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Brain-computer interfaces (BCIs), independent of the brain’s normal output pathways, are

attracting an increasing amount of attention as devices that extract neural information.

As a typical type of BCI system, the steady-state visual evoked potential (SSVEP)-based

BCIs possess a high signal-to-noise ratio and information transfer rate. However, the

current high speed SSVEP-BCIs were implemented with subjects concentrating on

stimuli, and intentionally avoided additional tasks as distractors. This paper aimed to

investigate how a distracting simultaneous task, a verbal n-back task with different mental

workload, would affect the performance of SSVEP-BCI. The results from fifteen subjects

revealed that the recognition accuracy of SSVEP-BCI was significantly impaired by the

distracting task, especially under a high mental workload. The average classification

accuracy across all subjects dropped by 8.67% at most from 1- to 4-back, and there

was a significant negative correlation (maximum r=−0.48, p< 0.001) between accuracy

and subjective mental workload evaluation of the distracting task. This study suggests

a potential hindrance for the SSVEP-BCI daily use, and then improvements should be

investigated in the future studies.

Keywords: brain–computer interface, SSVEP-BCI, mental workload, n-back, distracting task

INTRODUCTION

Brain-computer interfaces (BCIs), which allow individuals to communicate independently of
the brain’s normal output pathways of peripheral nerves and muscles, have attracted increasing
amounts of attention in recent years. Individuals with motor disabilities can control external
devices effectively using BCI systems that decode different patterns of electroencephalography
(EEG). As a typical EEG pattern in BCIs, a steady-state visual evoked potential (SSVEP) is elicited
by a visual stimulus blinking at a frequency higher than 6Hz (Vialatte et al., 2010; Luis Fernando
and Jaime, 2012). An SSVEP can be obviously recorded in the visual cortex (especially the V1 area)
as a nearly sinusoidal oscillatory waveform with the same fundamental frequency as that of the
stimulus, and often includes certain higher harmonics (Liu et al., 2014). When subjects use SSVEP-
BCIs, multiple flickers with different stimulation properties (e.g., frequency and phase) were shown
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in the screen, and each of them encodes a different command
(e.g., wheelchair movement). Subjects select one of the
commands by focusing on one of the flickering stimuli, and
related frequency or phase components would be modulated in
their recorded EEG. By analyzing the generated SSVEP, the BCI
system tries to identify which stimulus the subject selected.

Recently, SSVEP-BCIs have received increasing attention in
BCI research due to their high signal-to-noise ratio (SNR)
and information transfer rate (ITR). Furthermore, they can
provide a large number of target sets and require little or
even no extensive user training. Nakanishi and Wang et al.
(Nakanishi et al., 2014) built a high-speed 32-target SSVEP-BCI
by mixing frequency and phase coding with a computer monitor.
Canonical correlation analysis (CCA) and SSVEP training data
were combined for target detection, which permitted the average
online ITR to reach 166.91 bits/min. Chen et al. (2015a)
designed a filter bank canonical correlation analysis (FBCCA)
to detect SSVEP without training data. In addition, an online
ITR of 151.18 ± 20.34 bits/min was obtained under a 40-target
frequency coding SSVEP-BCI. Subsequently, Chen et al. (2015b)
designed a 40-character speller and developed a user-specific
target identification algorithm using individual calibration data,
reaching 60 characters (∼12 words) per minute. Furthermore,
SSVEP-BCIs have been used for clinical applications and could
also be suitable for patients suffering from amyotrophic lateral
sclerosis (ALS) (Hsu et al., 2016), locked-in syndrome (Combaz
et al., 2013; Lesenfants et al., 2014), and other forms of paralysis
(Muller et al., 2015; Lin and Hsieh, 2016). Lin and Hsieh
(2016) implemented a low-cost wireless SSVEP-BCI for paralyzed
patients to control several devices in a living room, and obtained
an acceptable performance. Combaz et al. (2013) compared both
P300- and SSVEP-BCIs for patients with locked-in syndrome,
and found the SSVEP-BCI to be a faster, more accurate, less
mentally demanding, and more satisfying BCI.

Nevertheless, the existing SSVEP-BCIs, especially high-speed
BCIs, provide performances that are almost satisfactory under
solely laboratory situations. Under such conditions, other brain
activities due to distracting mental tasks were avoided, and
only the EEGs evoked by the experimental procedures were
recorded and analyzed. However, when using a BCI to output
information, the human brain thinks and generates information,
then the brain controls the BCI for output. Thesemental activities
occur simultaneously. This process is similar to the thinking and
writing process, in which the human brain runs two processes.
Both of these processes compete with each other for its resources,
and different levels of mental tasks will lead to varying degrees of
interference. In the example of the thinking and writing process,
the writing efficiency is different when the focus is on an easy
word compared to a difficult one, and the possibility of writing
errors also varies. Recently, the researchers studied the BCI
efficiency in which the subjects performed both the BCI task and
an additional mental activity. Researchers Kaethner et al. (2014);
Ke et al. (2016) have found that the variation of mental states
significantly affected the performance of event-related potential
(ERP)-based BCIs. We previously published a paper (Ke et al.,
2016) covering an investigation into the effect of mental activities
on ERP-BCIs by verbal n-back stimuli during the training and

testing of ERP-BCIs. The results showed that the temporal-
occipital N200, the late reorienting negativity component, and
features for classification decreased with an increase in mental
workload. As expected, the performance of the ERP-BCI declined
with rising levels of mental workload of the distracting task.
Moreover, when classifiers were built under conditions of high
mental workload, the performance was significantly improved
as opposed to the previous performance under the speller-only
conditions. Another study on two BCI tasks (Frenzel et al.,
2011) designed a matrix speller where eye fixation and attention
were separated for the purposes of ERP detection. The results
showed that the performances of either task can be realized
independently, however the performance of the BCI task would
be disturbed when the distracting task was performed.

As the performances of SSVEP-BCIs are acceptable for
application in some environments, we address them in this
paper using a paradigm that adds another distracting task to
an SSVEP-BCI. In terms of signal types, as for BCI control, the
most important component in an SSVEP should be the stimulus-
evoked potential, which is an exogenous signal that is determined
by external physical stimuli and less susceptible to perceptual
and cognitive processes. Therefore, an SSVEP-BCI would not
be affected easily by a distracting task. However, considering
the attention competition and feedback procedures in SSVEP-
BCI, the SSVEP in this condition should contain the results after
cognitive processing. Although the relationship between SSVEP
and ERP is unclear, certain researchers (Capilla et al., 2011)
suggested that visual steady-state responses can be explained
as a superposition of transient ERPs. Moreover, correlations
between certain ERP components, such as the N100 (Kramer
et al., 1995; Ullsperger et al., 2001; Allison and Polich, 2008), the
N200 (Kramer et al., 1995), and the positive–negative component
around 200ms (Missonnier et al., 2007; Pratt et al., 2011), and
cognitive loads have been found. As a whole, however, there is
insufficient evidence of the presence of weakened SSVEP-BCI
effects suffered by distracting task, and this is what we propose
to investigate in this paper. According to these backgrounds, we
hypothesize that an SSVEP-BCI may be affected by a distracting
task.

METHODS

Participants and Tasks
Fifteen healthy subjects (seven males, mean age: 23.5 ± 1.0
years) voluntarily participated in the experiment and provided
informed consent before participating. The study was approved
by the institutional review board of Tianjin University and the
ethics committee of school of precision instrument and opto-
electronics engineering. All subjects were right-handed, with
normal or corrected-to-normal vision. None of them had a
history of psychiatric or neurological disorders.

The subjects were seated ∼70 cm from a computer monitor
in a room illuminated with sufficient daylight. The stimulus
program was developed by Psychophysics Toolbox Version 3
(Brainard, 1997) under MATLAB and presented on a 21.5-inch
LCD screen with a resolution of 1,920× 1,080 pixels and a refresh
rate of 60Hz.
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In this paper, a parallel task experiment was constructed using
an SSVEP-BCI and verbal n-back working memory task. Subjects
performed a reactive SSVEP-BCI task where they used their
attention to gaze the target stimuli by guided. The distracting
n-back task played a role that interfered with subjects operating
the SSVEP-BCI, and was unrelated to the BCI task. As one of
the most popular experimental paradigms for studies on working
memory, n-back tasks require subjects to monitor the identity of
a series of verbal stimuli (e.g., letters and words) or nonverbal
stimuli (e.g., shapes, faces and pictures) and indicate when the
currently presented stimulus is the same as the one presented n
trials earlier (Owen et al., 2005). For n-back tasks, n is a controlled
variable to make subjects experience different levels of mental
workload. In the whole period of an n-back task, subjects should
keep remembering number n, and a sequence update is needed
when new n occurs. In our experiment, verbal 1-, 3-, and 4-
back tasks were performed, which presented three rising levels
of mental workload conditions and depicted the intensity of the
interference.

As shown in Figure 1, each condition comprised four blocks
and all twelve blocks were presented in a random sequence. Each
block was composed of (n + 20) trials (n = 1,3,4), and the last
20 trials were used for responses and further analysis in n-back
tasks. At the beginning of each trial, four white squares of 100 ×
100 pixels were placed at a distance of 200 pixels from each other
vertically and horizontally on a black background. Participants
were required to fix their eyes on the target square, which had
been marked with a red cross (1.5 s). Four stimulus squares then
flickered at 7, 11, 13, and 15Hz, and SSVEPs were provoked by
the target square flickering (3 s). After the flicker finished, a cross
was presented at the center, and subjects were required to turn
the gaze to it and wait for 1 s. Then a letter was presented at the
center, and subjects were asked to compare the letter with the
former nth (n= 1,3,4) letter and decide whether they matched by
pressing the “left” (positive) or “right” (negative) keys as quickly
as they could (2.5 s). Regarding the 3-back block, for example,
if the letters presented in the prior three trials were “W,” “I,”
and “S,” and the fourth trial showed “W,” the “left” key would
have to be pressed to indicate the fact that there was a match
with the first trial, and if the fifth trial showed “K,” the “right”
key would have to be pressed to indicate the fact that there was
no match with the second trial. In each block, 50% of the trials
matched while 50% did not match. The response accuracies and
response times were recorded and further analyzed for behavioral
analysis. At the end of each block, subjects were asked to complete
a rating scale mental effort (RSME) (Verwey and Veltman, 1996)
to evaluate their mental workload with a score from 0 to 150 in
the previous block. Subjects were then prompted to take a break
for at least 1min. In a total of 12 blocks, 20 trials of SSVEP data
were obtained for each of 4 frequency stimuli and each n-back
condition. It is important to emphasize that when the SSVEP-
BCI task is executed, the characters in the n-back task are not
displayed, which avoids the problem of the prompted gaze shift.

In brief, subjects were ensured to complete two tasks at the
same time in this experiment. The first task is the usual SSVEP-
BCI task, that is, subjects should use their attention to select the
target stimulus frequency. The second task is a distracting task,

the n-back task, and the bigger the n, the more attention it needs
to be devoted in this task. Then, in this experiment, the subject
could not put all his attention into the BCI task and his attention
would be affected by the distracting task. The performance of the
SSVEP-BCI operation is evaluated by the classification accuracy,
and the situation of different mental workload of distracting tasks
is compared.

EEG Data Acquisition and Preprocessing
Subjects were fitted with a Neuroscan 40-channel Quik-Cap,
using 32 Ag/AgCl scalp electrodes, positioned according to the
international 10/20 system. Electrode impedances were kept
below 5 k�. EEG data were acquired using a Neuroscan NuAmps
system at a sampling frequency of 1,000Hz. Electrodes were
initially referenced to the right mastoid (A2 channel) and
grounded to the vertex.

During the preprocessing of the raw data obtained from the
EEGs, data were re-referenced to the Fz channel at first. In this
way, more obvious SSVEPs would be observed in the visual
cortex, and higher classification accuracies would be achieved.
A third-order band-pass filter from 6 to 80Hz was then used
for the data from each channel. The filter was a zero-phase
Chebyshev type I infinite impulse response (IIR) filter, and it
was implemented by the filtfilt() function in MATLAB. For each
block, EEG data epochs comprising SSVEP signals (3 s in total)
were extracted according to event labels generated by the stimuli.
According to previous research (Di Russo and Spinelli, 1999), a
latency delay due to the visual system should be considered, and
the SSVEP data was extracted from 0.12 to 3.12 s after the SSVEP
stimuli began. For an improved discrimination accuracy, the O1,
Oz, and O2 channels were selected for further SSVEP detection.
To summarize, for each of the three n-back conditions, 80 trials
of SSVEP signals of 3 s were used for further identification, which
maintained an equal trial number for each frequency.

SSVEP Amplitudes and Recognition
Amplitude and Signal-to-Noise Ratio of SSVEPs
For better presentation of the SSVEP harmonic components, the
amplitude spectra and SNRs were calculated as features in the
frequency domain for SSVEP. In this study, the SSVEP raw data
were initially processed to remove the baseline drift. Then, for
every trial, an SSVEP of 3 s was used for calculating the amplitude
spectrum y(f ) using a 3,000-point fast Fourier transform (FFT).
The SNR was defined as the ratio of y(f ) to the mean value of the
neighboring frequency bands:

SNR = 20 log10
K × y(f )

∑K/2
k=1

(y
(

f + k1f
)

+ y
(

f − k1f
)

)

Where1f is the frequency resolution in the amplitude spectrum.
In this study, 1f is 0.33Hz and K is set to 6. For each trial, the
amplitude spectrum of SSVEP was estimated and then used to
calculate the SNR. The SNR was then averaged across 20 trials for
each frequency.

SSVEP Recognition Methods
In this paper, data containing SSVEP epochs after preprocessing
were used for detection to evaluate the BCI performance under
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FIGURE 1 | Experimental procedure. During SSVEP flicker period, four stimulus squares flickered with the frequency of 7, 11, 13, and 15Hz respectively.

distracting task with diverse mental workload. As for the
identification of SSVEP, CCA was first used for multichannel
SSVEP detection by Lin et al. (2007) and has been regarded as
a typical algorithm. Several similar methods based on CCA (Bin
et al., 2009; Chen et al., 2014, 2015a,b; Nakanishi et al., 2014)
have been published for SSVEP detection and extraordinary
ITRs have been achieved. Considering that the BCI performance
might also be influenced by the classification method, this might
lead to limited results when using just one single method. As a
comparison, three kinds of recognition methods were used for
the classification of SSVEP, and the common trend was expected
to be found:

(A) Standard CCA. CCA is a multivariable statistical method
used when there are two sets of data between which exists a
degree of underlying correlation (Lin et al., 2007). Canonical
correlations between multichannel SSVEPs and reference
signals on each stimulus frequency were calculated in this
paper. The frequency of reference signals possessing the
maximum correlation is regarded as the frequency of the
target SSVEPs.

(B) Filter bank CCA (FBCCA). Filter bank analysis is used
to decompose SSVEPs into sub-band components, such
that independent information embedded in the harmonic
components can be extracted more efficiently for enhancing
the detection of SSVEPs (Chen et al., 2015a). The filter
bank method consists of three major procedures: (i)
sub-band decomposition, (ii) feature extraction for
each sub-band signal, and (iii) target identification
by CCA.

(C) SSVEP template-based CCA (TCCA). Individual calibration
data has been used as individual SSVEP templates in
reference signals to improve target detection (Nakanishi
et al., 2014). In the paper by Nakanishi, the training
SSVEP template signal that maximized the weighted
correlation value was selected as the SSVEP template signal
corresponding to the target. In our analysis, classifiers
of different n-back tasks were all trained on 1-back
data and were then used to test 1-, 3-, and 4-back
data.

Statistical Analysis
In this paper, we used SPSS software (IBM SPSS Statistics,
IBM Corporation) to perform statistical analysis. A One-way
analysis of variance (ANOVA) was used to test the difference
of behavior and classification accuracies among different n-back
conditions. The welch correction was applied if the data did not
conform to the normality assumption by the homogeneity of
variance test. The post-hoc pairwise comparisons were Bonferroni
corrected. A paired t-test was applied to compare the difference
between the 1- and 4-back in SNRs. The alpha was set
to 0.05.

RESULTS

Behavior and RSME
The behavior performance of the n-back tasks is shown in
Figures 2A,B, where the error bars represent the standard
deviations across subjects. The response accuracies were
97.75±2.07%, 92.83 ± 4.57%, and 91.33 ± 6.02% for the 1-,
3-, and 4-back tasks, respectively. The reaction latencies were
0.98 ± 0.15 s, 1.10 ± 0.17 s, and 1.10 ± 0.16 s for the 1-, 3-
, and 4-back tasks, respectively. By one-way ANOVA, although
the difference in reaction time was insignificant [F(2, 42) = 2.74,
p > 0.05], a significant difference in accuracy was found between
the n-back tasks [F(2, 42) = 8.26, p < 0.001]. Furthermore, post-
hoc pairwise comparisons showed that the response accuracy
of the 1-back task was significantly higher than those of the 3-
back (p < 0.05) or 4-back (p < 0.05) tasks. The same trend
in RSME scores is shown in Figure 2C. The RSME scores were
26.30 ± 14.22, 48.78 ± 15.17, and 71.15 ± 19.55 for the 1-,
3-, and 4-back tasks, respectively. A one-way ANOVA revealed
a significant difference between the RSME scores of the n-
back tasks [F(2, 42) = 27.78, p < 0.001]. Moreover, significant
differences were found between the 1- and 3-back tasks (p <

0.01), the 1- and 4-back tasks (p < 0.001), and the 3- and 4-
back tasks (p < 0.01) by post-hoc pairwise comparisons. The
behavior and RSME results indicated that the subjects were under
different mental load states in the different n-back experimental
conditions.
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FIGURE 2 | Behavior performance and RSME scores for n-back tasks. (A) Response accuracy. (B) Response latency. (C) RSME scores. The error bars represent

standard deviations across subjects and asterisks represent significant differences between two n-back tasks (*p < 0.05, **p < 0.01, ***p < 0.001).

BCI Performance under n-Back Tasks
The classification accuracies under different n-back tasks were
calculated by CCA, FBCCA, and TCCA. In TCCA, the classifiers
were all trained on the 1-back data and then used to test the 1-, 3-,
and 4-back data. For 1-back conditions, cross validation (leave-
one-out) was used to partition the data into complementary
subsets: training and testing sets. Twenty-fold cross-validation
was performed, and validation results were averaged to calculate
the final recognition accuracy.

Figure 3A shows the SSVEP-BCI mean classification
accuracies corresponding to different data lengths (from 0.2 to
3 s in steps of 0.2 s). In general, the classification accuracies were
improved as the data length increased. It is clear that of the
three methods, the accuracy of the 1-back task was the highest,
followed by the 3-back task, with the 4-back task having the
lowest accuracy.

Figure 3B shows a comparison of the classification accuracies
at 3 s under the 1-, 3-, and 4-back tasks, and the error bars
depict the standard deviation across subjects. As in Figure 3A,
the SSVEP classification accuracy decreased significantly with
the increase in n-back level. For FBCCA and TCCA, significant
differences were found by one-way ANOVA [FBCCA: F(2, 42)
= 3.737, p < 0.05; TCCA: F(2, 42) = 3.372, p < 0.05]. The
post-hoc pairwise comparisons revealed a significant difference
in classification accuracy at binary n-back levels (FBCCA: 1-
vs. 4-back, p < 0.05; TCCA: 1- vs. 4-back, p < 0.05). These
results imply that variations in the mental states of the users
during distracting tasks significantly affected the performance of
SSVEP-based BCI. Although no significant difference was found
in CCA accuracies by one-way ANOVA, the paired t-test also
showed significant difference in 1- and 4-back (p < 0.01). It
should be noted that, for all methods, the difference between
the 1- and 4-back tasks was larger and more significant than
that between the 1- and 3-back tasks. On the one hand, this
shows that the SSVEP-BCI performance remained relatively
steady while an easy distracting task was performed. On the other
hand, this finding suggests that performances will be significantly
influenced when users experience a rather high level of mental
workload of the distracting task.

Since variations in the effects of mental workload received
from the same level of n-back tasks may exist among individuals,
the RSME score was required to record the subjective experience
under these tasks and to evaluate individual levels of perceived
mental workload. The correlation between the RSME score

and accuracy with a data length of 3 s was calculated using
the Pearson correlation coefficient and is shown in Figure 3C.
Figure 3C illustrates that the accuracies by all threemethods were
significantly negatively correlated with RSME scores (CCA: r =
−0.39, p < 0.01; FBCCA: r = −0.48, p < 0.001; TCCA: r =

−0.46, p < 0.01). This indicated that an increase in the level of
mental effort experienced resulted in a more noticeable decline
in identification results for individuals using the SSVEP-BCI
while performing other tasks as distractors. The results further
suggested that distracting tasks requiring a high level of mental
effort would significantly impair SSVEP-BCI performance.

Individual Difference and Grouping
Table 1 lists the maximum accuracy under the 1-, 3-, and 4-
back conditions and the difference between the 1- and 4-back
tasks for each subject. The maximum accuracy was the maximum
SSVEP classification accuracy for the three methods with a data
length of 3 s, and the arrow at the end of each row of the table
indicates the trend in accuracy variation. As shown in Table 1,
although the accuracy of most subjects (13/15) declined from the
1- to 4-back tasks, a clear difference among individuals in terms
of the deterioration in accuracy was still noted. The difference
in accuracy for six subjects exceeded 10%, while that for four
other subjects was less than 3%. We divided the subjects into
two groups according to the maximum difference in accuracy.
We selected a total of seven subjects, S1, S5, S6, S8, S13, S14, and
S15 (in gray in Table 1), for whom the differences in accuracy
exceeded 5%, as the sensitive group in terms of distracting task
(group S). The differences in accuracy for S5, S14, and S15 in
group S actually exceeded 15%. The other eight subjects (S2, S3,
S4, S7, S9, S10, S11, and S12), whose accuracy differences did
not exceed 5%, were chosen as the insensitive group in terms of
distracting task (group IS). Under the 1-back task, the average
accuracy of group S (95.00± 5.64%) was approximately the same
as that of group IS (96.09 ± 4.93%). The difference between the
two groups gradually became larger and more significant with
increasing n-back level. The one-way ANOVA analysis showed
that, with increasing n-back level, the accuracy of group S [CCA:
F(2, 18) = 3.91, p < 0.05; FBCCA: F(2, 18) = 5.73, p< 0.05; TCCA:
F(2, 18) = 4.76, p < 0.05] decreased significantly, whereas that of
group IS [CCA: F(2, 21) = 0.48, insignificant; FBCCA: F(2, 21) =
0.42, insignificant; TCCA: F(2, 21) = 0.41, insignificant] remained
almost constant. The results showed that certain users were not
affected by the distracting task when using the SSVEP-BCI. In
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FIGURE 3 | BCI classification accuracy. (A) Mean classification accuracies with various data lengths (from 0.2 to 3 s in steps of 0.2 s) for the 1-, 3-, and 4-back tasks.

(B) Mean classification accuracy with a data length of 3 s. The error bars represent standard deviations across subjects and asterisks represent significant differences

between two n-back tasks (*p < 0.05). (C) Correlation analysis between RSME score and accuracy with a data length of 3 s.

contrast, for nearly half of the number of users (group S), the
BCI performance deteriorated under conditions of high mental
workload of the distracting task. As such, the following results
were analyzed separately for the two groups.

The BCI Performance on Frequency
In order to further analyze the effect of various mental states on
the SSVEP-BCI frequencies, the accuracy deterioration from the
1- to 4-back tasks is shown in Figure 4, where the error bars

show the standard deviations across subjects. Upon comparing
group S (Figure 4A) with group IS (Figure 4B), it is clear that the
accuracy deterioration in group S was more severe than that in
group IS at each frequency. As shown in Figure 4A, a one-way
ANOVA showed that the accuracy deterioration was significant
for TCCA [F(3, 24) = 3.70, p < 0.05], whereas no significant
difference was found for CCA or FBCCA. The difference between
frequencies was only 2Hz, and this was not significant enough
for comparison by one-way ANOVA. In terms of frequency
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TABLE 1 | Classification accuracy.

Subject Maximum accuracy (%) Difference

between 1- and

4-back (%)
1-back 3-back 4-back

S1 98.75 97.50 88.75 10.00 ↓

S2 91.25 87.50 90.00 1.25 ↓

S3 87.50 83.75 83.75 3.75 ↓

S4 100.00 95.00 97.50 2.50 ↓

S5 85.00 81.25 70.00 15.00 ↓

S6 100.00 93.75 90.00 10.00 ↓

S7 100.00 97.50 95.00 5.00 ↓

S8 92.50 80.00 81.25 11.25 ↓

S9 98.75 97.50 100.00 −1.25 ↑

S10 98.75 95.00 96.25 2.50 ↓

S11 100.00 100.00 100.00 0.00 –

S12 92.50 95.00 88.75 3.75 ↓

S13 100.00 97.50 93.75 6.25 ↓

S14 91.25 95.00 76.25 15.00 ↓

S15 97.50 91.25 81.25 16.25 ↓

Mean ± S.D. 96.09 ± 4.93 93.91 ± 5.49 93.91 ± 5.84 2.19 ± 2.09

Mean ± S.D. 95.00 ± 5.64 90.89 ± 7.35 83.04 ± 8.35 11.96 ± 3.60

classification, 15Hz belongs to the beta range (14–30Hz), while
both 11 and 13Hz belong to the alpha range (8–13Hz). In group
S, certain significant increases in accuracy deterioration were
found between 11 and 15Hz (TCCA: p < 0.05), and 13 and
15Hz (TCCA: p < 0.01). In contrast, for group IS in Figure 4B,
a one-way ANOVA showed the deterioration of the accuracy
was insignificant by all three methods [CCA: F(3, 28) = 1.56,
insignificant; FBCCA: F(3, 28) = 2.20, insignificant; TCCA: F(3, 28)
= 1.12, insignificant]. The results for group S suggested that by
each method, the deterioration of accuracy from the 1- to 4-
back tasks was more severe with increasing frequency. It may be
observed that SSVEP at higher frequencies is more sensitive to
the mental workload of the distracting task, and SSVEP at lower
frequencies is more stable and therefore recommended for BCI
systems.

SNR of SSVEPs
To examine the differences in SSVEP with the change in mental
workload of the distracting task, for each stimulus frequency,
the SNRs of the SSVEPs were estimated by averaging across the
group. Figures 5A,B show the comparison of the mean SNR of
SSVEPs at the first and second harmonics between the 1- and 4-
back tasks in groups S and IS. For the two groups, both the first
and second harmonics could be clearly observed in the SNR. In
group S, SNR of each target harmonics dropped obviously from
1- to 4-back tasks. However, in group IS, most of the SNR of
harmonics remained relatively stable during the 1- and 4-back
tasks, except the first harmonic at 7Hz and the second harmonic
at 7 and 13Hz. Figures 5C,D compare the mean SNR between
the 1- and 4-back tasks at the first and second harmonics for
groups S and IS, respectively. The SNRs were averaged by subjects

and four frequencies, and the error bars represent the standard
deviations across subjects and frequencies. In group S, the paired
t-test showed a significant difference for the 1- and 4-back tasks in
both fundamental (t = 3.73, p < 0.001) and the second harmonic
(t = 4.12, p < 0.001). Meanwhile, no significant difference was
found for group IS. The result from SNRs suggested the reduction
in SSVEP-BCI accuracy and SSVEP feature was consistent.

However, the classification accuracy and SSVEP feature in two
groups were not completely consistent, this might be caused by
the difference between two groups in BCI performance. And the
limitation of the subject number and inter-subject difference also
caused the statistical result not that significant.

DISCUSSION

In this paper, the performances of SSVEP-BCIs were found to
deteriorate significantly by distracting task, especially under the
4-back conditions. Moreover, for certain subjects such as those
in group S, the SNR of SSVEP harmonics dropped significantly
under conditions of high mental workload. However, the SSVEP
features presented a less depressing trend compared to the
performance of BCI. We speculate that a BCI system comprises
neural feedback, attention competition and other responses, and
the performance of it would be affected by multiple factors.
While the EEG features were only in one channel and one
harmonic, unable to present the comprehensive information
significantly.

In a previous study (Ke et al., 2016), we discussed the
effect on P300-Speller when users were under mental workload
conditions. To continue the study into the effect of distracting
task on BCIs, we proposed studying the performance of other
BCI systems with distracting task. It should be pointed out that
the reduction in accuracy was not as significant as for P300-
Speller under 3-back conditions. This observation is reflected in
the following two points:

(i) Effects on accuracy. Previous results (Ke et al., 2016) have
shown that the decrease in accuracy from the speller under
only 3-back conditions was almost 10% and remained
consistent with an increasing number of repetitions.
However, in this paper, when subjects experienced the 3-
back task under conditions of high levels of mental load, the
reduction in accuracy was not significant for each method,
and the accuracy decrease of 3% did not cause severe
impairment of BCI performance. From this point of view,
compared to P300-BCI, the SSVEP-BCI performed better
when subjects were under low levels of mental workload of
the distracting task.

(ii) Individual differences. The previous results (Ke et al.,
2016) showed that almost all subjects were affected by
the distracting task. The classification accuracy displayed
a significant decreasing trend and there was relatively
little individual difference. However, a significant individual
difference was found for the SSVEP-BCI performance.

The apparent higher stability of the SSVEP-BCI with distracting
task warrants further discussion. Firstly, the P300 component as
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FIGURE 4 | Deterioration of classification accuracy from 1- to 4-back with a data length of 3 s for each frequency. The error bars represent standard deviations across

subjects and asterisks represent significant differences between two frequencies (*p < 0.05, **p < 0.01). (A) Group S. (B) Group IS.

a typical component in an ERP is an endogenous component,
which can be easily influenced by distracting perceptual and
cognitive tasks. However, as an exogenous component, SSVEP
should be less susceptible to individual perceptual and cognitive
processes. This characteristic also increases the robustness of
SSVEP-BCIs andmaintains a high SNR. Secondly, the classifier in
P300 identification must be calibrated using individual data. The
difference in the distribution of n-back EEG features means that
the classifier has a different generalization performance, causing
a significant decline in classification. Both CCA and FBCCA
are subject-independent algorithms for SSVEP classification
and classifier calibration is not required. This means that
the classification process is not easily affected by the diverse
feature distributions. Furthermore, the three methods for SSVEP
detection are all based on frequency correlation analysis, which
is insensitive to changes in EEG power. This may also result
in an SSVEP-BCI not being as sensitive to mental load states.
However, the distracting task we discussed in this paper had no
correlation with the BCIs. For clinical use, other daily workload
tasks like thinking and gazing have more complex correlations
with SSVEP-BCIs, which may lead a severe impairment in the
performance of SSVEP-BCIs.

In this paper, the performance of SSVEP-BCIs was found to
be weakened by the distracting task, and this finding may have a
relationship with the top-down modulation. Intaite et al. (2014)

found that general top-down modulation had an influence on
visual processing, possibly mediated by the prefrontal cortex.
This meant that brain responses in the occipital areas at 150–
300ms post-stimulus were influenced by working memory load.
Furthermore, a previous study (Gazzaley, 2011) revealed that
the top-down modulation of visual cortical activity at early
perceptual processing stages influences the subsequent working
memory performance. As a stable and high SNR response signal,
SSVEP is always used as a steady-state “topographical probe”
(SSTP), a frequency tag associated with a visual task (Silberstein
et al., 1990, 1995). Several studies (Silberstein et al., 2001; Ellis
et al., 2006; Cao et al., 2014) have used SSVEP frequency
propagation during task vs. control states to indirectly estimate
the propagation of EEG signals related with the task (Vialatte
et al., 2010). Ellis et al. (2006) examined changes in temporal
neurophysiology during spatial n-back tasks using SSPT. They
found that the delay period (or information-holding period)
was associated with increases in frontal and occipital region
amplitude, consistent with previous findings in more basic
working memory tasks, and no correlation between SSVEP and
performance was observed. However, similar results were not
obtained in this paper, because of the difference in paradigm
design and process method. On the one hand, BCI recognition
summed up EEG features from several channels and multiple
harmonics, while we only analyzed the EEG features in one
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FIGURE 5 | SNR of SSVEPs on the Oz channel for the 1- and 4-back tasks. The red circles indicate the SNRs of the fundamental and second harmonic frequencies

for each target SSVEP. (A) Group S. (B) Group IS. Mean SNR of all fundamental and second harmonics. The error bars represent the standard deviations across

subjects and frequencies and asterisks represent significant differences between two n-back tasks (***p < 0.001). (C) Group S. (D) Group IS.

channel and one harmonic. It is therefore not comprehensive to
value SSVEP-BCI performance simply by the SSVEP feature in
a single channel. On the other hand, there was a correlation of
the competition between the multi-frequency SSVEPs when the
SSVEP-BCI was used. Studies into the working memory using
SSPT only presented SSVEP stimuli with one frequency to the
subjects, and no competition in frequency was involved during
working memory research.

CONCLUSION

This study examined the effects of distracting task on SSVEP-BCI
performance in an offline study and explored the influence on
the characteristic components of SSVEP. The results indicated

that simultaneous distracting task significantly impaired SSVEP-
BCI performance. Moreover, the subjects whose accuracy was
clearly influenced by distracting task also exhibited a clear
decline in the SNR of SSVEP. This study suggests that BCIs
as information pathways of the human brain are restricted by
workload mental processes, which should be improved upon for
future applications.
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