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Motor imagery (MI) based brain-computer interface (BCI) has been developed

as an alternative therapy for stroke rehabilitation. However, experimental evidence

demonstrates that a significant portion (10–50%) of subjects are BCI-inefficient users

(accuracy less than 70%). Thus, predicting BCI performance prior to clinical BCI

usage would facilitate the selection of suitable end-users and improve the efficiency of

stroke rehabilitation. In the current study, we proposed two physiological variables, i.e.,

laterality index (LI) and cortical activation strength (CAS), to predict MI-BCI performance.

Twenty-four stroke patients and 10 healthy subjects were recruited for this study. Each

subject was required to perform two blocks of left- and right-hand MI tasks. Linear

regression analyses were performed between the BCI accuracies and two physiological

predictors. Here, the predictors were calculated from the electroencephalography (EEG)

signals during paretic hand MI tasks (5 trials; approximately 1 min). LI values exhibited

a statistically significant correlation with two-class BCI (left vs. right) performance

(r = −0.732, p < 0.001), and CAS values exhibited a statistically significant correlation

with brain-switch BCI (task vs. idle) performance (r = 0.641, p < 0.001). Furthermore,

the BCI-inefficient users were successfully recognized with a sensitivity of 88.2% and a

specificity of 85.7% in the two-class BCI. The brain-switch BCI achieved a sensitivity of

100.0% and a specificity of 87.5% in the discrimination of BCI-inefficient users. These

results demonstrated that the proposed BCI predictors were promising to promote

the BCI usage in stroke rehabilitation and contribute to a better understanding of the

BCI-inefficiency phenomenon in stroke patients.

Keywords: brain-computer interface (BCI), stroke rehabilitation, motor imagery (MI), sensori-motor rhythm (SMR),

BCI-inefficiency

1. INTRODUCTION

Brain-computer interface (BCI) provides a direct communication and control channel between
human brain and external devices (Pfurtscheller and Neuper, 2001; Wolpaw et al., 2002). In past
decades, various BCI modalities have been developed for different applications (Cincotti et al.,
2008; Chaudhary et al., 2016). Among them, motor imagery-based BCI (MI-BCI) is widely used
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for volitional control by voluntary modulation of sensorimotor
rhythm (SMR). Recently, MI-BCI has been proposed as an
alternative neural therapy for stroke rehabilitation (Daly and
Wolpaw, 2008; Soekadar et al., 2015). It can effectively induce
beneficial plastic changes in stroke patients (Shindo et al., 2011).

Although clinical studies have demonstrated the effectiveness
of MI-BCI for stroke rehabilitation (Ramos-Murguialday et al.,
2012, 2013; Pichiorri et al., 2015), significant variance in the
outcomes is noted among different subjects. Different factors
may contribute to the variance of rehabilitation outcomes (e.g.,
lesion type, lesion side, post-stroke time, and BCI performance).
Bundy et al. (2017) recently demonstrated that the BCI-based
rehabilitation outcome is statistically associated with the BCI
decoding accuracy. In detail, patients with higher BCI decoding
accuracy achieved better recoveries of motor function after
12 weeks of home-based BCI treatments. Thus, the “BCI-
inefficiency” phenomenon (Hammer et al., 2012; Edlinger et al.,
2015), also termed as “BCI-illiteracy” problem (Kübler and
Müller, 2007), is considered as a critical issue confronting
the clinical application of BCI-based rehabilitation. Specifically,
approximately 40% of stroke patients can not achieve the critical
BCI accuracy level of 70% (Ang and Guan, 2015). The BCI-
based rehabilitation therapy is probably invalid in these BCI-
inefficient users. Therefore, recognition of BCI-inefficient users
may facilitate the practical application of MI-BCI in stroke
rehabilitation.

To date, the underlying neural mechanism of the BCI-
inefficiency phenomenon remains poorly understood and has
attracted extensive interests (Guger et al., 2003, 2009; Vidaurre
and Blankertz, 2010). To distinguish BCI-inefficient users more
efficiently, a great number of BCI predictors have been identified.
Ahn and Jun (2015) reviewed and gathered the existed MI-
BCI predictors into four categories, i.e., personal information,
psychological, anatomical and physiological factors. Based on the
underlying causes and correlates of BCI performance variation,
the authors subsequently proposed strategic approaches to
address the BCI-inefficiency problem. On the other hand, Kleih
and Kübler (2015) focused on the effects of psychological factors
on both MI- and P300-BCI performances, and an integrative
model of BCI control was suggested to integrate all factors on BCI
performances. More recently, Jeunet et al. (2016) investigated the
psychological and cognitive factors onMI-BCI performance, and
summarized that MI-BCI performance was effected by the user’
relationship with technology, attention and spatial abilities.

Psychological factors have been greatly concerned in the
previous studies. Burde and Blankertz (2006) found that a
person who had more confidence in technology and their
own ability achieved better BCI performance. BCI accuracy
in that study was significantly correlated with the “locus of
control of reinforcement” (r = 0.59). Conversely, it has been
demonstrated that the fear of BCI-control failure may decrease
BCI performance (Witte et al., 2013). Moreover, Vuckovic
and Osuagwu (2013) indicated that MI abilities evaluated
with questionnaire scores explained up to 53% of the BCI
performance from 30 healthy volunteers. Meanwhile, the visual-
motor coordination ability has also been shown to be positively
correlated with BCI performance (Hammer et al., 2012, 2014).

With thesementioned psychological factors, BCI-inefficient users
could be easily recognized. It may highly benefit the practical
applications of MI-BCI system.

Measurement of physiological features has provided a more
objective pathway to predict BCI performance. Blankertz et al.
(2010) proposed a physiological BCI predictor that can be
determined using only 2 min of EEG signals during resting
state. They observed a strong correlation of r = 0.53 between
resting-state alpha activity and BCI accuracies in 80 BCI-naive
participants. Ahn et al. (2013b) demonstrated that high theta
and low alpha rhythms during resting state were correlated with
poorer BCI performances, whereas higher gamma rhythms in
the frontal areas resulted in higher BCI accuracies (Ahn et al.,
2013a). Conversely, Bamdadian et al. (2014) proved that higher
frontal theta and lower posterior alpha brain activities during
rest were correlated with better BCI performance. Furthermore,
Grosse-Wentrup et al. (2011) showed that MI-induced SMR
features were positively correlated with the frontal and occipital
gamma rhythms, and negatively correlated with the centro-
parietal gamma rhythms. The same group further demonstrated
that resting-state gamma rhythms predicted the single-trial
BCI classification accuracy (Grosse-Wentrup and Schölkopf,
2012). More recently, Zhang et al. (2015) demonstrated a close
relationship between resting-state brain network and MI-BCI
accuracies. On the other hand, anatomical features measured by
fMRI were also found to be significantly correlated with MI-BCI
accuracy, providing further insight into the mechanism of BCI-
inefficiency phenomenon (Halder et al., 2011, 2013; Zhang et al.,
2016).

However, all the aforementioned BCI predictors were
developed and validated on healthy subjects. To our knowledge,
only a few of works have targeted BCI performance variations
in patients. Neumann and Birbaumer (2003) explored BCI
performance in five severely paralyzed patients. They
demonstrated a linear correlation between the decoding
accuracies in initial runs (runs 1–31) and later runs (runs
64–94 and 162–191). Similarly, the results from amyotrophic
lateral sclerosis (ALS) patients demonstrated a high positive
correlation of r = 0.87 between the BCI accuracies in the 3rd
and 6th sessions (Kübler et al., 2004). Effects of psychological
features on BCI performance variations were also investigated
in ALS patients (Nijboer et al., 2010). The results showed that
motivation factors (i.e., challenge and mastery confidence)
of patients were positively related to MI-BCI performance.
Nevertheless, a physiological predictor of MI-BCI performance
in stroke patients is currently not available.

In this paper, two physiological predictors, i.e., cortical
activation strength (CAS) and laterality index (LI), were
proposed to recognize BCI-inefficient users in stroke patients by
roughly recording of 1-min EEG signals when subjects performed
imagined hand movements. We hypothesized that the CAS
values from the motor cortex could be used to predict the
brain-switch BCI (task vs. idle) accuracies, and the LI values of
event-related spectrum perturbation (ERSP) would be feasible
in the prediction of two-class BCI (left vs. right) accuracies.
The effectiveness of our proposed predictors were experimentally
validated across a number of stroke patients.
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2. MATERIALS AND METHODS

2.1. Subjects
The study cohorts consisted of 24 stroke patients (4 females,
age of 48 ± 14 years) and 10 healthy subjects (3 females,
age of 28 ± 5 years). The patients were recruited from
the Rehabilitation Department of Huashan Hospital based on
the following inclusion criteria: (1) impairment of unilateral
hemisphere with significant motor dysfunction; (2) less than
70 years old; (3) with a normal cognitive function; (4) be able
to follow simple verbal commands and freely communicate
with experimenters. The exclusion criteria were as follows: (1)
unstable medical conditions; (2) do not agree with the informed
consent; (3) have the history of seizure, or other conditions
with potential influences on the study. The motor and cognitive
functions of stroke patients were assessed by the therapists using
Fugl-Meyer Assessment for Upper Extremity (FMA-UE, range
of 0–66 scores) and Mini-Mental State Examination (MMSE,
range of 0–30 scores), separately. Patients with FMA-UE scores
> 50 or MMSE scores < 27 were excluded. The characteristics
of recruited patients are listed in Table 1. The healthy subjects
were recruited from Shanghai Jiao Tong University. They were
not affected by any physical or psychological disease and had
normal or corrected to normal vision. This study was approved
by the ethical committee of HuashanHospital. All subjects signed
informed consent forms in accordance with the Declaration of
Helsinki.

2.2. Experimental Paradigm
The experiments in stroke patients were conducted in Huashan
Hospital with aides of the therapists, whereas the experiments
in healthy subjects were performed in the BioMechatronics
and BioRobotics Laboratory at Shanghai Jiao Tong University.
During these experiments, subjects were seated in a comfortable
chair with hands resting on the armrests. A 23-inch sized screen
was set approximately 60 cm in front of subjects to display visual
cues. Each subject was required to complete two blocks of hand
MI, and a rest as long as their wish was taken between two blocks.
Each block consisted of 20 trials for left-hand MI and 20 trials
for right-hand MI. The entire experiment totally contained 80
trials and lasted approximately 40 min (including the time for
preparation).

The experimental protocol is illustrated in Figure 1A. At the
beginning of each trial, there was a white cross appeared on
the screen with black background. The white cross lasted about
3 seconds to remind the subject to focus his mind and keep
still. A red rectangle was displayed on the left or right side
of the cross to indicate a left- or right-hand MI, respectively,
and the tasks were in random order. Subjects were required to
perform the corresponding hand MI tasks immediately when the
cues appeared. The mental tasks were predefined to mentally
mimic the clenching movements of indicated hand. Only the
red rectangle, not the white cross, disappeared after 1.5 s. The
subjects should continue the MI task until the white cross
disappeared after 8 s. Then, there was a short break of 6–8 s before
the next trial. The idle state was defined at [−4 −1] s prior to
task cues and the task state was defined at [1 4] s post task cues.

TABLE 1 | Characteristics of stroke patients.

Patient Affected

hand

Time

post-stroke

(mo)

Injury type Lesion site MMSE FMA-

UE

P1 R 2 Ischemia Cortical 30 37

P2 R 23 Ischemia Sub-cortical 28 4

P3 R 1 Hemorrhage Sub-cortical 30 50

P4 R 84 Ischemia Sub-cortical 29 12

P5 L 20 Ischemia Sub-cortical 30 24

P6 R 55 Hemorrhage Cortical 30 6

P7 L 120 Hemorrhage Cortical 39 6

P8 L 32 Hemorrhage Sub-cortical 30 25

P9 L 32 Hemorrhage Sub-cortical 30 7

P10 R 28 Ischemia Sub-cortical 30 5

P11 L 16 Ischemia Sub-cortical 30 12

P12 R 35 Hemorrhage Cortical 30 5

P13 L 34 Hemorrhage Cortical 30 4

P14 R 12 Hemorrhage Sub-cortical 30 12

P15 R 5 Ischemia Sub-cortical 30 38

P16 L 16 Hemorrhage Cortical 30 22

P17 L 4 Ischemia Cortical 30 10

P18 R 3 Hemorrhage Sub-cortical 29 17

P19 L 16 Hemorrhage Sub-cortical 28 25

P20 R 20 Ischemia Sub-cortical 27 28

P21 R 1 Ischemia Cortical 30 10

P22 L 5 Ischemia Cortical 29 18

P23 L 8 Ischemia Cortical 30 7

P24 R 10 Ischemia Cortical 27 36

During the whole experiment, all subjects were required to avoid
any additional facial or arm muscular movements. The subjects
were informed that they can terminate the experimental session
at any point without question.

2.3. EEG Recording
EEG signals of stroke patients were recorded using a BrainAmp
amplifier (Brain Products, Gilching, Germany) and 32 channels
of active Ag/AgCl electrodes (actiCAP, Brain Products,
Germany). The low-pass filter setting was 0–100 Hz with a
sampling rate of 200 Hz, and a 50 Hz notch filter was used to
diminish power line interference. EEG signals of healthy subjects
were recorded using a SynAmps2 system (NeuroScan, U.S.A.)
and a quick-cap with 64 Ag/AgCl electrodes. The sampling rate
of healthy subjects was 250 Hz and raw data were filtered with
an analog bandpass filter from 0.5 to 70 Hz and a notch filter
of 50 Hz. The electrodes were placed according to the extended
10–20 system. The ground channel was located on the forehead,
and the reference channel was located on the vertex. Impedances
of all electrodes were kept below 5 k�. Different EEG recording
systems were used for healthy subjects and stroke patients,
because the experiments of stroke patients were carried out in a
clinical setting and only the BrainAmp system was allowed and
approved in the ethics. Although 64 channels of EEG signals
were recorded from healthy subjects, only 32 channels which had
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FIGURE 1 | (A) Procedure of a single trial. (B) Distribution of EEG channels. These channels indicated with red dots are selected for further analysis of motor cortical

activations.

the same locations of electrodes as those of stroke patients were
used in further analysis.

2.4. Analysis Method
To better understand the cortical activation patterns from stroke
patients, SMR features with respect to MI tasks were analyzed
in the time-frequency and spatial domains. As a variant of
event-related desynchronization (ERD), event-related spectral
perturbation (ERSP) was used to visualize the spectral power
changes corresponding to different motor tasks (Graimann et al.,
2002; Makeig et al., 2004). ERSP was generally formulated as

ERSP(f , t) =
1

n

n∑

k=1

(Fk(f , t)
2) (1)

where n was the number of trials, and Fk(f , t) was the spectral
estimation of the kth trial with frequency = f and time =
t. Short-time Fourier transform (STFT) was applied in time-
frequency analysis of EEG data. The analysis was performed
with a Hanning-tapered window using EEGLAB (Delorme et al.,
2011). Note that the ERSP values were log-transformed prior to
further analysis. Since a decrease in band power with respect to
the baseline represents cortical activation, smaller ERSP values
during MI tasks are correlated with larger cortical activations
(Qiu et al., 2016).

To visualize the event-related cortical activations, ERSP values
were normalized by subtracting the baseline of t = [−2 −1] s
for each channel, and averaged over task period t = [1 4] s and
individual frequency band f = [N N+5] Hz for each subject. The
index N was the cutoff frequency of individual frequency band,
and ranged from 5 to 25 Hz with an interval of 1 Hz. Hence,
the individual frequency bands were sub-bands of [5 30] Hz
which has covered the theta ([5 7] Hz), alpha ([8 13] Hz), and
beta ([14 30] Hz) bands. We selected the individual frequency
band [N N+5] Hz which resulted in the smallest ERSP values at
channel C3 and C4. Aimed for BCI prediction, the ERSP values
were determined using the first 5 trials of paretic hand MI. For
healthy subjects, the individual frequency bands were selected in
the same way during non-dominant hand MI. It is worth noting
that the selected individual frequency bands maybe not the

optimal parameter for BCI classification, however the frequency
bands with larger activations are more meaningful for stroke
rehabilitation (Johansen-Berg et al., 2002). These parameters
were also used to plot the power spatial distributions of different
mental tasks with the Fieldtrip toolbox (Oostenveld et al., 2011).

Two indexes were proposed to predict the BCI performances.
They were defined as

LI = ERSPcontralateral − ERSPipsilateral (2)

CAS = |ERSPcontralateral| + |ERSPipsilateral| (3)

where ERSPcontralateral and ERSPipsilateral indicated the averaged
ERSP values of the interested electrodes from contralateral and
ipsilateral hemispheres, respectively. The channels of interests
are presented in Figure 1B with red dots. They are FC5, FC1,
C3, CP5, and CP1 in the left hemisphere, and FC2, FC6, C4,
CP2, and CP6 in the right hemisphere. The indexes LI and CAS
were calculated from the very first 5 trials or 5 random trials of
paretic hand MI tasks. These trials together with other 5 trials
of un-paretic hand MI tasks were excluded for BCI decoding.
Then, linear regression analyses were performed between the
physiological predictors and BCI accuracies. In terms of two-class
BCI, activation patterns of different MI tasks play a crucial role
in BCI performance, and more lateralized activation patterns are
associated with higher BCI accuracies (Kasahara et al., 2015); In
terms of brain-switch BCI, activation strength derived from hand
MI determines the BCI performance, and higher activation levels
are expected to produce better BCI performance. Thus, LI values
were expected to be correlated with two-class BCI accuracies, and
CAS values were expected to be correlated with brain-switch BCI
accuracies. Additionally, in order to obtain a relatively robust
regression model, we calculated the Mahalanobis distance to the
data center for each patient (Blankertz et al., 2010). A threshold
of Mahalanobis distance = 2 was used to reject the outliers.

BCI performances were evaluated using the decoding
accuracy between different mental tasks. Two different BCI
modalities were involved: (1) left-hand MI vs. right-hand MI
(two-class BCI); (2) task state vs. idle state (brain-switch BCI)
of paretic hand MI. In this study, common spatial pattern (CSP)
(Ramoser et al., 2000) was used for feature extraction, and two
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pairs of feature patterns were selected for classification. Then
the method of linear discriminant analysis (LDA) was employed
for discriminating different tasks. The pattern classifications
were conducted offline with all 32 channels of EEG signals.
EEG features were extracted from the time segment of [1 4]
s and individual frequency band of [N N+5] Hz. A 5 × 5
fold cross validation was performed as follows: (1) 70 trials of
MI tasks were randomly permutated and equally divided into
five portions, (2) each portion was tested with the classifier
which was calibrated using the remaining four portions, (3)
this process was repeated 5 times generating 25 decoding
accuracies. Then, the averaged classification accuracy and the
standard deviation of each patient were used to evaluate the BCI
performance.

Recognition of BCI-inefficient users was conducted based
on the regression models between predictors (i.e., LI and CAS
computed from the very first five trials) and BCI accuracies.
Each patient was recognized according to the regression model
calibrated with the data from remaining 23 patients. The
threshold for BCI-inefficiency was set to 70% for both BCI
modalities. The recognition performance was evaluated with
sensitivity and specificity, which were defined as

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

where TP, FN, TN, and FP represented true positive, false
negative, true negative and false positive, respectively. TP was the
number of BCI-inefficient users who were correctly recognized as
BCI-inefficient users, FN was the number of BCI-inefficient users
who were incorrectly identified as BCI-efficient users, TN was the
number of BCI-efficient users who were correctly recognized as
BCI-efficient users, and FP was the number of BCI-efficient users
incorrectly predicted to be BCI-inefficient users.

3. RESULTS

3.1. MI-BCI Performance
MI-BCI performances of stroke patients and healthy subjects are
presented in Figure 2. In Figure 2A, the averaged two-class BCI
decoding accuracy was 61.1 ± 2.0% for stroke patients, and 5
out of 24 patients exceeded the BCI-inefficiency level of 70%.
For healthy subjects, the averaged accuracy was 74.3 ± 4.8%,
and 7 out of 10 subjects achieved accuracies greater than 70%.
Statistical analysis revealed a significant difference (p < 0.01, un-
paired t-test) between these two different populations. Figure 2B
presented the results of brain-switch BCI. The averaged accuracy
was 70 ± 2.3% for stroke patients and 72.5 ± 3.3% for healthy
subjects. No significance (p = 0.558, un-paired t-test) was found
in the inter-group comparison. In addition, 50% (12 out of 24) of
stroke patients and 70% (7 out of 10) of healthy subjects exceeded
the accuracy threshold of 70% in brain-switch BCI. Interestingly,
several patients (P8, P13, P18, P19) with accuracies less than 70%
in two-class BCI achieved considerably higher accuracies (>80%)
in brain-switch BCI.

According to the BCI decoding accuracy, stroke patients were
divided into two groups based on the threshold of 70%. Thus, 12
patients with accuracies above 70%were assigned to the Efficient-
Group, and the other 12 patients were assigned to the Inefficient-
Group in brain-switch BCI. On the other hand, 5 patients with
accuracies above 70% were assigned to the Efficient-Group, and
the remaining 16 patients were assigned to the Inefficient-Group
in two-class BCI. EEG feature analyses were performed among
different groups in two BCI modalities.

3.2. Inter-Group Comparison of EEG
Features
Spatial distributions of ERSP values were compared between
different MI tasks. Figure 3A is for a BCI-inefficient user in
two-class BCI. Obvious activations were observed during both
paretic (left) and un-paretic (right) hand MI. However, the
cortical activations during paretic hand MI were ipsilateral
to the imagined hand. The activation patterns were similar
between paretic and un-paretic hand MI. Figure 3B displays
the results of a BCI-inefficient user in brain-switch BCI. No
obvious activity was observed during either hand MI. Figure 3C
represents a BCI-efficient user in both two-class BCI and
brain-switch BCI. The results showed distinct contralateral
activations during both paretic (right) hand and un-paretic
(left) hand MI. As expected, the healthy subject in Figure 3D

exhibited lateralized activation patterns during MI of both
hands. Grand average topographic maps for stroke patients
and healthy subjects are shown in Figure 3E,F, separately.
Both stroke patients and healthy subjects exhibited obvious
activations in sensorimotor areas, but the activations of healthy
subjects were larger than those of stroke patients. Meanwhile,
stroke patients showed larger activations in the ipsilateral
hemisphere than contralateral hemisphere during paretic hand
MI.

For two-class BCI, an inter-group comparison of ERSP values
during paretic hand (or healthy subject’s non-dominant hand)MI
is shown in Figure 4A. The results indicated that the contralateral
ERSP values were smaller than the ipsilateral ERSP values
for the Efficient-Group and Healthy-Group, but contrast for
the Inefficient-Group. In addition, comparison of ERSP values
between two hemispheres exhibited a significant difference for
the Inefficient-Group (paired t-test, p < 0.01). The results for
un-paretic hand (or healthy subject’s dominant hand) MI are
presented in Figure 4B. The contralateral motor cortex showed
smaller ERSP values compared with the ipsilateral motor cortex
for all three different groups. A significant inter-hemispheric
difference of ERSP values was observed for the Inefficient-Group
(paired t-test, p < 0.05) and the Healthy-Group (paired t-test,
p < 0.01).

For brain-switch BCI, a comparison of ERSP values among
different groups is presented in Figure 5. Results for paretic
hand (or healthy subject’s non-dominant hand) MI are presented
in Figure 5A. The Efficient-Group and Healthy-Group showed
significantly smaller ERSP values compared with the Inefficient-
Group in both contralateral and ipsilateral hemispheres. For un-
paretic hand (or healthy subject’s dominant hand) MI, smaller
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FIGURE 2 | MI-BCI decoding accuracies of stroke patients and healthy subjects. (A) Two-class BCI decoding accuracy of all subjects. Selected individual frequency

bands are presented on the bottom. (B) Brain-switch BCI decoding accuracy of all subjects. The green markers indicate the results of stroke patients, whereas the

yellow markers indicate results of healthy subjects. The red lines represent the accuracy level of 70% for BCI-inefficiency, and the black dash lines represent the

trial-number corrected chance level of 65% with p = 0.05. The error bars represent standard errors.

ERSP values were observed for the Efficient-Group and Healthy-
Group in both hemispheres compared with the Inefficient-
Group, but the difference was not significant. Corresponding
results are presented in Figure 5B.

3.3. Physiological BCI Predictors
The linear regression analyses between physiological predictors
and BCI accuracies are shown in Figure 6. In Figure 6A, a
correlation coefficient of r = −0.732 was achieved between
the LI values and two-class BCI accuracies with p < 0.001.
This finding demonstrated that two-class BCI accuracy was
negatively related to the proposed LI value. Moreover, the
CAS values were correlated with brain-switch BCI performance
as shown in Figure 6B. A positive correlation with r =

0.641 and p < 0.001 was found after excluding four
outliers. This result indicated that r2 = 41.1% of brain-
switch BCI accuracy variance could be explained with CAS
values.

To further validate the efficiency of our proposed method,
the BCI predictors were recalculated with 5 randomly selected

trials of paretic hand MI. BCI performance was evaluated with
the remaining 70 trials (five trials of un-paretic hand MI were
discarded). This step was repeated 5 times, and the results of both
predictors and BCI accuracies were averaged for each patient. A
high correlation coefficient of r = −0.828 was achieved between
the LI values and two-class BCI accuracies with p < 0.001
(see Figure 6C). Similarly, a strong correlation was observed
between the CAS values and brain-switch BCI accuracies with
r = 0.658 and p < 0.001 after excluding two outliers (see
Figure 6D).

Based on the linear regression model between physiological
predictors and BCI accuracies, prediction of BCI-inefficient
users was performed in both two-class BCI and brain-switch
BCI. The accuracy threshold for BCI-inefficiency was set
to 70% for both BCI modalities. As shown in Figure 7A,
the BCI-inefficient users were successfully predicted with a
sensitivity of 88.2% and a specificity of 85.7% in two-class
BCI. The prediction result in brain-switch BCI is shown in
Figure 7B, a sensitivity of 100.0% and a specificity of 87.5% were
achieved.
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FIGURE 3 | Comparison of ERSP spatial distribution between different MI tasks. In each subplot, the left and right topographic maps are corresponding to left- and

right-hand MI, separately. (A) ERSP spatial distribution of a representative subject (P8) from the Inefficient-Group in two-class BCI. (B) ERSP spatial distribution of a

representative subject (P16) from the Inefficient-Group in brain-switch BCI. (C) ERSP spatial distribution of a representative subject (P21) from the Efficient-Group in

both two-class BCI and brain-switch BCI. (D) ERSP spatial distribution of a representative subject (S8) from the Healthy-Group. (E) Grand average topographic maps

for all stroke patients. ERSP distributions of the patients with paralysis on left side were vertically mirrored in order to illustrate the effect of lesion side on ERSP

patterns. Thus, the left and right subplots represent un-paretic and paretic hand MI, respectively. (F) Grand average topographic maps for all healthy subjects. The

representative subjects in (A,B) were patients with paralysis on the left side, whereas the representative subject in (C) was a patient with paralysis on the right side.

The maps were drawn within the selected individual frequency bands. ERSP values were averaged at [1 4] s and normalized by subtracting the baseline power at

[−2 −1] s with respect to the starting cues.

FIGURE 4 | ERSP comparison among different hemispheres in two-class BCI. (A) Comparison of ERSP values between contralateral (Contra-Hemis) and ipsilateral

hemispheres (Ipsi-Hemis) during paretic/non-dominant hand MI. (B) Comparison of ERSP values between contralateral and ipsilateral hemispheres during

un-paretic/dominant hand MI. Error bars represent standard errors of the mean ERSP values. **p < 0.01; *p < 0.05; n.s. p > 0.05 (paired t-test).

4. DISCUSSION

The purpose of this study was to investigate the variance
of MI-BCI performance among stroke patients, and validate
the effectiveness of two physiological predictors on BCI
performance. To better understand the neural mechanism of
the BCI-inefficiency phenomenon, EEG features were compared
among stroke patients and healthy participants.

Prediction of MI-BCI Performance
MI-BCI has been widely researched for stroke rehabilitation.
However, a large portion of patients cannot achieve the required
BCI accuracy level of 70% (Ang and Guan, 2015). Thus, the
selection of suitable BCI users could improve the efficiency of

BCI-based rehabilitation. The proposed BCI predictors in this
study have demonstrated the potential to solve this problem.
According to linear regression results, the recognition of BCI-
inefficient users in two-class BCI showed a high sensitivity of
88.2% and a specificity of 85.7%. In addition, the linear regression
analysis revealed a strong correlation (r = −0.732, p <

0.01) between LI values and two-class BCI performance, which
indicates that a more lateralized brain pattern is associated with a
better two-class BCI performance. This result is in accordance
with the findings of Kasahara et al. (2015), in which the BCI
accuracy was declared to depend on ERD laterality at 9.5–
12.5 Hz. In addition, Zich et al. (2015b) reported that the
older adults exhibited less lateralized brain activation patterns
and accordingly lower BCI decoding accuracies compared with
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FIGURE 5 | ERSP comparison among different groups in brain-switch BCI. (A) Inter-group comparison of ERSP values in contralateral (Contra-Hemis) and ipsilateral

hemispheres (Ipsi-Hemis) during paretic/non-dominant hand MI. (B) Inter-group comparison of ERSP values in contralateral and ipsilateral hemispheres during

un-paretic/dominant hand MI. Error bars represent standard errors of the mean ERSP values. ***p < 0.001; **p < 0.01; n.s.p > 0.05 (unpaired t-test).

FIGURE 6 | Linear regression results between BCI predictors and classification accuracies. (A,C) Linear regression analysis between LI values and two-class BCI

classification accuracies. (B,D) Linear regression analysis between CAS values and brain-switch BCI classification accuracies. Each dot represents results of one

stroke patient. In subplot (A,B), the LI and CAS values were calculated with the first 5 trials of paretic hand MI, and BCI performance was evaluated with the remaining

70 trials of MI tasks (the first 5 trials of un-paretic hand MI were discarded). In subplot (C,D), the LI and CAS values were calculated with 5 randomly selected trials of

paretic hand MI, and BCI performance was evaluated with the remaining 70 trials of MI tasks (also 5 trials of un-paretic hand MI were discarded). In (C,D), calculation

of both BCI predictors and classification accuracies were repeated for 5 times, and the results were averaged in each patient.
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FIGURE 7 | Evaluation of the two proposed physiological predictors. (A) Predicting performance in two-class BCI with LI values. (B) Predicting performance in

brain-switch BCI with CAS values. Sensitivity and specificity for recognition of BCI-inefficient users were 88.2 and 85.7%, respectively, in two-class BCI, and 100.0

and 87.5%, respectively, in brain-switch BCI.

young adults. However, participants in these studies were healthy
subjects, whereas this study targeted at the BCI performance of
stroke patients. Therefore, the results in this work have useful
implications on clinical applications.

Although great efforts have beenmade to predict theMI based
two-class BCI performance in literatures, the brain-switch BCI
strategy is more widely used in stroke rehabilitation (Gomez-
Rodriguez et al., 2011; Walter et al., 2012; Ramos-Murguialday
et al., 2013). However, to our knowledge, physiological
predictors for brain-switch BCI are still limited in patients
with paralysis. Nijboer et al. (2010) investigated the influence
of psychological state on brain-switch BCI performance. Four
patients with amyotrophic lateral sclerosis (ALS) were recruited
for 20 sessions of SMR-BCI training, in which patients were
required to control a one-dimensional cursor movement with
“imagine” and “relaxation” states. The results confirmed that
challenge and mastery confidence were positively related to
BCI performance, and incompetence fear was negatively related
to BCI performance. Unfortunately, due to the small sample
size, these psychological parameters did not show a quantitative
relation with BCI performance. In the current study, CAS values
were proposed as a physiological predictor of brain-switch BCI
performance. As shown in Figure 6B, the BCI accuracies were
positively correlated with CAS values (r = 0.641, p < 0.01).
The discrimination of BCI-inefficient users in brain-switch BCI
exhibited a sensitivity of 100.0% and a specificity of 87.5%.

More importantly, only 1-min EEG signals were required
for the discrimination of BCI-inefficient users in this work.
In clinical applications, this feature can extensively save time
for both patients and therapists. In previous studies, Blankertz
et al. (2010) proposed a physiological BCI predictor that can be
determined using 2 min of EEG signals at resting state. In the
follow-up study, Ahn et al. (2013a) presented a more efficient
BCI predictor that can predict the BCI performance with only
1 min of EEG signals. However, the participants in these two
studies were all healthy subjects, and the effectiveness of proposed
BCI predictors were still unknown on stroke patients. For stroke

patients, except for the aforementioned psychological (Burde and
Blankertz, 2006; Grosse-Wentrup et al., 2011; Grosse-Wentrup
and Schölkopf, 2012; Hammer et al., 2012, 2014; Vuckovic and
Osuagwu, 2013), physiological (Blankertz et al., 2010; Ahn et al.,
2013a,b; Bamdadian et al., 2014) and anatomical factors (Halder
et al., 2011, 2013; Zhang et al., 2016), variations of physiological
features caused by pathological factors (i.e., brain hemorrhage,
brain ischemia, traumatic brain injury) also play a significant
role in BCI performance. Effects of brain damage on cortical
activation patterns could be roughly categorized into three cases:
(a) patients are unable to voluntarily perform MI tasks or no
obvious activation could be observed during mental tasks; (b)
motor function of the lesioned cortical area is compensated
by the contralesional hemisphere, and MI-induced activations
are ipsilateral to the imagined hand; (c) the motor function is
not significantly affected by the brain damage and lateralized
activation patterns are induced by MI tasks. In the assumption
of this paper, case (a) and (b) will decrease the brain-switch
BCI and two-class BCI performances, separately, whereas case
(c) has no obvious influence on either BCI modality. In the
current work, the 1-min EEG signals were used to evaluate the
pathological effects on cortical activations which were quantified
with the proposed LI and CAS predictors. While EEG signals are
commonly regarded as non-stationary, the physiological features
caused by pathological factors (i.e., stroke) should be relatively
robust, and they are expected to be determined within the 1-min
EEG signals (5 trials of paretic hand MI). Thus, our proposed
physiological predictors may specifically benefit stroke patients
in BCI performance prediction.

Practical Implications on Stroke
Rehabilitation
For those BCI-inefficient users in two-class BCI, the cortical
activations corresponding to paretic handMI were not lateralized
to the contralateral side, and cortical activations shifted from the
lesioned hemisphere to the healthy hemisphere as demonstrated
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in Figure 3A. Statistical analysis of cortical activations from the
Inefficient-Group further confirmed that paretic hand MI tasks
were associated with significantly larger neural activities in the
ipsilateral hemisphere (p < 0.05), as shown in Figure 4A. This
result was consistent with the finding that stroke patients failed to
activate their ipsilesional M1 area with paretic handMI, although
the patients reported being able to imagine the movements of
either hand (Stinear et al., 2007). Chollet et al. (1991) also
demonstrated that the ipsilateral motor areas were substantially
recruited during the movements of the affected hand following
stroke. This phenomenon is physiologically explained by the fact
that the brain has an intrinsic capability to compensate the motor
function deficit through neural reorganization (Langhorne et al.,
2009). Interestingly, neural compensation does not exist in every
stroke patient. For instance, the ERSP values from a BCI-efficient
user (Figure 3C) indicated that activations in the contralateral
hemisphere were greater than the activities appeared in the
ipsilateral hemisphere during the MI of both hands. Therefore,
the corresponding patterns were comparable to those of healthy
individuals. This difference among stroke patients could be
explained that the cerebral network was reorganized during the
process of stroke recovery. The motor cortical asymmetry was
reduced or even returned to normal as a result of reasonable
rehabilitation treatment (Marshall et al., 2000; Takeda et al.,
2007).

The current study reveals three implications on the design of
BCI system for stroke rehabilitation. First, a well-designed BCI
predictor should be applied to identify suitable users with good
BCI performance before the BCI treatment. As demonstrated
in a clinical study (Bundy et al., 2017), stroke patients with
higher BCI accuracies achieved better outcomes after 12 weeks
of BCI-based treatments. With the predictors proposed in this
study, BCI-efficient users with a mean accuracy of 71.8% for
two-class BCI or a mean accuracy of 84.7% for brain-switch
BCI could be identified using only 5 trials of paretic hand
MI. Those patients classified as BCI-inefficient users should be
temporarily eliminated from the BCI-based rehabilitation or
turn to other BCI modalities (Dhindsa et al., 2017). Second,
as demonstrated in this study, the contralesional hemisphere
was associated with significantly larger activities compared with
the ipsilesional hemisphere for BCI-inefficient users. Thus, it is
plausible that EEG signals from the contralesional hemispheres
may achieve a better BCI performance, especially for patients
with asymmetrical activation patterns. Bundy et al. (2012)
presented an important demonstration in four stroke survivors.
In that study, EEG signals from the unaffected hemisphere
could be used for successful BCI control. In addition, the
same group developed a brain-controlled hand orthosis for
motor recovery using neural activities from the ipsilesional
hemisphere (Holmes et al., 2012). Hence, signals from the
contralesional hemisphere may serve as an alternative neural
pathway for BCI control. Finally, the inter-group comparison
of EEG features implied that specific treatment to increase
ERD laterality, by both increasing the contralateral activations
and simultaneously decreasing the ipsilateral activations, may
be capable of enhancing the two-class BCI performance. As

reported in a previous work, a MI-based training protocol
could enhance the ERD laterality within a 3-day training and
reasonably improve BCI decoding accuracy (Zich et al., 2015a).
Besides, neural modulation techniques, such as transcranial
direct current stimulation (tDCS) (Fregni et al., 2005) and
transcranial magnetic stimulation (TMS) (Kim et al., 2006)
may also help reactivate the lesioned hemisphere of stroke
patients.

Limitations and Future Work
Several limitations of the current study should be mentioned.
In the design of our experiment, we only conduct two blocks
of MI tasks, which may be not sufficient to evaluate the BCI
performance of recruited patients. In fact, it is a common
problem that most stroke patients are with bad physical
conditions. A long experiment will cause both physiological and
psychological fatigue. Thus, the current experiment was designed
to be less than an hour to avoid the effects of fatigue on BCI
performance. Meanwhile, different EEG recording systems were
used between stroke patients and healthy subjects, which may
influence the inter-group comparison of EEG features and BCI
performances. In order to minimize this effect, we have taken
three steps: (1) keep the electrode impedances of two recording
systems at a same range (both below 5 K�), (2) chose a same
reference electrode (both located on the vertex), (3) only 32
channels with the same locations between two recording systems
were used for further analysis. Additionally, individual frequency
bands with smallest ERSP values, instead of a fixed band, were
used for pattern classification. These frequency bands may not
be optimal for discrimination between different mental tasks, but
they were more meaningful for stroke rehabilitation (Johansen-
Berg et al., 2002). Due to the inter-individual difference of
cortical activations, large portions of event-related band powers
may fall outside a fixed frequency band which would provide
misleading interpretations (Pfurtscheller and Da Silva, 1999).
Thus, selection of individual frequency bands using ERSP values
was expected to avoid this problem arising with fixed frequency
bands. Furthermore, BCI training effects were not considered
here. As reported in a previous work (Ono et al., 2013), ERD
values were enhanced after a 5-day MI training with visual
feedbacks. Accordingly, the BCI performance was significantly
improved. Therefore, efficiency of our proposed BCI predictors
in well-trained subjects needs to be investigated in future
works.

5. CONCLUSION

In current study, we proposed two physiological indexes (i.e.,
LI and CAS) to predict BCI performance. These predictors
exhibited a linear correlation with BCI performance of stroke
patients. BCI-inefficient users could be successfully recognized
with a high sensitivity and specificity using only five trials of
paretic hand MI (approximately 1 min). Inter-group comparison
of physiological features showed significant differences between
BCI-inefficient and BCI-efficient users. It also demonstrated
that BCI-inefficient users were with abnormal brain activation
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patterns, which were significantly different from that of
healthy subjects. This work not only demonstrates an efficient
way to recognize BCI-inefficient users, but also provides a
further insight into the BCI-inefficiency phenomenon in stroke
patients.
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