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The bi-articular m. gastrocnemius and the mono-articular m. soleus have different

and complementary functions during walking. Several groups are starting to use

these biological functions as inspiration to design prostheses with bi-articular actuation

components to replace the function of the m. gastrocnemius. Simulation studies indicate

that a bi-articular configuration and spring that mimic the m. gastrocnemius could be

beneficial for orthoses or exoskeletons. Our aim was to test the effect of a bi-articular

and spring configuration that mimics the m. gastrocnemius and compare this to a no-

spring and mono-articular configuration. We tested nine participants during walking

with knee-ankle-foot exoskeletons with dorsally mounted pneumatic muscle actuators.

In the bi-articular plus spring condition the pneumatic muscles were attached to the

thigh segment with an elastic cord. In the bi-articular no-spring condition the pneumatic

muscles were also attached to the thigh segment but with a non-elastic cord. In the

mono-articular condition the pneumatic muscles were attached to the shank segment.

We found the highest reduction in metabolic cost of 13% compared to walking with the

exoskeleton powered-off in the bi-articular plus spring condition. Possible explanations

for this could be that the exoskeleton delivered the highest total positive work in

this condition at the ankle and the knee and provided more assistance during the

isometric phase of the biological plantarflexors. As expected we found that the bi-articular

conditions reduced m. gastrocnemius EMG more than the mono-articular condition but

this difference was not significant. We did not find that the mono-articular condition

reduces the m. soleus EMG more than the bi-articular conditions. Knowledge of specific

effects of different exoskeleton configurations on metabolic cost and muscle activation

could be useful for providing customized assistance for specific gait impairments.

Keywords: bi-articular, mono-articular, exoskeleton, walking, gastrocnemius, soleus, metabolic cost, pneumatic
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INTRODUCTION

In most mainstream human-like robots (e.g., ASIMO, Sakagami
et al., 2002), each degree of freedom of every joint is controlled
by a separate actuator (Collins et al., 2005). Humans have
not only muscles that actuate one joint but also muscles that
cross two joints. These so-called bi-articular muscles, such as
the m. gastrocnemius and biceps femoris, at first seem to
be an unnecessarily complicated evolutionary adaptation for
actions that could in principle be accomplished by mono-
articular muscles. However, multiple sources of evidence point
toward the benefits of biological bi-articular muscles (van Ingen
Schenau, 1990). Bi-articular muscles facilitate the coupling
of joint movements and allow to control distal joints via
tendons connected to proximally located muscles, thereby
reducing distal mass (Cleland, 1867). They also transport
work from proximal mono-articular muscles to distal joints
(Elftman, 1939; Van Ingen Schenau et al., 1987) while requiring
lower shortening velocities from these muscles (Cleland,
1867; Bobbert and van Ingen Schenau, 1988). In walking,
the bi-articular m. gastrocnemius has functions that differ
from but are complementary to the functions of the mono-
articular m. soleus (Neptune et al., 2001; Gottschall and
Kram, 2005; Sasaki and Neptune, 2006; McGowan et al.,
2008).

Several authors have proposed to use biological bi-articular
muscles as inspiration in the design of robotic prostheses
and exoskeletons (Ferris et al., 2007; Junius et al., 2017).
Different groups are developing ankle prostheses with bi-
articular components (Endo et al., 2009; Grimmer and Seyfarth,
2009; Eslamy et al., 2015; Flynn et al., 2015; Willson et al., 2015;
Eilenberg, 2017) intended to mimic the function of the biological
m. gastrocnemius. This gastrocnemius muscle has its origin on
the medial and lateral epicondyles of the femur, inserts onto the
calcaneus and performs primarily plantarflexion and secondary
knee flexion. A simulation study (Eslamy et al., 2015) indicated
that the addition of a gastrocnemius-mimicking bi-articular
component could reduce the motor energy requirements of
robotic prostheses. With respect to assistive devices that work
in parallel with the body, different groups are designing
exoskeletons and exosuits with multi-articular couplings (Dean,
2009; Bartenbach et al., 2015), often with non-biologically
inspired configurations such as coupling plantarflexion with hip
flexion (van den Bogert, 2003; van Dijk et al., 2011; Asbeck et al.,
2013).

In contrast to studies in the field of prostheses, to
our knowledge, no group has experimentally evaluated a
configuration that mimics the biological m. gastrocnemius in
exoskeletons. Exoskeletons are defined as anthropomorphic
wearable devices that fit closely to the body and work in concert
with the operators movements (Herr, 2009) and can be used
for applications such as gait rehabilitation or assistance in
clinical populations and augmentation in healthy populations.
Exoskeletons with separate knee and ankle actuation have been
designed (Sawicki and Ferris, 2009; Chen et al., 2016). However, a
coupling similar to the m. gastrocnemius has only been evaluated
in simulation.

A musculoskeletal simulation study by Arch et al. indicated
that (mono-articular) ankle-foot orthoses do not sufficiently
replicate the function of the m. gastrocnemius (Arch et al., 2016).
Another simulation study by Baskar and Nadaradjane indicated
that a bi-articular spring could potentially reduce the metabolic
rate (Baskar and Nadaradjane, 2016). In their simulation they
found that this bi-articular spring reduced the metabolic rate of
the m. gastrocnemius, m. soleus and m. iliopsoas. It is uncertain
to what extent the aforementioned simulation predictions would
translate into experimental results. Previous simulation studies
of exoskeletons (Farris et al., 2014; Van Dijk, 2015; Sawicki
and Khan, 2016) often do not provide exact predictions of
experimental results (van Dijk et al., 2011; Farris and Sawicki,
2012; Collins et al., 2015), which is likely due to the difficulty of
predicting how awearer will interact with an assistive exoskeleton
(Gordon et al., 2006).

Our aim was to experimentally test the physiological and
biomechanical effects of bi-articular configurations that mimic
the biological m. gastrocnemius in healthy participants. To
understand the specific effects of a bi-articular actuation path
(based on the presence of bi-articular muscles in humans)
and a bi-articular spring (based on the study by Baskar and
Nadaradjane, 2016), we compared multiple configurations with
bi-articular and mono-articular configurations either with or
without a spring. We hypothesized that a mono-articular soleus-
mimicking configuration would lead to a higher reduction
in m. soleus EMG. We also hypothesized that bi-articular
gastrocnemius-mimicking configurations would lead to higher
reductions in m. gastrocnemius EMG. Finally, we hypothesized
that bi-articular gastrocnemius-mimicking conditions would
lead to higher reductions in metabolic rate compared to mono-
articular conditions because they would provide additional
assistance at the knee.

MATERIALS AND METHODS

Participants
We tested nine healthy participants (7♂, 2♀, 71 ± 2 kg,
177 ± 1 cm, 23 ± 1 year, values are mean ± standard error)
during walking at 1.25ms−1 on a treadmill (Figure 1). Since we
did not have a prior estimate for the effect size for different
exoskeleton configurations the number of participants was
chosen based on other exoskeleton studies that demonstrate
significant within-participant effects of different actuation types
with 7–10 participants (Sawicki and Ferris, 2008; Malcolm
et al., 2013; Collins et al., 2015; Mooney and Herr, 2016;
Galle et al., 2017; Quinlivan et al., 2017). The walking speed
of 1.25ms−1 was selected to reflect the preferred walking
speed of healthy adults (Rose et al., 1994) and to be similar
to the speed that is used in most exoskeleton studies with
healthy participants (Sawicki and Ferris, 2008; Malcolm et al.,
2013; Collins et al., 2015; Galle et al., 2017). All participants
of the study provided written informed consent prior to
participation. The ethics committee of the Ghent University
Hospital approved the protocol (Belgian registration number
B670220097074).
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FIGURE 1 | Methods. (A) Experimental setup. (B) Exoskeleton. Red circles and arrows indicate attachment locations and pulling force directions. (C) Schematic rear

view of exoskeleton in the bi-articular conditions showing the origin of the pneumatic muscle attachment on the medial and lateral side of the thigh segment.

Exoskeleton
The participants wore bilateral hinged knee-ankle-foot
exoskeletons powered by pneumatic artificial muscles (Figure 1,
Movie 1). The exoskeleton consisted of three shells that fit
around the foot, lower leg, and thigh. The shells were molded
with thermoplastic on a person with average morphology. The
shells were connected with orthopedic steel bars and hinge joints.
The steel bars were situated both on the medial and lateral side
of the leg.

The height of the hinge joint for the knee joint was adjusted
to match the participants’ anthropometry. The exoskeleton was
attached to the wearer by means of Velcro straps and tape around
the thigh and lower leg segment. The lower leg segment of the
exoskeleton weighed 0.65 kg per side, and the thigh segment
of the exoskeleton weighed 1.25 kg per side. The design of our
new bi-articular exoskeleton was based on our previous ankle
exoskeleton (Malcolm et al., 2013) with the addition of a thigh
segment. The final design of the anchor points was based on a
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series of pilot tests and designmodifications. The exoskeleton was
tethered to a stationary power source and control unit. This type
of tethered setup is similar to other knee-ankle-foot exoskeletons
intended for biomechanics studies (Sawicki and Ferris, 2009) but
it does not allow overground locomotion in contrast to certain
other knee-ankle-foot exoskeletons (Chen et al., 2016).

Actuation Control
We actuated the exoskeletons with pneumatic artificial muscles
of 3 cm in diameter. A computer program (LabView, National
Instruments, Austin, TX, USA) was used to trigger the onset and
end of the pneumatic muscle contraction at different percentages
of the stride cycle based on signals from heel switches (Mec,
Ballerup, Denmark). The pneumatic muscles were made to
contract and lengthen by opening and closing of pneumatic
valves (Festo, Esslingen, Germany). A constant supply pressure
of 3.5 bar was used. The exact behavior of the pneumatic
muscles was dependent on the inflation and deflation of the
pneumatic muscles, the force-pressure-length relationship and
the kinematics and the kinetics of the participant. This actuation
control system was similar to the system used in Malcolm et al.
(2013).

Conditions
We tested five conditions (Figure 2,Movie 1):

In the bi-articular plus spring condition, we attached the
proximal end of the pneumatic muscles to the medial and lateral
sides of the thigh segment via an elastic cord and a second
non-elastic cord in parallel with the elastic cord that served
to limit the maximum elongation. When pilot testing the bi-
articular plus spring condition, we determined based on subjective
perception that this second non-elastic rope was necessary to
achieve an assistive effect during push-off because pneumatic
muscles can only contract up to about 30% of their resting length.
We intended this configuration to assist both during the eccentric
and the concentric phase of the m. gastrocnemius contraction.

In the bi-articular no-spring condition, we attached the
proximal end of the pneumatic muscles to the medial and lateral
side of the thigh segment only via a non-elastic elastic cord. We
intended this configuration to assist mostly with the concentric
phase of the m. gastrocnemius contraction.

In the mono-articular no-spring condition, we attached the
proximal end of the pneumatic muscles to the shank. This
attachment configuration was roughly similar to that used in our
previous study (Malcolm et al., 2013) except that the participants
wore the non-functional thigh segment of the exoskeleton to
prevent the exoskeleton mass difference from confounding the
effects of differences in the actuation configuration. We did not
have a mono-articular plus spring condition because we were
not able to fit a pneumatic muscle that would contract over a
sufficient distance and a spring within the length of the shank
segment of the exoskeleton.

In the powered-off condition, the participants wore the entire
exoskeleton without actuators.

In the no-exoskeleton condition, the participants walked with
normal shoes without the exoskeleton.

FIGURE 2 | Metabolic rate. Vertical bars show the change in metabolic rate

compared to walking while wearing the exoskeleton powered-off. Differently

colored bars represent the different exoskeleton configurations (shown in

pictograms). The dashed gray line represents the difference in metabolic rate

between the no-exoskeleton and powered-off conditions. Error bars indicate

standard error. Shaded area indicates standard error for the no-exoskeleton

condition. Percentages indicate percent reduction. Symbols in the vertical bars

indicate significant differences compared to powered-off. Symbols below

brackets indicate significant differences between other exoskeleton

configurations. **p ≤ 0.01, *p ≤ 0.05.

In all active conditions (i.e., the bi-articular plus spring, bi-
articular no-spring, and mono-articular no-spring condition) we
positioned the pneumatic muscles such that they had a moment
arm of ∼11 cm vs. the ankle joint. In the bi-articular conditions,
the proximal attachment was positioned on the thigh such that
in the standing position, the moment arm vs. the knee joint was
about half of the moment arm vs. the ankle in order to mimic
the biological moment arm ratio of the m. gastrocnemius (Hof,
2001). In all three active conditions, we mounted the pneumatic
muscles such that they appeared to be maximally elongated with
the knee fully extended and ankle in 15◦ dorsiflexion. In the bi-
articular plus spring condition, the elastic cord was tensioned such
that it starts providing force with the knee fully extended and
the ankle in 5◦ plantarflexion. Both adjustments were performed
using tensioning screws on the pneumatic muscles while the
participant stood on a 15 or 5◦ slope. Both angles were selected
during pilot test in order to achieve that in the bi-articular plus
spring condition the pneumatic muscles would be maximally
elongated and start to apply force at initial forefoot contact (i.e.
the beginning of the eccentric phase of the plantarflexors) and the
bi-articular no-spring and mono-articular condition would reach
maximum elongation at the beginning of the concentric phase of
the plantarflexors.
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Protocol
Before the metabolic and biomechanical testing protocol,
the participants were allowed 18min (Galle et al., 2013) of
habituation to the different exoskeleton configurations with
different timings. We used a perception-based optimization
method (Caputo, 2015) to determine the optimal onset timing
control input in each active condition. In one trial, we gradually
shifted the onset timing from 23 to 53% of the stride until the
participant verbally indicated that the actuation onset timing
went past their perceived optimum. In another trial, we followed
the same procedure in the opposite direction. We then used the
mean values from the ascending and descending trials as control
inputs for further metabolic and biomechanical testing. For the
actuation ending, we always used a fixed control input of 60% of
the stride. In the metabolic and biomechanical testing protocols,
participants walked 4min in each condition and rested while
we changed the configurations. We randomized the order of the
conditions.

Measurements
We recorded respiratory O2 consumption and CO2 production
via indirect calorimetry (Oxycon Pro, Jaeger GMBH, Höchberg,
Germany). We recorded the force from the pneumatic muscles
at a rate of 1,000 fps with a load cell (210 Series, Richmond
Industries Ltd., Rearing, United Kingdom) mounted on the
distal end of the pneumatic artificial muscles such that the
load cell registered the total force from the pneumatic muscle
(and the series elastic cord and/or non-elastic cord in the bi-
articular conditions). The load cell data from one participant are
missing due to a device malfunction. We recorded the muscle
activation on the right leg of the m. tibialis anterior, soleus,
gastrocnemius medialis, gastrocnemius lateralis, vastus lateralis,
rectus femoris, biceps femoris, and gluteus maximus at a rate of
1,000 fps using surface EMG sensors (Noraxon, Scottsdale, AZ,
USA). We measured the kinematics of the right leg using sagittal
video recording at a rate of 200 fps (Basler AG, Ahrensburg,
Germany) and reflective markers on the forefoot, ankle, knee
and trochanter. We recorded heel contact times using the foot
switches of the exoskeleton. We processed indirect calorimetry
measurements for the last 2min of each 4-min condition. We
collected load cell, EMG, kinematic, and temporal data only
during the exoskeleton conditions (i.e., the active conditions and
the powered-off condition) over a 10-second period during the last
minute of each condition.

Data Processing
We calculated the metabolic rate using the Brockway equation
(Brockway, 1987) and a measurement of the resting metabolic
rate while standing to obtain the net metabolic rate for the
walking conditions. We rectified the EMG data, applied a band
pass filter (50–450Hz) and then calculated a moving root mean
square with a window of 100ms. We normalized the EMG
data to the average peak value per stride in the powered-off
condition. We filtered the marker data with a 12-Hz Butterworth
lowpass filter. Based on visual inspection, we excluded the EMG
data from 24 trials (out of 288 in total) due to the presence
of artifacts. We calculated the sagittal plane joint angles and

angular velocities of the ankle, knee, and hip joints. For each
joint angle, we subtracted the joint angle in the standing position.
We estimated the total exoskeleton ankle moment by multiplying
the load cell force by the moment arm vs. the ankle. In the bi-
articular condition, we estimated the exoskeleton knee moment
by multiplying the load cell force by the moment arm vs. the
knee. We calculated the total exoskeleton power vs. the ankle and
the knee by multiplying the exoskeleton moments by the joint
angular velocities, and we calculated the positive exoskeleton
work rates by integrating the positive portions of the exoskeleton
power over time and dividing by the stride time. We calculated
the step length by multiplying the step times obtained from foot
switches by the speed of the treadmill. All time-series data were
normalized vs. the stride time based on heel contact detection by
the foot switches.We calculated theminima andmaxima from all
normalized stride time data, and we calculated the onset timing
from the exoskeleton ankle moment data.

Statistics
For each time series and metric, we calculated the mean and
standard error. For each metric, we tested whether there were
any effects of exoskeleton condition using repeated measures
ANOVA. We used Mauchly’s test to verify sphericity and used
the Greenhouse-Geiser correction if the sphericity assumption
was violated. If the repeated measures ANOVA indicated a
significant effect, we evaluated pairwise differences using paired
t-tests using the least significant difference method. For the
actuation onset timing metric, we tested whether there was a
significant difference between the value in themono-articular no-
spring condition and the value of 42.5%, which was the average
optimal timing of earlier publications with a similar mono-
articular actuator configuration (Malcolm et al., 2013; Galle
et al., 2017) using a one-sample t-test. We also tested whether
the exoskeleton work rate had a significant linear effect on the
reduction of the metabolic cost using mixed-model ANOVA.
For the repeated measures ANOVA we reported the degrees of
freedom of the condition, the degrees of freedom of the error, the
f -value, the p-value, and the partial eta squared. For the t-tests we
reported the degrees of freedom, the t-value, the p-value, and the
Cohen’s d. For themixed-model ANOVAwe reported the degrees
of freedom, the t-value, the p-value, and the R2 between the
estimated metabolic cost (obtained using the equation obtained
from the mixed-model ANOVA) and the actual metabolic cost.
All statistical tests were conducted in MATLAB (MathWorks,
Natick, MA, USA).

RESULTS

Exoskeleton Mechanics
Participants selected actuation onsets of 36.1 ± 1.6, 38.4 ± 1.3,
and 40.9 ± 0.9% in the bi-articular plus spring condition,
bi-articular no-spring condition, and mono-articular no-spring
condition, respectively (Figure 3). Exoskeleton configuration had
a significant effect on the onset timing obtained from the
perception optimization (df cond. = 2, df err. = 14, F = 4.080,
p = 0.040, η

2 = 0.368). The selected actuation onset was
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FIGURE 3 | Exoskeleton moment. (A) Exoskeleton ankle moment vs. stride time. Colored lines indicate the population average of different conditions (shown in

pictograms). Shaded areas indicate standard error. (B) Actuation onset timing. (C) Peak moment. Differently colored bars represent the different exoskeleton

configurations. Error bars indicate standard error. Symbols next to brackets indicate significant differences between exoskeleton configurations. *p ≤ 0.05.

significantly earlier in the bi-articular plus spring condition than

in the mono-articular no-spring condition (df = 7, T = 2.927,
p = 0.022, d = 1.034). The selected actuation onset in the

mono-articular no-spring conditionwas not significantly different

from the average value from previous publications in which
similar mono-articular soleus-mimicking configurations were
used (Malcolm et al., 2013; Galle et al., 2017) (df = 7, T = 1.739,
p= 0.126, d = 0.61, one-sample t-test vs. 42.5%).

The peak exoskeleton ankle moments were 0.35 ± 0.04,

0.26 ± 0.04, and 0.33 ± 0.03Nm kg−1 in the bi-articular
plus spring condition, bi-articular no-spring condition,

and mono-articular no-spring condition, respectively.
Exoskeleton configuration had a significant effect on
the peak exoskeleton moment (df cond. = 2, df err. = 14,
F = 5.503, p = 0.017, η

2 = 0.440). The peak exoskeleton
ankle moment in the bi-articular plus spring condition was
higher than that in the bi-articular no-spring condition
(df = 7, T = 2.934, p = 0.022, d = 1.037). The elastic
cord in the bi-articular plus spring condition resulted
in an average angular stiffness of 2.662Nm◦−1 around
the ankle during the phase before the pneumatic muscle
contraction.

The peak exoskeleton positive ankle work rates were
0.065 ± 0.006, 0.044 ± 0.006, 0.103 ± 0.011W kg−1 per side
in the bi-articular plus spring condition, bi-articular no-spring
condition, and mono-articular no-spring condition, respectively.

The peak exoskeleton positive knee work rates were 0.110± 0.011
and 0.070 ± 0.013W kg−1 per side in the bi-articular
plus spring condition and bi-articular no-spring condition,
respectively.

Metabolic Rate
Net metabolic rates were 2.79 ± 0.12W kg−1 in the bi-articular
plus spring condition, 3.04 ± 0.15W kg−1 in the bi-articular
no-spring condition, 3.02 ± 0.12W kg−1 in the mono-articular
no-spring condition, 3.21 ± 0.13W kg−1 in the powered-off
condition, and 2.77± 0.12Wkg−1 in the no-exoskeleton condition
(Figure 2). Exoskeleton configuration had a significant effect
(df cond. = 4, df err. = 32, F = 4.832, p = 0.004, η

2 = 0.377)
on the net metabolic rate. The metabolic rate in the bi-articular
plus spring condition was 12.8 ± 3.1% lower than that in
the powered-off condition (df = 8, T = 3.734, p = 0.006,
d = 1.245), and lower than that in the bi-articular no-spring
condition (df = 8, T = 2.920, p = 0.019, d = 0.973). The
metabolic rate in the bi-articular no-spring condition was on
average 5.6 ± 2.7% lower than in the powered-off condition
but this difference was not significant (df = 8, T = 2.042,
p = 0.075, d = 0.681). The metabolic rate in the mono-articular
no-spring condition was 5.7 ± 2.5% lower than in the powered-
off condition (df = 8, T = 2.400, p = 0.043, d = 0.800).
The metabolic rate was 13 ± 4% lower in the no-exoskeleton
condition than in the powered-off condition (df = 8, T = 2.971,
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p = 0.018, d = 0.990). None of the exoskeleton conditions
reduced the metabolic rate below that of the no-exoskeleton
condition.

There were significant relationships between the metabolic
rate and positive ankle work (df = 30, T = 0.212, p = 0.042,
R2 = 0.126, mixed-model ANOVA), positive knee work (df = 30,
T = 3.392, p = 0.002, R2 = 0.260), and positive total
joint work (df = 30, T = 4.175, p < 0.001, R2 = 0.33)
(Figure 4).

EMG
Exoskeleton configuration had significant effects on the peak
EMG-values of the m. soleus (df cond. = 3, df err. = 18, F = 8.882,
p < 0.001, η

2 = 0.597) and biceps femoris (df cond. = 3,
df err. = 15, F = 3.895, p= 0.031, η2 = 0.438) (Figure 5).

The peak m. soleus EMG-values in the bi-articular plus spring
condition (df = 7, T = 4.314, p = 0.004, d = 1.525) and mono-
articular no-spring condition (df = 6, T = 4.031, p = 0.007,
d = 1.524) were lower than in the powered-off condition.

FIGURE 4 | Metabolic rate vs. exoskeleton power and work. (A) Exoskeleton ankle and knee power. Since pneumatic muscles can only apply a pulling force, positive

ankle power indicates ankle angular velocity in the flexion direction and positive knee power indicates knee angular velocity in the flexion direction. Colored lines

indicate the population average of different conditions. Shaded areas indicate standard error. (B) Change in metabolic rate vs. positive exoskeleton work. Large dots

indicate population average for each condition. Small dots indicate individual trials. Dashed lines indicate results from regression equation from mixed-model ANOVA.

R2 values are calculated based on Pearson’s correlation of estimated results from mixed-model ANOVA vs. actual metabolic results from all participants and

conditions. **p ≤ 0.01, *p ≤ 0.05.
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FIGURE 5 | EMG. (A) EMG vs. stride time. Different plots are from different muscles. Colored lines indicate the population average of different conditions (shown in

pictograms). Shaded areas indicate standard error. (B) Peak EMG values for each muscle and condition. Differently colored bars represent the different exoskeleton

configurations. Error bars indicate standard error. Symbols next to brackets indicate significant differences between exoskeleton configurations. *p ≤ 0.05. **p ≤ 0.01.

The peak m. biceps femoris in the bi-articular no-spring
condition was also lower than that in the powered-off condition
(df = 5, T = 3.033, p = 0.029, d = 1.238) and that in the bi-
articular plus spring condition (df = 5, T = 5.178, p = 0.004,
d = 2.114).

Kinematics
Exoskeleton configuration had significant effects on maximum
plantarflexion (df cond. = 3, df err. = 24, F = 44.481, p < 0.001,

η
2 = 0.848), maximum dorsiflexion (df cond. = 3, df err. = 24,

F= 12.089, p< 0.001, η2 = 0.602), andmaximum knee extension
(df cond. = 3, df err. = 24, F = 3.709, p = 0.025, η

2 = 0.317)
(Figure 6).

Maximum plantarflexion in the mono-articular no-spring
conditionwas higher than those in all other exoskeleton conditions
(df = 8, all T ≥ 7.594, all p < 0.001, all d ≥ 2.531). Maximum
plantarflexion in the bi-articular plus spring condition was higher
than that in the powered-off condition (df = 8, T = 2.949,
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FIGURE 6 | Kinematics. (A) Joint angle vs. stride time. Different plots are from different joints. Colored lines indicate the population average of different conditions

(shown in pictograms). Shaded areas indicate standard error. (B) Peak extension and flexion angles. Differently colored bars represent the different exoskeleton

configurations. Error bars indicate standard error. Symbols next to brackets indicate significant differences between exoskeleton configurations. *p ≤ 0.05. **p ≤ 0.01.

p = 0.019, d = 0.983). In all active exoskeleton conditions, the
maximum dorsiflexion angle before push-off was lower than that
in the powered-off condition (df = 8, all T ≥ 3.720, all p < 0.006,
all d ≥ 1.240).

Maximum knee extension (just before push-off) in the mono-
articular no-spring conditionwas higher than those in all the other

exoskeleton conditions (df = 8, all T ≥ 2.583, all p < 0.033,
all d ≥ 0.861). We found no significant effects of exoskeleton
configuration on hip joint angle or step length.

Overall, in the bi-articular conditions the coupling between
the knee and ankle angle was more similar to the powered-off
condition than in themono-articular condition (Figure 7).
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FIGURE 7 | Bi-articular coupling. Plot shows knee angle plotted on the vertical axis vs. ankle angle on the horizontal axis as in Robertson et al. (2004). Full lines

indicate stance phase. Dotted lines indicate swing phase. Colored lines indicate the population average of different conditions. Stick figures indicate lower limb

kinematics position at different points on the gait cycle. This figure shows that in the bi-articular conditions the coupling between the knee and ankle angle is more

similar to the powered-off condition.

DISCUSSION

Our aim was to evaluate an exoskeleton with a bi-articular
actuation configuration that mimicked the eccentric and
concentric behavior of the m. gastrocnemius and to compare this
condition with one that mimicked only the concentric behavior
of the m. gastrocnemius and one that mimicked the concentric
behavior of the m. soleus. We found that the bi-articular plus
spring condition provided the highest reduction in metabolic
cost (13% compared to powered-off, Figure 2). The bi-articular
no-spring condition and the mono-articular no-spring condition
both provided reductions of ∼6% compared to powered-off. In
contrast to our hypothesis we did not find the highest reduction
in m. soleus EMG in the mono-articular condition. On average
m. gastrocnemius EMG appeared to be lower in the biarticular
conditions than in the mono-articular condition but this was not
significant.

Peak exoskeleton ankle moment and exoskeleton ankle work
rate values in the active conditions were respectively around 17
and 23% of the biological moment and work rate values reported
in Winter (1983). In the bi-articular conditions there was
an exoskeleton knee flexion moment and positive exoskeleton
knee flexion work during the phase when the biological knee
moment is in the extension direction and the biological knee

work is negative (Winter, 1983) so the knee action of the
exoskeleton was different than the action of the net of all the
biological kneemuscles. However, it is known that non-biological
exoskeleton behavior can sometimes be more effective than
biological behavior (Mooney and Herr, 2016; Uchida et al., 2016).

The reduction in the m. soleus EMG in the mono-articular
no-spring condition is consistent with results from other studies
showing that mono-articular ankle exoskeletons can reduce the
m. soleus EMG (Sawicki and Ferris, 2008; Galle et al., 2013, 2017).
The fact that the reduction in the m. soleus EMG is not the
highest in themono-articular no-spring condition despite the fact
that in this condition the assistance is in parallel with the m.
soleus may have been due to the higher maximum plantarflexion
in the mono-articular no-spring condition (Figure 6). It appears
that the participants utilized the exoskeleton assistance in that
condition to increase plantarflexion instead of maximizing
reductions in the m. soleus EMG while keeping kinematics
invariant. Similar kinematic changes have also been observed
in other studies with ankle exoskeletons and exosuits (Koller
et al., 2015; Mooney and Herr, 2016; Quinlivan et al., 2017).
The absence of a similarly large increase in plantarflexion in the
bi-articular conditions may have been because the attachment
points of the pneumatic muscle came closer to each other when
the knee started to flex during push-off. Overall it appears that
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the bi-articular conditions allowed for more natural knee and
ankle kinematics than the mono-articular condition (Figure 7).
For future exoskeleton designs it appears that this type of bi-
articular configuration could be useful if the objective is to assist
while maintaining kinematics that are as close as possible to
natural biological kinematics.

Though we did not find increases in knee flexion in the bi-
articular conditions, we did find reductions in the biceps femoris
EMG at the end of swing. Because the biceps femoris is in part a
knee flexor muscle it could be that the higher reduction in biceps
femoris EMG is because the bi-articular conditions effectively
assisted the knee flexion function. Although it seems logical that
we did not find these reductions in the m. biceps femoris EMG in
the mono-articular condition, we know from other studies that
the m. biceps femoris EMG can actually also be reduced with
a mono-articular exoskeleton, for example by providing higher
assistive moments (Galle et al., 2017).

The additional assistance with knee flexion may have
contributed to our finding of the highest reduction in metabolic
rate in the bi-articular plus spring condition. We found that the
sum of the positive ankle and knee work from the exoskeleton
had the strongest correlation with the metabolic rate reduction
(Figure 4). It appears that this work sum was the highest in the
bi-articular plus spring condition due in part to the additional
work delivered at the knee. Another explanation is that the
bi-articular plus spring condition provided the highest negative
work assistance at the ankle thanks to the early actuation time
selected by the participants and the elastic element (Figure 3).
Following the same hypothesis that was suggested in a study
with an elastic ankle exoskeleton (Collins et al., 2015) the
additional assistance during the isometric contraction phase of
the biological plantarflexors could explain the higher metabolic
reduction in the bi-articular plus spring condition.

The participants preferred earlier actuation onset timing in
the bi-articular plus spring condition than in the mono-articular
no-spring condition. It has been suggested that due to attributes
such as low weight and elastic behavior, pneumatic muscles
are useful for applications involving human interaction, such as
exoskeletons (Daerden and Lefeber, 2002). However, it is also
known that the contraction forces of pneumatic muscles are
highest when they are elongated, and that pneumatic muscles
can cause the ankle to plantarflex earlier than normal (Gordon
et al., 2006). Furthermore, a simulation study of walking with
an elastic ankle-foot orthosis showed that a soleus-mimicking
mono-articular orthosis could cause unnatural premature knee
extension during midstance (Arch et al., 2016). This inelastic
pneumatic muscle behavior at maximum elongation combined
with the potential to cause unnatural knee extension when
actuation would be too early may explain why the participants
preferred a later actuation onset timing in the mono-articular
no-spring condition.

A limitation of our study is that the timing for each
condition was selected based on perception tests. The perceived
optimal timing in the mono-articular no-spring condition was
not significantly different from the optimal timing found in
previous studies (Malcolm et al., 2013; Galle et al., 2017), which
suggests that the participants were relatively good at identifying

their optimal timing. However, we do not have direct evidence
that the participants correctly selected the optimal timing in the
bi-articular conditions. Another limitation is that the actuator
configuration was not the only difference between the conditions;
there were also differences in other parameters such as timing,
peak moment, work, etc. It is impossible to vary one parameter
in isolation and keep every other actuation parameter constant
because changes in exoskeleton parameters usually also change
the kinematics (Galle et al., 2015; Koller et al., 2015; Mooney and
Herr, 2016; Quinlivan et al., 2017). This challenge seems to be
common in the field, and as far as we know, there are only a
very small number of experimental studies that describe within-
subject comparisons of exoskeleton conditions (Ding et al.,
2017). In an ideal case, either a constant rate of work should
be delivered in all the conditions or all the parameters of the
entire actuation profile should be optimized for each condition.
Delivering a constant rate of work in all conditions would allow
to answer the question which is the best configuration to deliver
a certain rate of work. In the current experiment it could be
that the bi-articular plus spring provided the highest metabolic
cost reduction simply because this allowed to provide more
mechanical work assistance to the ankle plus the knee. However,
recent studies learn that exoskeleton mechanical work only is not
necessarily related to reduction in metabolic cost (Jackson and
Collins, 2015; Zhang et al., 2017). Optimizing the entire actuation
profile in order to identify the best profile for each configuration
would require using human-in-the-loop optimization (Zhang
et al., 2017). However, this approach was not feasible at the
time of the data collection in our study. Another limitation in
the interpretation of the results is that we only calculated the
total power from the pneumatic muscle (and the series elastic
cord and/or non-elastic cord in the bi-articular conditions).
Calculating the power from each component separately would
allow to discuss how each component contributes to the power
delivered by the exoskeleton (Eslamy et al., 2015; Yandell et al.,
2017). An alternative approach to conduct our study could have
been to use two single joint actuators: one at the ankle and one at
the knee. By using two separate actuators it would be possible
to separate the assistive effects at the ankle and the knee. The
two actuators could be programmed to behave as if there is a
biarticular connection from the foot to the thigh or even different
combinations of ankle and knee actuation could be tested. The
fact that the actuation profiles were not fully optimized probably
contributed to the fact that none of the exoskeleton conditions
reduced the metabolic cost below the level of walking without an
exoskeleton.

Another reason why we did not find reductions in metabolic
cost below that of walking without an exoskeleton may have been
the additional mass of the thigh segments of the exoskeleton.
While our exoskeleton weighed relatively less than other knee-
ankle-foot exoskeletons such as the ones from Chen et al. (2016)
(3.5 kg for one side) and Sawicki and Ferris (2009) (2.9 kg for
one side) it still weighed a considerable total of 1.9 kg per side.
Based on a literature regression equation (Browning et al., 2007),
we estimated that the weight of the thigh segments would have
caused a penalty in metabolic cost of 6.7%. The metal bars
on both the medial and lateral side of the legs might have
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encumbered walking and caused participants to take wider steps.
Some designs from other exoskeletons that use struts only on
the lateral side of the leg might solve this problem (Suzuki
et al., 2007; Esquenazi et al., 2012). Our exoskeleton design used
a simple hinge joint for the knee, whereas the knee actually
has a moving axis of rotation (Witte et al., 2017). The use
of design principles from soft exosuits for the knee (Wehner
et al., 2013; Park et al., 2014) could potentially both help reduce
the weight of our device and resolve problems with joint axis
alignment.

For clinical application of our exoskeleton the design and
actuation profiles would need to be optimized. For example, the
optimal timing could be different for every single patient as was
found in stroke patients in Awad et al. (2017). It is unknown if
the biarticular configuration and spring would have benefits in
different populations such as patients since the current study was
only conducted in a small sample of nine healthy volunteers and
at a higher walking speed than patients typically use.

In conclusion, we found that a bi-articular exoskeleton
configuration that mimics the m. gastrocnemius can reduce
the metabolic cost of walking and reduce biceps femoris
EMG. The following factors could have contributed to the
higher reduction in metabolic rate in the bi-articular plus
spring condition: closer to normal ankle and knee kinematics,
additional assistance with knee flexion and higher total
mechanical work assistance. However, we do not know
to what extent each of these factors contributed to the
metabolic cost result. Future exoskeleton designs could leverage
each of these factors, possibly with different exoskeleton
designs than ours, for example with separate ankle and
knee actuation or with more lightweight and soft structures.
Knowledge about specific effects of exoskeleton configuration
on metabolic costs and muscle activation could be applied to
providing customized assistance for different gait impairments
or injuries and could also lead to novel experiments aimed at

investigating the separate roles of the m. gastrocnemius and
soleus.
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Movie 1 | Participant walking in different exoskeleton configurations. Video shows

the bi-articular plus spring condition, bi-articular no-spring condition,

mono-articular no-spring condition, powered-off condition, and no-exoskeleton

condition.

Data Sheet 1 | Study dataset containing results for metabolic cost, exoskeleton

kinetics, EMG and kinematics. The data is saved in .mat-format and can be

opened with MATLAB. Data is organized similar to exoskeleton datasets from

Jackson and Collins (2015). Timeseries variables are stored as three-dimensional

matrices where the first dimension is stridetime, the second dimension is

participant number and the third dimension is condition number. Metric variables

are stored as two-dimensional matrices where the first dimension is participant

number and the second dimension is condition number. The conditions are

numbered as follows: 1 = bi-articular plus spring condition, 2 = bi-articular

no-spring condition, 3 = mono-articular no-spring condition, 4 = powered-off

condition, 5 = no-exoskeleton condition.
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