnosis. Spectral Dynamic
Causal Modeling (spDCM) is a model-based method to estimate
the EC of the brain. It uses a plausible power-law model of
the coupled dynamics of neuronal populations to generate the
complex cross spectra among measured responses. It is similar
to the conventional deterministic DCM for fMRI but models
endogenous activities that would reproduce the functional
connectivity observed in resting state fMRI (Friston et al., 2014).

FC has achieved good performances in exploring the
abnormalities between patients and HC, which shows the
potential as a biomarker in disease diagnosis in many studies
(Craddock et al., 2009; Zeng et al., 2012). However, any
hypothesis about coupling differences in brain cannot be valid
throw FC. EC can reflect how the brain works by measuring
the coupling among hidden brain states, it tries to explain
observed dependencies, such as FC (Friston, 2011). It remain
unknown whether EC can be used as an efficient and without
self-reported symptoms biomarker for MDD diagnosis. In this
study, we will explore the relationship and difference between FC
and EC by using FC and EC as features to train a classifier for
MDD diagnosis. Firstly, FC was extracted from a whole brain FC
analysis, while spectral DCM was used to analysis the EC and the
most important four testing-state networks (DMN, DAN, FPN
and SN) for MDD were used to define the specific ROIs in this
spectral DCM analysis. Linear SVM, non-linear SVM, k-nearest
neighbors (KNN) and logistic regression (LR) classifiers were
used to identify MDD patients from HC using the FC features
and EC features separately. Based on the classification results and
weight factor in classifiers, abnormal FC and EC inMDD patients
will be discussed.

MATERIALS AND METHODS

Participants
Twenty four patients withMDD (16 females and 8 males, average
age: 51.2 ± 10.6 years old, range 24–65 years old, PHQ is 21.1
± 5.8, range 7–30, BDI is 32.3 ± 10.8, range 18–54, average
time of education is 11.4 ± 3.4) and 24 HC (16 females and
8 males, average age: 47.8 ± 11.0 years old; range 25–65 years
old, PHQ is 1.1 ± 1.2, range 0–5, BDI is 2.3 ± 1.4, range 0–5,
average time of education is 13.1± 5.1) participated in this study.

Those patients met criteria for DSM-IV-TR major depressive
disorder without comorbidity and had a minimum duration of
illness >3 months. All subjects were dominantly right-handed
as determined by Edinburgh Handedness Inventory (Oldfield,
1971). Each participant provided written informed consent and
the study was conducted in accordance with the local Ethics
Committee.

Data Acquisition
Functional and structural images were obtained using 3T
Siemens TIM Trio. Foam padding was used to minimize the
head movement. One 8-min resting-state scan (240 time points,
36 axial slices, repetition time = 2,000ms, echo time = 30ms,
voxel size = 3 × 3 × 3.99 mm3) was acquired on each
participant for getting functional imaging data. A high-resolution
T1-weighted scan (176 sagittal slices, voxel size = 1 × 1 × 1
mm3, repetition time = 20ms, echo time = 6ms) was acquired
on each participant using T1-weighted sequence with generalized
auto calibrating partially parallel acquisition.

Data Preprocessing
All fMRI data was preprocessed by the statistical parametric
mapping software package (SPM12, http://www.fil.ion.ucl.ac.uk/
spm/software/spm12). The first five volumes of scan data were
discarded to allow the magnetization to approach dynamic
equilibrium in each participant firstly. Each slice was corrected in
slice timing by resampling slices to eliminate the time difference.
Subsequently, a realignment analysis was performed with the
middle image of the testing sequence as a reference; the data of
each participant with a translation exceeding 3mm and rotation
exceeding 3 degree were removed. Individual structural images
were linearly coregistered to the mean functional image, and
then the transformed structural images were segmented into gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF).
Following this, all functional imaging data were normalized to
Montreal Neurological Institutes (MNI) space and resampled to
3 × 3 × 3 mm3. Data were detrended and band-pass filtered
(0.01Hz < f < 0.08Hz) and the sources of spurious variance,
such as signals fromWM, CSF and movement parameters, which
extracted from the realignment process, were removed by a linear
regression to remove artifacts and reduce physiological noise in
CONN toolbox.

Whole-Brain Functional Connectivity
Analysis
A ROI-to-ROI functional connectivity analysis was performed
using two whole-brain template separately, including the
Automated Anatomical Labeling (AAL) template and
Brainnetome template. AAL is a widely used anatomical
template, which divides the whole brain into 78 cortical regions,
26 cerebellar regions and 12 subcortical regions according
to anatomy (Tzouriomazoyer et al., 2002). The Brainnetome
template contains more fine-grained functional brain subregions
and gives more detailed anatomical information compared
with AAL, because it is generated with both the functional
connectivity and anatomical information (Fan et al., 2016).
Brainnetome contains 246 subregions of bilateral hemispheres
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except for Cerebellum. Considering Cerebellum plays an import
role in MDD (Lai and Wu, 2014; Guo et al., 2015), Cerebellum
regions from the AAL template and Brainnetome were merge
into a whole-brain template using the open source software
WFU_pickatlas, which results a new template including 272
regions. In the following paper, we means this expanded template
when we referred Brainnetome.

The following ROI-to-ROI functional analysis was performed
using CONN toolbox (CONN17a, https://www.nitrc.org/
projects/conn) in Matlab. The representative time series were
first extracted by averaging the times series in each region and
then the Pearson’s correlation coefficients were calculated in
each possible region pairs. A Fisher’s r-to-z transform (Rosner,
2010) was applied to transform the correlation coefficients to
the z-score space and then normalized to a standard normal
distribution (0 mean, unit variance). This analysis generated a
116 × 116 matrix for the AAL template and a 272 × 272 matrix
for the Brainnetome template, and the triangular portions of
the two matrix were extracted separately and transformed to a
vectorial feature space (6670 dimensions for the AAL template;
36,856 dimensions for the Brainnetome template).

Effective Connectivity Analysis in
Resting-State Networks
Four resting-state networks (DMN, DAN, FPN, and SN) were
used in EC analysis. A seed-to-voxel FC analysis was performed
using CONN toolbox to identify the main regions of the four
resting-state networks. The seed ROIs, which were generated
using a 6-mm radius spheres centered on MNI coordinates, were
selected from previous studies (Vincent et al., 2008; Woodward
et al., 2011). The seed ROIs were defined as follows: DMN
(MPFC: 31 62 25); DAN (IPS_L:−18 29 43); FPN (LPFC: 17 54
35); SN (ACC: 31 50 37). For each seed, the temporal correlations
between the seed and all other voxels in the brain were computed
for each participant separately. A one-sample t-test statistical
analysis was performed to define the coordinates of peak values
in the four resting-state networks by masking with preexisting
templates (Tsvetanov et al., 2016). Those coordinates were used
in the following spDCM analysis.

The spDCM uses a plausible power-law model of the
coupled dynamics of neuronal populations to generate the
complex cross spectra among measured responses. It is similar
to the conventional deterministic DCM for fMRI but models
endogenous activities that would reproduce the functional
connectivity observed in resting state fMRI (Friston et al., 2014).
The spDCM analysis was performed using DCM12 in SPM12.
First, volumes of interest (VOIs) for each network were defined
as spheres with a radius of 6mm centered at theMNI coordinates
from the seed-to-voxel analysis, and then the first eigenvector
was extracted after modeling the GLM that removed effects
of the head motion and low-frequency drift. Then, the blood
oxygen level-dependent fMRI time series was extracted from
those VOIs. Subsequently, the extracted VOIs were used to
construct DCM models. Four fully-connected models with bi-
directional connections in each pair of VOIs were specified for
DMN, DAN, FPN, and SN respectively. Then the optimal models

for each resting-state network were obtained by using Bayes
model selection (BMS) method. The post hoc function was used
to perform the BMS, which adopted a greedy strategy to search
over all permutations of the eight parameters whose removal
produced the smallest reduction in model evidence when the
free parameters equal or more than 16. There are 24 = 16 free
parameters for DMN, DAN, and FPN, respectively, and 9 free
parameters for SN, which results 28 = 256 DCM models for
DMN, DAN, FPN, respectively and 29 = 512 DCM models
for SN. Then the model with the greatest model evidence was
selected as the optimal model and the coupling parameters for the
optimal model were estimated. Model parameters are extracted
from four optimal models (each resting-state network has one)
and transformed to a vectorial feature space. For an n node
model, there are n2 free parameters. So we get 42 × 3 + 32 =

57 dimensions features for each participant, which were used for
further classification analyzes.

Feature Selection
Given that there are some uninformative, irrelevant or redundant
features, feature reductions can not only speed up the
computation, but also improve the classification performance.
Therefore, the feature selection step was utilized. First, One-
sample t-test was applied to identify the significant connections
among all participants and the features with the p-value bigger
than 0.05 were removed. Subsequently, a univariate feature
selection method (Gibbons and Kendall, 1990) was used to
reduce the number of features. In this method, samples were
divided into concordant and discordant pairs. Concordant pairs
were defined as a pair of two-observation data sets

(

xmi, ym
)

and
(

xni, yn
)

, when they meet the following conditions:

signx (xmi − xni) = signx(yn − ym) (1)

Where the signx is a signum function:

signx (x) =







1, if x > 0
0, if x = 0
−1, if x < 0

(2)

Correspondingly, it is a discordant pair when they meet the
following conditions:

signx (xmi − xni) = −signx(yn − ym) (3)

We defined the weight of i’th feature as the following formula:

wi =
|nc − nd|

m× n
(4)

Where there are m patients and n controls and nc, nd represent
the number of concordant and discordant pairs, respectively.
Finally, we ranked the features according to wi and selected
the top k features as the final features set for the subsequent
classification analysis. To obtain the optimizing features number
(k-value) from numerous features, a rough searching analysis
with a step 200 was performed in each classification process firstly
to get the best performance interval range of k; then an accurate
searching analysis of k with step 10 was performed in this interval
range to identify the optimized feature number.
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Classification and Evaluation
Four supervised learning classifiers (linear SVM, non-linear
SVM, LR, and KNN) were used in the classification stage.
This collocation is conducive to compare advantages and
disadvantages of the different machine learning methods in
fMRI data analysis (Misaki et al., 2010). The supervised learning
classification process consists of two steps: training and testing.
In the training step, the classifier finds a decision boundary that
separates the samples in the input space using their class labels.
Once the decision function is determined from the training
set, it can be used to predict the class label of a new testing
sample.

Training and testing classifiers on the same data could cause
the overfitting problem (Dietterich, 1995). In this study, a leave-
one-out cross-validation (LOOCV) procedure was used to avoid
the over fitting and used as many as possible samples in the
training step. In each LOOCV trial for n samples, n-1 samples
were used for the training step and the leave-one sample was
used for the testing step. The above feature selection process
was wrapped in the LOOCV, because of the risk of overfitting.
In each training step, the n-1 samples were first used to train
the feature selection model and the training data and testing
data were transformed to a new reduced feature space using the
trained model. Then the training data after the feature selection
analysis were used to train a classifier. In the testing step, the
leave-one sample was transferred to the trained classifier and
the predicted label of this sample was computed through the
trained classifier. The accuracy, recall, specificity, f1 and receiver
operating characteristic (ROC) curve were used to quantify the
performance of a classifier. In this study, we referred the MDD
patients as positive samples and HC as negative samples. TP
represents the number of positive samples correctly classified; TN
represents the number of negative samples correctly classified; FP
represents the number of negative samples classified as positive
samples; FN represents the number of positive samples classified
as negative samples. The accuracy, recall, specificity and precision
defined as:

accuracy =
TP + TN

TP + FP + FN + TN
(5)

recall =
TP

TP + FN
(6)

specifity =
TN

TN + FP
(7)

f 1 =
2TP

2TP + FP + FN
(8)

ROC, which is a curve created by plotting the true positive rate
against false positive rate, can measure the diagnostic ability of a
binary classifier. The area under the curve (AUC) is proportional
to the performance of the classifier.

A permutation test was conducted to estimate the statistical
significance of the observed classification accuracy. In the
permutation test, all of the classification process were similar to

the previous analysis except for the samples’ label of the training
set was randomly permuted. The statistical significance of a
classifier was given as:

p =

∣

∣acc
(

s′
)

> acc (s)
∣

∣ + 1

m+ 1
(9)

Where m represents the permutation times, acc
(

s′
)

represents
the accuracy on randomized permuted dataset and the acc (s)
represents the accuracy obtained in normal classification process.
In the current work, the m is set to 10,000. The bigger the p-
value is, the more likely the accuracy is obtained by chance. The
result was thought to be significant if p was <5% (p < 0.05).
The whole classification and evaluation process was performed in
python using scikit-learn toolkit, and detailed information about
those conceptions can be found in the scikit-learn official website
(http://scikit-learn.github.io/stable).

RESULTS

Performances of the Classification
Analysis
In this study, three classification procedures based on the
different templates were performed using four classifiers
separately. Figure 1 showed the whole workflow of the three
classification procedures. In the following paper, we referred the
three classification process as AAL classification, Brainnetome
classification and spDCM classification. The linear SVM classifier
achieved the best performance among the four classifiers
(linear SVM, nonlinear SVM, KNN, and LR) in all three
classification tasks while the accuracies of the other classifiers
were inconsistent. To further evaluate the performance of
the linear SVM classifier in three classification procedures,
the recall, specificity, f1, and ROC curve were calculated. The
spDCM classification achieved the best performance (accuracy:
91.67%; f1: 91.30%; AUC: 0.98) when 19 effective connection
features were used among the three classification tasks. The
best performance for the AAL classification was observed when
950 functional connections were chosen as features (accuracy:
87.50%; f1: 87.50%; AUC: 0.91), and 6,650 functional connections
as features were included for the Brainnetome classification
(accuracy: 89.36%; f1: 90.90%; AUC: 0.92). The Brainnetome
classification achieved the highest recall and f1 (recall: 96.15%;
f1: 94.44%) among the three tasks, which revealed a good
performance for the diseases diagnosis. Permutation tests were
performed on all of the classifiers in the three classification
procedures and p-values of all classifiers were <0.0001 (p <

0.0001), suggesting that accuracies of all of the classifiers were
significantly higher than the chance level (50% of accuracy). The
detailed results of the three classification procedures were showed
in Figure 2.

Spectral DCM Analysis of the
Resting-State Networks
The MNI coordinates of 15 specific regions for each group
(MDD and HC) were obtained after the seed-to-voxel functional
connectivity analysis. Based on those coordinates, time series
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FIGURE 1 | Overview of key processing steps for whole analysis. The origin fMRI time series first was preprocessing using SPM12, then a seed-to-voxel functional

connectivity analysis performed on those data to identified main regions location of resting-state networks. Those regions were used to define spectral DCM models

and get a best model fitted those data by using Bayes model selection method. AAL template and brainnetome template were used to perform a ROI-to-ROI

functional connectivity analysis respectively. A feature extraction process was performed after functional connectivity analysis and spDCM analysis to prepare features

for classification in the next step. Four classifiers were used in the classification with a leave one out cross-validation. AAL: Automated Anatomical Labeling; FC:

functional connectivity; ROI: region of interest; SVM: support vector machine; LR: logical regression; KNN: k-nearest neighbors; spDCM: spectral Dynamic Causal

Modeling; DMN: default mode network; DAN: dorsal attention network; FPN: fronto-parietal network; SN: salience network.

of VOIs were extracted and used to define and estimate the
DCM models. Details of those coordinates were listed in
Table 1. DMN, DAN, FPN, and SN were used in this study
and the first three resting-state networks consisted of four
nodes (DMN: MPFC, PCC, LP_L, and LP_R; DAN: FEF_L,
FEF_R, IPS_L, and IPS_R; FPN: LPFC_L, LPFC_R, PPC_L,
and PPC_R) while SN included three nodes (ACC, RPFC_L,
and RPFC_R). After the defined models were estimated, a
Bayes model selection procedure was conducted to obtain the
best model for each resting-state network. We found that the

full connected DCM model achieved the best performance
for each resting-state network, which was consistent with
previous studies (Tsvetanov et al., 2016; Xu J. et al., 2017).
The parameters of the full connected models were estimated
and then transformed to a vector feature space, which
resulted 42 × 3 + 32 =57 dimensions of features for each
participant. Those features were used in the following spDCM
classification.

In order to compare the differences of DCM models between
MDD patients and HC participants, a Bayes model average

Frontiers in Neuroscience | www.frontiersin.org 6 February 2018 | Volume 12 | Article 38

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Geng et al. Classification Using Effective and Functional Connectivity

FIGURE 2 | Classification results of three classification tasks. (A,B,C) Represents the research process of the hyper parameter k for AAL classification, Brainnetome

classification and spDCM classification, respectively. For AAL classification and Brainnetome classification, the step of search is 10 while the step of search is 3 for

spDCM classification considering the number of features and the speed of computation. (D) Represents ROC curve of the linear SVM classifiers in the three

classification tasks. The gray dashed represents the chance level of a random classifier. (E) Represents the accuracy, recall, specificity, and f1 of linear SVM classifier

in the three classification tasks. SVM: support vector machine; ROC: receiver operating characteristic.

approach was adopted to obtain the parameters of four DCM
models of four resting-state networks at a group level. Two-
sample t-test was performed to identify the significance of
the effective connectivity measures in two groups. As shown

in Figure 3, there were significant differences in DCM model
parameters, in which the intensities of some connections became

positive in MDD while they were negative in HC participants. In

details, those connections included: the bidirectional connections
between MPFC and left LP, and both directions between MPFC

and PCC; the connection from right FEF to left IPS and
from left IPS to right IPS in DAN; the connections from

right LPFC to left LPFC, from left PCC to right LPFC, and
from right LPFC to right PCC in FPN; SN included the
connections from left RPFC to ACC and that from right RPFC
to ACC.

High Discriminative Power of the
Functional Connectivity Measures
Consensus features, which were defined as the common selected
features in each cross-validation fold, were identified and
ranked according to their weights assigned by the linear SVM
classifier, which generated 516 consensus features for the AAL
classification and 5,596 consensus features for the Brainnetome
classification. The region weight was defined as half of the
weight of connections in those consensus features and was
calculated separately for the AAL classification and Brainnetome
classification. Those consensus features from both classification
procedures were found to be mainly located in several brain
regions, including the hippocampus, inferior parietal lobe,
superior medial frontal gyrus, and precuneus in the left
hemisphere, right parahippocampal, frontal middle orbital gyrus,
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TABLE 1 | Coordinates used in spDCM analysis.

Resting-state network Region Center coordinates (HC group) Center coordinates (MDD group)

x y z x y z

DMN MPFC 3 57 −3 0 51 −6

DMN PCC 6 −60 27 9 −51 30

DMN LP_L −48 −63 33 −45 −63 30

DMN LP_R 51 −57 33 54 −63 30

DAN FEF_L −20 −6 64 −20 −6 64

DAN FEF_R 20 −4 64 20 −10 64

DAN IPS_L −36 −44 50 −36 −46 48

DAN IPS_R 38 −46 50 36 −46 48

FPN LPFC_L −42 36 30 −44 32 26

FPN LPFC_R 44 38 28 44 32 26

FPN PPC_L −38 −48 52 −38 −50 52

FPN PPC_R 38 −46 52 38 −52 52

SN ACC −2 20 36 0 20 32

SN RPFC_L −28 40 34 −32 42 30

SN RPFC_R 30 38 34 30 44 30

DMN: default mode network; DAN: dorsal attention network; FPN: fronto-parietal network; SN: salience network; MPFC: medial prefrontal cortex; PCC: posterior cingulate cortex; LP_L:

left lateral parietal; LP_R: right lateral parietal; FEF_L: left frontal eye field; FEF_R: right frontal eye field; IPS_L: left intraparietal sulcus; IPS_R: right intraparietal sulcus; LPFC_L: left

lateral prefrontal cortex; LPFC_R: right lateral prefrontal cortex; PPC_L: left posterior parietal cortex; PPC_R: right posterior parietal cortex; ACC: Anterior cingulate cortex; RPFC_L: left

rostrolateral prefrontal cortex; RPFC_R: right rostrolateral prefrontal cortex.

superior parietal lobule, medial pre-frontal thalamus, posterior
parietal thalamus, and inferior temporal gyrus in the right
hemisphere, which belonged to the default model resting-state
network; the bilateral superior temporal gyrus and amygdala,
left insula, right ventral agranular insula, left angular, which
belonged to the affective resting-state network; left calcarine,
left lingual, right cuneus, right superior occipital gyrus, which
belonged to the visual network, and the cerebellum regions
such as left cerebellum 7b, right cerebellum 3, vermis 7, and
vermis 8. For a better visualization of the consensus features and
regions in the AAL classification and Brainnetome classification,
a complex combination of graphs was created and shown in
Figure 4 for AAL classification and in Figure 5 for Brainnetome
classification. Colored lines in the two figures represent those
consensus features while its color and thickness proportional to
its weight assigned by the linear SVM classifier. Blocks in the
edge of the circle represent the weight assigned by the linear SVM
classifier.

Although the highest discriminative power connections in
both classification procedures were mainly located in the
several resting-state networks and cerebellum, there were slight
differences due to the different parcellation of the two templates.
The Brainnetome template is amore detailed division of the brain
compared to the AAL template, which resulted more consensus
features in Brainnetome classification. Besides, connections
between the cerebellum and other regions in Brainnetome were
assigned higher weights in the linear SVM classifier than AAL.
The weights assigned by classifier were more evenly distributed
in Brainnetome compared to that in AAL. We also found slight
differences for the cross resting-state network connections in two
classification procedures. The most cross networks connections

in Brainnetome were the connections between the cerebellum
and other networks while there was no significantly assemble
connection in cerebellum for the cross resting-state network
connections in AAL.

High Discriminative Power of the Effective
Connectivity Measures
Fifteen consensus features in spDCM classification process were
chosen, which could be divided into two groups: self-to-self
connections and one-to-another connections. Those consensus
features were ranked by their weights assigned by the linear SVM
classifier. The left LP, left LPFC, left PPC, right RPFC, and right
LRFC were assigned top 5 in the self-to-self connections. Those
connections including the connections from left IPS to right IPS,
from left LP to right PPC, from the left LPFC to right PPC, from
left IPS to right left FEF, from left IPS to right FEF were assigned
top 5 self-to-another connections. The details of this ranking
were listed inTable 2. Region weight was defined as the half of the
connections weight and the top 5 weighted regions included the
left LPFC, left LP, right LPFC, left IPS, and left PPC. The detailed
information of this ranking were listed in Table 3.

To further explore the advantages and disadvantages between
FC and EC, a ROI-to-ROI functional connectivity analysis
only using those ROIs used in spDCM classification was
performed. This results 15 × 14/2 = 105 dimensions features.
Following the same workflow in Figure 1, the functional
connectivity features were extracted and send to classifiers
and the classification results and each feature’s weight in
classifier was obtained. This classification was referred as resting-
state network functional connectivity classification (RSNFCC)
in the following paper. The best performance of RSNFCC
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FIGURE 3 | Coupling parameters of four DCM models obtained by bays model average. The connections colored by black paint not significant difference between

groups. Connections colored by red paint between groups represents that they are significant difference between groups.

achieved 78.33% accuracy (f1: 72.30%; AUC: 0.70) when using
the top 55 features and linear SVM classifier. For further
understanding of the relationship and difference between
effective and functional connectivity, the connection parameter
of FC and EC were plot in Figure S1 using the same form of
organization.

DISCUSSION

In this study, both functional connectivity and effective
connectivity were used as features to identify MDD patients from
health populations using multivariate analysis methods.
We found that effective connectivity achieved the best
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FIGURE 4 | The ranking of regions weight and feature weight from classifiers of whole functional connectivity analysis using AAL template. In the left panel, the box in

the ring represents brain regions and line connect two boxes represents functional connectivity of the two brain regions. Box size represents the size of the weight of

brain regions. Color and z-depth of the line represents the size of the weight. In the right panel, small ball represents brain regions whose different colors means they

belongs to different resting-state networks. Lines connect two small ball represents functional connectivity of two brain regions and its color represents the size of its

weight.

classification performance while functional connectivity
with two templates slightly lower than effective connectivity.
Both the functional connectivity and effective connectivity
show a diagnostic potential for MDD disgnosis but the effective
connectivity maybe more efficient comparing to functional
connectivity.

Altered Functional Connectivity in MDD
Altered functional connectivity in MDD was found in a majority
of previous studies (Buchanan et al., 2014; Pannekoek et al.,
2014; Kaiser et al., 2015; Dørum et al., 2017). Those altered
FCs were mainly located in several resting-state networks and
cerebellum. Bilateral hippocampus and parahippocampal gyrus,
anterior cingulate cortex, thalamus, inferior temporal gyrus,
posterior cingulate cortex, and medial prefrontal cortex, which
belonged to default mode network, were considered to make
great contributions in MDD (Gong and He, 2015). In this
study, the left hippocampus, left inferior parietal lobe, right
parahippocampal, medial pre-frontal thalamus, right parietal
thalamus were assigned high weight by the linear SVM classifier,
which were consistent with the previous study, suggesting that
those regions played an important role in the pathophysiology of
depression. The impaired FCs of DMN in MDD may be a main

biomarker for MDD diagnosis. Disturbances within the fronto-
parietal network are suggested to be strongly associated with the
cognitive performance in patients with depression (Brzezicka,
2013). The abnormalities of FC in the fronto-parietal network
have been reported in many MDD studies (Chen et al., 2017;
Nord et al., 2017; Vasudev et al., 2017; Yu et al., 2017). There is
one widely accepted hypothesis that the dorsal and lateral parts of
the PFC are associated with more “cognitive” aspects of behavior,
while the ventral and medial parts are mostly connected to
“emotional” aspects of information processing (Brzezicka, 2013).
One recent fMRI study found decreased activities in the parietal
gyrus accompanied by diminished activities in the prefrontal
cortex, and suggested the abnormalities within the dorsolateral
prefrontal cortex (DLPFC)-parietal network during the working
memory task. These studies revealed that the superior parietal
cortex worked together with the prefrontal cortex and played a
crucial role in cognitive neuroscience.

Besides the default model network, regions in other functional
networks also shared higher weights in the classification
procedure. For example, we found that the precuneus, parts
of inferior temporal gyrus, middle frontal gyrus located in
the attention network, parts of superior frontal gyrus involved
in the FPN, and the amygdala, insula, middle temporal pole
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FIGURE 5 | The ranking of regions weight and feature weight from classifiers of whole functional connectivity analysis using Brainnetome template. The meaning of

color and legend is similar to Figure 4.

in the affective network, which were consistent with previous
functional connectivity studies (Mayberg, 2003; Liu et al., 2010).
The altered functional connectivity between the temporal pole
and orbitofrontal cortex may reflect dysfunctions of visceral
monitoring in depression (Liu et al., 2010; Sheline et al., 2010).
Decreased functional connections between bilateral amygdala
and left anterior insula were observed in this study, as suggested
in a whole brain resting-state analysis (Veer et al., 2010).
Dysfunctions in the limbic-cortical connectivity have been served
as an important diagnostic marker for depression disorders
(Mayberg, 2003). Using ReHo, MDD exhibited significantly
decreased ReHo in the insula and in the cerebellum (Liu et al.,
2010). In line with previous studies (Lai and Wu, 2016; Xu L.-Y.
et al., 2017), we found that some cerebellum regions showed
high discriminative powers, such as left cerebellum 7b, right
cerebellum 3, vermis 7 and vermis 8, indicating the cerebellum as
a key node in the cognitive processing of MDDs (Lu et al., 2012).

Altered Effective Connectivity in
Resting-State Networks in MDD
Functional connectivity can be used to describe the abnormal
patterns of distributed activity, but it cannot tell us the
influence that one neuronal system exerts over another (Harrison
et al., 2003). Effective connectivity can describe the causal

influences that neural units exert over another, which is more
important for facilitating our understanding of ectopic foci
leading to pathological conditions. Granger causality analysis
(GCA), stochastic DCM and spDCM can be used to estimate the
effective connectivity. GCA is amodel-free, data-driven approach
for effective connectivity analysis, which can model the effective
connectivity of many nodes simultaneously. But application of
GCA to resting state fMRI is particularly controversial (Craddock
et al., 2013). Stochastic DCM can be used to analysis the
effective connectivity in resting state fMRI, which is different
from deterministic DCM because it do not ignore random
fluctuations or noise on hidden states. The DCM can identify
and quantify the effective connectivity that causes functional
connectivity. The spDCM is designed for the resting-state fMRI
effective connectivity analysis based on the observed functional
connectivity, which is more accurate and more sensitive to the
group difference compared to the stochastic DCM (Razi et al.,
2015). The resting-state fMRI signals convey fluctuations in
the low-frequency band typical within 0.01–0.08Hz, and the
low-frequency fluctuations are associated with the alterations
of the externally-oriented and internally-oriented system (Wang
et al., 2018). Furthermore, the effective connectivity estimated
by the spDCM could reflect the time varying fluctuations in
low-frequency neuronal states producing observed resting-state
fMRI data by estimating the parameters of their cross correlation
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TABLE 2 | Connections ranking of spDCM classification.

Source region Destination region Weight Resting-state

network

LP_L LP_L 1.137816 DMN

LPFC_L LPFC_L 1.056345 FPN

PPC_L LPFC_L 0.929206 FPN

IPS_L IPS_R 0.886355 DAN

LP_L PCC 0.860112 DMN

LPFC_L PPC_R 0.79765 FPN

IPS_L FEF_L 0.758806 DAN

IPS_L FEF_R 0.74761 DAN

RPFC_R RPFC_R 0.624026 SN

LPFC_R LPFC_R 0.582361 FPN

RPFC_L ACC 0.569644 SN

PPC_L PPC_L 0.469516 FPN

PPC_R LPFC_R 0.457239 FPN

PCC MPFC 0.420698 DMN

PPC_R LPFC_L 0.415485 FPN

DMN: default mode network; DAN: dorsal attention network; FPN: fronto-parietal network;

SN: salience network; MPFC: medial prefrontal cortex; PCC: posterior cingulate cortex;

LP_L: left lateral parietal; LP_R: right lateral parietal; FEF_L: left frontal eye field; FEF_R:

right frontal eye field; IPS_L: left intraparietal sulcus; IPS_R: right intraparietal sulcus;

LPFC_L: left lateral prefrontal cortex; LPFC_R: right lateral prefrontal cortex; PPC_L: left

posterior parietal cortex; PPC_R: right posterior parietal cortex; ACC: Anterior cingulate

cortex; RPFC_L: left rostrolateral prefrontal cortex; RPFC_R: right rostrolateral prefrontal

cortex.

functions or cross spectra (Friston et al., 2014). In this study,
spDCM was used to estimate the effective connectivity within
four resting-state brain networks (Friston, 2011). Many studies
have demonstrated that there was abnormal effective connectivity
in MDD compared to HC group (Kasess et al., 2008; Vai et al.,
2016; Li et al., 2017a; Wei et al., 2017).

DMN and FPN have been found to play an important
role in the neuropathology of MDD. DMN has been linked
to self-referential processing, while FPN has been linked to
environmental information processing (Cieslik et al., 2011).
In this study, effective connectivity from left LP to PCC
and the self-to-self connection of left LP were assigned high
weights, suggesting that they have the high discriminative power
in distinguish MDD from health populations. The PCC is
considered one of the hubs of the DMN with a general role
in attention modulation, and in episodic and working memory.
Declined influences from left LP to PCC in MDD compared
with HC group have been reported in a recent study (Li et al.,
2017b). This dysfunction of the connection may be related to
the impaired signals propagate from one region to another
in DMN. LP is associated with the episodic memory, and
increased efferent connections from LP after treatment in MDD
have been reported. By examining EC between amygdala and
orbitomedial prefrontal cortex (OMPFC) during a happy and
sad faces distinction task in both bipolar depressed (BD) and
MDD patients, found that the bottom-up amygdala-OMPFC
abnormalities of EC in the right hemisphere was found to be
specific to bipolar disorder (Almeida et al., 2009), which revealed
that the different pathophysiological mechanisms of the two type
of depression. EC between four DMN nodes has been estimated

TABLE 3 | Ranking of regions weight of spDCM classification.

Region Weight Resting-state network

LPFC_L 2.332789 FPN

LP_L 1.567872 DMN

LPFC_R 1.21872 FPN

IPS_L 1.196385 DAN

PPC_L 1.136585 FPN

IPS_R 0.946298 DAN

PPC_R 0.835187 FPN

PCC 0.640405 DMN

RPFC_R 0.624026 SN

FEF_L 0.536289 DAN

FEF_R 0.373805 DAN

ACC 0.284822 SN

RPFC_L 0.284822 SN

MPFC 0.210349 DMN

DMN: default mode network; DAN: dorsal attention network; FPN: fronto-parietal network;

SN: salience network; MPFC: medial prefrontal cortex; PCC: posterior cingulate cortex;

LP_L: left lateral parietal; LP_R: right lateral parietal; FEF_L: left frontal eye field; FEF_R:

right frontal eye field; IPS_L: left intraparietal sulcus; IPS_R: right intraparietal sulcus;

LPFC_L: left lateral prefrontal cortex; LPFC_R: right lateral prefrontal cortex; PPC_L: left

posterior parietal cortex; PPC_R: right posterior parietal cortex; ACC: Anterior cingulate

cortex; RPFC_L: left rostrolateral prefrontal cortex; RPFC_R: right rostrolateral prefrontal

cortex.

by a spDCMmethod and used to explore the changes before and
after 2-month treatment in MDD patients. MDD patients after
treatment showed significant decreased effective connections
from medial frontal cortex (MFC) toward PCC and toward
right parietal cortex (RPC) and significant increased effective
connections from the left parietal cortex (LPC) toward MFC,
PCC, and RPC. This result reveals that MFC maybe play an
important role in inhibitory conditioning of the DMN. In this
study, we found that left LP shared a high discriminative power
in distinguishing MDD, which may be related to the impaired
memory function in MDD.

FPN, also referred as executive network, plays a pivotal
role in control function, execution, and emotion processing.
It seems to be strongly associated with cognitive problems
in depression, especially those concerning executive functions.
The dysfunctions within FPN are most probably connected to
ineffective transmission of information between parietal and
prefrontal regions (Brzezicka, 2013). Dysfunctions of the FPN
in negative mood states of depression were found, which
was consistent with our study. We found that the effective
connections from left PPC to left LPFC, from left LPFC to right
PPC, from right PPC to left LPFC showed high discriminative
powers to identify MDDs from HCs. Bilateral LPFC were
assigned high region weight by those connections. The left
dorsal LPFC is well-known for top-down voluntary modulation
of positive and negative emotions (Beauregard et al., 2001).
Applying fast rTMS over the left PFC has been proved an
antidepressant effect (George et al., 1997). The cortical circuit
involving left frontal and right parietal regions is important in
depression, and there were decreased functional connections
between these regions in depression. The dysfunctions between
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the prefrontal and parietal regions may be a main reason that
those effective connections were assigned higher weighs by the
linear SVM classifier in the spDCM classification analysis.

There is evidence that MDDs showed increased attention
for negative stimuli and decreased attention for positive stimuli
(Disner et al., 2011). In this study, effective connections from
left IPS to right IPS, left FEF, and right FEF were assigned
high weights, revealing that those connections showed high
discriminative powers in distinguishing MDD from health
populations. IPS shows decreased brain activations in MDD
compared to HC and is associated with the attention function.
One recent study found that the left motor and the DAN showed
reduced power in the low-frequency range in patients with MDD
compared to healthy controls. Considering the role of DAN in
orienting attention based on internal goals, those connections
may contribute to the limited engagement with the external
environment and potentially to increased self-reflection in MDD
(Sambataro et al., 2017).

Our study found one effective connection from left RPFC to
ACC in SN. Altered functional connectivity between ACC and
frontal cortical regions in SN has been observed (Sheline et al.,
2010). The role of dorsal ACC is mediating the integration of
information across events in SN, so the effective connectivity
from left RPFC to ACC may be associated with the dysfunction
of information integration in MDD. SN is conceived as a
toggle system allowing mental switching between processing self-
referential and environmental information (Moran et al., 2013).
Impaired salience responses to positive stimuli may be a main
reason why MDD patients tend to make more concerns on the
negative things. As dorsal ACC plays an important role in this
switching, we speculate that the high discriminative connection
from left RPFC to ACC in our study may be related to this
dysfunction of switching (Yang et al., 2016).

Different Classification Performances
Using Functional Connectivity and
Effective Connectivity
Functional connections were applied as features in many
classification studies, in which a high accuracy and good
mechanistic interpretative power have been confirmed, but
the classification performances using effective connections
have not been explored. Effective connectivity can afford
better mechanistic interpretative than functional connectivity,
because it can model the causality interaction between two
neurons. Using the effective connectivity as a biomarker, the
pathophysiologic difference in the DMN was observed between
bipolar depression and unipolar depression (Liu Y. et al.,
2015), suggesting the potential ability of effective connectivity
as a biomarker for MDD diagnosis. We suppose that effective
connectivity will perform better than functional connectivity in
the classification analysis.

To our best knowledge, this is the first study to compare
the difference using EC and FC as features to identify patients
from healthy controls. Effective connectivity and functional
connectivity has closely relationship when using spDCM to
estimate the effective connectivity. Functional connectivity

adopts the cross-correlation function at zero lag as its
measures while spDCM uses cross spectra, whose Fourier
transforms correspond to cross-correlation function, to estimate
the coupling parameters of DCM models. Cross spectra is
a generalization of functional connectivity, so the effective
connectivity estimated by spDCM preserve information on
directed functional connectivity (Friston et al., 2014). In our
study, spDCM classification indeed has a better performance
compared with those classifications using functional connectivity
as features. And the difference between MDD and HC was
not significant for the functional connectivity, but there was
significant difference in the effective connectivity. This reveals
that effective connective may be more sensitive for detecting the
group difference. Besides the more accuracy and more sensitive,
the results obtained using effective connectivity can afford better
mechanistic interpretative than functional connectivity, as the
effective connectivity can provide the causality interaction of
two neurons, while functional connectivity can only provide the
correlation information of two brain regions.

Differences of the Classifiers
Performances in the Classification Analysis
In our study, we found that the linear SVM classifier achieved
the best performance in all classification process, which suggested
that the linear SVM was indeed a good classifier for fMRI data.
This finding was consistent with majority of previous studies
(Craddock et al., 2009; Wang et al., 2016; Saccà et al., 2017). For
example, using the linear SVM classifier, patients with depression
were successfully distinguished from healthy volunteers (R.
Cameron Craddock), One recent study achieved high accuracy in
object categories classification task using functional connections
from task-related functional neuroimaging as features and
SVM as the classifier. Besides, by comparing the classification
performances of Random Forest and SVM in a prediction task
of early multiple sclerosis, SVM was suggested to be better
than Random Forest. Combining our findings with the previous
studies, we speculated that the linear SVM classifier should be the
preferred classifier for this type of fMRI data analysis.

Limitations
One limitation is that we only explore inner-network effective
connectivity and do not consider the causality interaction
between networks. Dysfunction in the interaction between the
FPN, DMN, and the DAN were reported in many previous
studies (Buchanan et al., 2014; Sundermann et al., 2014; Wei
et al., 2015). In the further work, we will add the cross-networks
causal connection to feature space using spDCM to further
investigate whether the accuracy would be improved and search a
better combine of resting-state networks as biomarker for MDD
diagnosis.

Another limitation is that the template used in whole-brain
functional connectivity classification analysis has an important
impact to the result. To explore the influence of the template
in the whole-brain functional analysis, two templates (AAL
and Brainnetome) were used in the whole-brain functional
connectivity analysis. The classification performance of the
Brainnetome template is slightly higher than AAL template, but
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more features (connections) were employed. We can see that
through different templates to compute the FCs, there was no
big change for the accuracy and the accuracy maintained at a
higher value. The significant difference between the AAL and
Brainnetome template was that weights assigned by the classifier
were more evenly distributed in Brainnetome comparing to in
AAL. As FCs were computed by averaging the times series of
ROIs, the different division of brain regions have a great influence
on the functional connections. One previous study explored
the impact of different templates on the whole-brain functional
connectivity analysis and developed a fine-gained atlas using
spectral clustering method and achieved a good performance
comparing with other templates (Craddock et al., 2012). It
revealed that the choice of templates could impact the generated
connections at a certain degree. Our study showed that the
whole-brain functional connectivity classification maybe had a
certain degree of stability although different templates were used,
which need to be proved using more templates in future. Besides,
the sample size in this study is not enough to totally prove
that the effective connectivity is an efficient biomarker for MDD
diagnosis, we use a leave-one-out cross-validation to use as many
as sample in training and testing process and refer to the sample
size of other papers (Zeng et al., 2012; Liu F. et al., 2015). We will
use a larger sample size to verify our results in the future work.

CONCLUSION

In this study, both functional connectivity and effective
connectivity measures were used as features for the classification
analysis.We found that both functional and effective connectivity
show a diagnostic potential for MDD diagnosis, but effective
connectivity may be more efficient compared with functional
connectivity. The best performance achieved 91.67% accuracy
when we used the effective connectivity estimated by spDCM
using four resting-state networks. Those connections with high
discriminative powers identified by the classifier can afford better
mechanistic interpretative for the pathophysiology of MDD.
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Figure S1 | The connection parameters of the functional and effective connectivity

for MDD and HC groups. Fifteen regions of interest (ROI) defined in the DCM

analysis were used for the functional connectivity analysis. The colorbar showed

the connection intensity. MDD: major depressive disorder; HC: healthy control.
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