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Electroenchephalography (EEG) recordings collected with developmental populations

present particular challenges from a data processing perspective. These EEGs have a

high degree of artifact contamination and often short recording lengths. As both sample

sizes and EEG channel densities increase, traditional processing approaches like manual

data rejection are becoming unsustainable. Moreover, such subjective approaches

preclude standardized metrics of data quality, despite the heightened importance of such

measures for EEGs with high rates of initial artifact contamination. There is presently

a paucity of automated resources for processing these EEG data and no consistent

reporting of data quality measures. To address these challenges, we propose the Harvard

Automated Processing Pipeline for EEG (HAPPE) as a standardized, automated pipeline

compatible with EEG recordings of variable lengths and artifact contamination levels,

including high-artifact and short EEG recordings from young children or those with

neurodevelopmental disorders. HAPPE processes event-related and resting-state EEG

data from raw files through a series of filtering, artifact rejection, and re-referencing steps

to processed EEG suitable for time-frequency-domain analyses. HAPPE also includes a

post-processing report of data quality metrics to facilitate the evaluation and reporting

of data quality in a standardized manner. Here, we describe each processing step in

HAPPE, perform an example analysis with EEG files we have made freely available, and

show that HAPPE outperforms seven alternative, widely-used processing approaches.

HAPPE removes more artifact than all alternative approaches while simultaneously

preserving greater or equivalent amounts of EEG signal in almost all instances. We also

provide distributions of HAPPE’s data quality metrics in an 867 file dataset as a reference

distribution and in support of HAPPE’s performance across EEG data with variable artifact

contamination and recording lengths. HAPPE software is freely available under the terms

of the GNU General Public License at https://github.com/lcnhappe/happe.
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INTRODUCTION

Electroencephalography (EEG) is a sensitive means to
noninvasively capture neurophysiological activity with clinical
and basic science utility across a number of fields. However,
during acquisition, the EEG signal is contaminated by both
experimental artifacts like electrical interference and electrode
displacement, and participant-induced artifacts like eye and
muscle movements. These artifact signals are in many cases far
more prominent than the neurophysiological signal, significantly
distorting EEG as a measure of brain function if left uncorrected
(Cuevas et al., 2014; Keil et al., 2014). Therefore, a series of
post-acquisition processing transformations are typically applied
to the EEG signal to address these artifacts and prepare the
data for analyses, including filtering, artifact removal, and
signal re-referencing (Keil et al., 2014). However, the pipelines
and parameters for EEG processing vary across studies with
little standardization. For example, one common artifact
removal approach is labor and training-intensive researcher
selection of uncontaminated EEG data, the criteria for which is
partially subjective and therefore inconsistent across individuals.
Standardized, automatable EEG processing pipelines thus offer
several advantages, including uniform application of artifact
removal criteria, efficient workflow with large sample sizes, and
the facilitation of data comparisons across studies, labs and
sites in multi-institution projects. Accordingly, software tools
automating various stages of EEG processing have become a
methodological focus (e.g., PREP, Bigdely-Shamlo et al., 2015,
FASTER, Nolan et al., 2010, ADJUST, Mognon et al., 2011,
TAPEEG, Hatz et al., 2015, ASR, Mullen et al., 2013, MARA,
Winkler et al., 2014, SASICA, Chaumon et al., 2015), but they
have largely been developed and tested on healthy adult EEG
data with low levels of artifact contamination (Nolan et al., 2010;
Mognon et al., 2011; Mullen et al., 2013; Bigdely-Shamlo et al.,
2015; Chaumon et al., 2015; Hatz et al., 2015).

Notably, EEG data from developmental populations like
infants, young children, and people with neurodevelopmental
disorders present further challenges to extracting
uncontaminated signal. EEG signals from these populations
have the highest levels of artifact contamination (e.g., infants
cannot follow instructions to refrain from moving their mouth
or eyes during data collection), and protocols typically have far
shorter EEG collection times than those with healthy adults
to accommodate reduced tolerance for testing (Tran et al.,
2004; Cuevas et al., 2014). Moreover, additional polygraphic
measurements used to identify physiological artifacts, like EOG
electrodes, are not typically used during EEG acquisition with
developmental populations due to both reduced tolerance of their
acquisition and decreased signal quality. These factors combined
have made it difficult to directly apply contemporary processing
approaches from the adult EEG literature, like independent
component analysis (ICA), that require longer recordings to
most effectively parse artifact from signal (Makeig et al., 1996;
Delorme and Makeig, 2004; Albera et al., 2012; Grandchamp
et al., 2012) (although see Zima et al., 2012; Piazza et al., 2016).
However, the typical manual artifact rejection approaches
used for these developmental EEG data routinely remove the

majority of the EEG recording, reducing experimental power
and sacrificing the neurophysiologically relevant aspects of
EEG also contained within the rejected segments (Tran et al.,
2004; Tierney et al., 2012; Cuevas et al., 2014; Gabard-Durnam
et al., 2015). Moreover, the emerging focus on collecting larger
datasets through repositories and large-scale studies along with
the use of higher-density EEG nets make manual data selection
increasingly impractical as a processing strategy (Bigdely-Shamlo
et al., 2015). Currently, there is an unmet and growing need
for automated processing tools suitable for EEG recordings like
those generated by these populations.

The purpose of the Harvard Automated Preprocessing
Pipeline for EEG (HAPPE) is to provide an automated,
standardized approach for processing these classes of EEG data.
Specifically, HAPPE is designed for data with high levels of
artifact or very short recording length (on the scale of several
minutes), although the pipeline may appropriately be used with
longer or less-contaminated data. HAPPE integrates Matlab-
based (The Mathworks, Inc.) code with freely available academic
software, including EEGLAB functions (Delorme and Makeig,
2004), to automatedly batch process resting-state and event-
related EEG data from raw format to corrected signal prepared
for analyses in the frequency domain. HAPPE comprises both a
fully-automated and semi-automated setting so that users may
visualize processing performance on individual EEG files at
multiple stages in the semi-automated setting, and adjust user
inputs if desired, before running the complete dataset through
the fully-automated pipeline. The following sections detail each
of the proposed HAPPE pipeline’s processing steps and post-
processing report metrics, demonstrate HAPPE’s effectiveness
under variable conditions of EEG artifact and recording length
by including an analysis of 10 developmental files, and compare
HAPPE’s performance to that of seven alternative, widely-used
processing approaches.

THE HARVARD AUTOMATED
PREPROCESSING PIPELINE FOR EEG
(HAPPE)

HAPPE EEG Inputs
HAPPE accommodates multiple types of EEG with different
acquisition parameters as inputs. HAPPE reads data in from
EGI-exported (Electrical Geodesics, Inc.) Matlab files for resting-
state EEG, and the data may have differing identifying variable
names across files. HAPPE reads EGI-exported simple binary
files for event-related EEG presently. However, users can easily
modify the importing code to read any file format for any
resting-state or event-related EEG that EEGLAB accepts. An
individual HAPPE run should include only resting-state data
or only event-related data, and users must specify one or the
other as the input file type. HAPPE is currently compatible with
EEG layouts of 64 and 128 channels. Each run of HAPPE must
include files collected with the same channel layout (company
and electrode number) and users must specify the appropriate
channel layout in a given HAPPE run. Users who wish to
include different EEG channel layouts within a single pipeline
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run can easily do so by accessing HAPPE through the Batch EEG
Automated Processing Platform (BEAPP) software, available
at https://github.com/lcnbeapp/beapp. HAPPE processes data
collected with any sampling rate, and files within a single run of
HAPPEmay differ in their individual sampling rates. A schematic
of HAPPE’s processing steps, options, and outputs is provided
(Figure 1).

HAPPE consists of the following processing steps for EEG
data:

1. Filtering
2. EEG channel subset selection
3. Electrical (line) noise removal
4. Bad channel rejection
5. Wavelet-enhanced thresholding (W-ICA)
6. ICA with automated component rejection
7. Automated segment rejection (optional)

a. Segmentation (optional)
b. Interpolation of bad channels for each epoch (optional)

FIGURE 1 | Schematic illustrating the HAPPE pipeline’s processing steps. The

intermediate output EEG files are indicated by the suffix added after that

specific processing step in the blue boxes. The user options for segmentation

steps and visualizing several steps in HAPPE with the semi-automated setting

are also indicated. Independent component analysis is abbreviated to ICA.

8. Interpolation of bad channels
9. Re-referencing

Below, the implementation of each processing step in HAPPE is
described in detail.

Filtering
All files are subject to a 1Hz high-pass filter. The filter removes
non-stationary signal drift across the recording and serves as a
pre-processing step for the electrical noise removal and ICA steps
that follow (Bigdely-Shamlo et al., 2015;Winkler et al., 2015). ICA
has been shown to perform best at separating signals following a
1–2Hz high-pass filter on the data (Winkler et al., 2015). For files
collected with sampling rates equal to or greater than 500Hz, the
1Hz filter is incorporated into a band-pass filter from 1 to 249Hz
to constrain the signal decomposed by ICA.

Selection of EEG Channel Subset
Users must specify a subset of 19 channels corresponding to the
International 10–20 system electrodes (without the Cz reference
electrode) for their channel layout (for use later with automated
ICA artifact rejection) and any additional channels they wish
to be processed in HAPPE. Channels that are not provided
in the subset list are removed from subsequent processing
and cannot be recovered later. For example, for data from a
128-channel net where the user selects 50 channels, the post-
HAPPE processed data will contain only data for those 50
selected channels. Channel subset selection facilitates the use
of ICA within the context of short EEG recordings where
robust ICA decomposition is unlikely if all of the high-density
channels are inputs. Typically, ICA decomposes signal into the
same number of signal sources as net channels (assuming no
channel interpolation has occurred yet) (Makeig et al., 1996).
To generate a robust, stable ICA decomposition and avoid
overlearning in the data, there are recommended constraints
on how many channels may be decomposed given the length
and sampling rate of an EEG recording (Särelä et al., 2003).
Specifically, it is presently recommended that an EEG recording
have at least 30 ∗ (the number of channels)2 data samples to
undergo ICA decomposition (e.g., Onton and Makeig, 2006).
For example, an EEG acquired with a 128-channel net and
sampling rate of 500Hz (500 samples/second) would need at
least 491,520 samples (30 ∗ 1282 samples), that is, 983.04 s of
recording (491,520 samples/500Hz) to be reliably decomposed
with ICA.

However, short EEG recordings, like those usually captured
with developmental populations, and especially short EEG
recordings made with high-density channel layouts (e.g., 128, 256
channels), do not provide enough data samples for reliable ICA
decomposition without data dimension reduction. Therefore,
HAPPE implements channel subset selection to improve the
robustness of the ICA decomposition for these types of data. The
number of channels that can be processed in a single HAPPE run
will therefore depend on how long a user’s EEG recordings are
and the sampling rate during acquisition. For example, selecting
40 out of 128 channels to process abaseline EEG recording with a
250Hz sampling rate would require 48,000 samples for adequate

Frontiers in Neuroscience | www.frontiersin.org 3 February 2018 | Volume 12 | Article 97

https://github.com/lcnbeapp/beapp
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Gabard-Durnam et al. Automated Processing Pipeline for Electroencephalography

ICA (30 ∗ 402 = 48,000). A 5-min recording with 75,000 samples
would easily provide adequate data samples. The 19 channels
from the 10–20 electrodes must be included in the total number
of electrodes users select (i.e., in this example, the user may select
an additional 21 electrodes from their channel layout to include
with the 10–20 electrodes in their channel subset). It should
be noted that if the length and sampling rate of the EEG files
in a study permit ICA decomposition on the entire number of
channels, then the full set of channels may be entered in the user
input as the channel “subset.”

Electrical (Line) Noise Removal
HAPPE removes electrical noise (e.g., 60 or 50Hz artifact
signal) from the EEG through the multi-taper regression
approach implemented by the CleanLine program (Mullen,
2012). Multi-taper regression can remove electrical noise without
sacrificing or distorting the underlying EEG signal in the nearby
frequencies, drawbacks of the notch-filtering approach to line-
noise removal (Mitra and Pesaran, 1999). Specifically, HAPPE
applies CleanLine’s multi-taper regression with enabled scanning
for exact line-noise frequency near the user-specified frequency
± 2Hz, a 4-s window with a 1-s step size and a smoothing
tau of 100 during the fast Fourier transform, and a significance
threshold of p = 0.01 for sinusoid regression coefficients during
electrical noise removal. Any remaining line-noise in the data
after CleanLine regression is further addressed through the
wavelet-thresholding, ICA, and re-referencing (if average re-
reference is selected) steps that follow.

Bad Channel Rejection
HAPPE identifies and removes channels, including channels
with high impedances or displacement during recording. HAPPE
labels such channels as “bad channels,” and their data are not
included in further processing or analyses. HAPPE determines
bad channels by evaluating the normed joint probability of the
average log power from 1 to 125Hz across the user-specified
subset of included channels. Channels whose probability falls
more than 3 standard deviations from the mean are removed
as bad channels. The bad channel evaluation is performed twice
per data file, as channels that would otherwise be manually
identified as bad channels (e.g., no signal, displacement visually
evident) were found to remain in the data after the initial
joint probability evaluation, but were successfully identified
during the second evaluation during HAPPE development.
Channels removed as bad channels have their data interpolated
from nearby channels in a later processing step (after ICA
decompositions) to preserve the complete user-selected channel
set for post-processing analyses.

Wavelet-Thresholding (W-ICA)
For studies with lower levels of EEG artifact, data segments
with obvious artifact contamination, especially non-stereotyped
artifact (e.g., signal discontinuity), are commonly rejected before
performing ICA as an artifact rejection approach (Grin-Yatsenko
et al., 2010; Piazza et al., 2016). The initial data rejection step
improves subsequent ICA segregation into artifact and neural
components. However, in developmental EEG data files, the high

degree of artifact coupled with often brief recording times would
lead to inefficient data sacrifice through this segment rejection
approach (Cuevas et al., 2014). Therefore, HAPPE implements
a wavelet-enhanced ICA (W-ICA) approach described below in
detail as a preliminary step to correct for EEG artifact while
retaining the entire length of the data file, before performing ICA
to reject artifact components. This approach of W-ICA followed
by ICA is supported by prior work showing that using wavelet-
thresholding approaches before ICA improves the resulting ICA
decomposition of the EEG data (Rong-Yi and Zhong, 2005).
The W-ICA step removes multiple classes of artifact, including
eye andmuscle-generated artifacts, high-amplitude artifacts (e.g.,
blinks), and signal discontinuities (e.g., electrodes losing contact
with the scalp).

W-ICA entails first performing an ICA decomposition of the
EEG signal into components, after which all of the components’
timeseries are subjected to wavelet transform and thresholded
to remove artifact before all of the components’ timeseries
are translated back to EEG channel format (Castellanos and
Makarov, 2006). That is, all ICA components are subjected to the
wavelet thresholding to remove artifact within each component,
but no ICA components are entirely rejected at this stage in
the pipeline. Although the initial ICA insufficiently segregates
the data into neural and artifact components for optimal ICA
component rejection at this stage, artifact is more clustered into
specific components compared to the raw channel-wise data.
Wavelet-thresholding the ICA-derived components, instead of
the raw data, increases the contrast between artifact and neural
signal magnitudes to circumvent tuning threshold parameters
while also improving W-ICA performance (Castellanos and
Makarov, 2006). HAPPE performs the ICA step of W-ICA using
the extended Infomax algorithm to increase sensitivity to any
remaining electrical noise and other sources with subgaussian or
supergaussian activity distributions (Jung et al., 1998). Relative to
other ICA algorithms and decomposition methods, the extended
Infomax algorithm has been shown to be an optimal approach
for decomposing electrophysiological signals like EEG (Delorme
et al., 2007).

The wavelet-thresholding step of W-ICA first subjects the
component time series to wavelet transform, which produces
a series of coefficients to describe the EEG signal. Here,
stationary wavelet transform of the complete set of independent
components is carried out using a Coiflets (level 5) wavelet. The
Coiflets wavelet family was selected because it has been found to
provide optimal extraction of neural from artifact signal across
both typical and epileptic EEG recordings (Gandhi et al., 2011).
HAPPE decomposes data into detail coefficients for frequencies
below approximately 125Hz and above approximately 8Hz (i.e.,
the frequency resolution of the wavelet transform; although
HAPPEwas not tested on EEG data with pathological waveforms,
like epileptic EEG, HAPPE should preserve the low-frequency
abnormalities like spike-and-slow wave complexes observed in
these populations. Further testing on epileptic or other abnormal
EEG data should be performed in the future to confirm HAPPE
as a robust processing strategy for these cases). The coefficients
are then subjected to thresholding, such that coefficients with
values smaller than the threshold have their contribution to the
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data substantially suppressed (similar to Rong-Yi and Zhong,
2005; Jansen, 2012). Thresholding in HAPPE is performed using
the Matlab function ddencmp. The global, soft threshold is
determined automatically for each file using the signal’s variance
and length, following the formula:

Threshold =
median[abs (D)]

0.6745
∗

√

2 log(N)

where D is the set of detailed coefficients provided by the wavelet
transform, and N is the length of the ICA components

This formula is a scaled version of the universal threshold
first proposed by Donoho and Johnstone (1994) that also
incorporates a robust estimate of the signal variance. Soft-
thresholding (Donoho, 1995) has been implemented in prior
studies of wavelet-thresholding electrophysiological data for
artifact rejection (e.g., Al-Qazzaz et al., 2017). As in prior W-
ICA studies, given that the magnitude of artifacts can be far
greater than that of neurophysiological signals, the component
time series whose amplitudes are large enough to survive the
wavelet-thresholding are taken as the artifact timeseries (similar
to Castellanos and Makarov, 2006). These artifact time series are
then subtracted from the pre-thresholded timeseries to remove
those artifacts from the EEG data.

ICA with Automated Component Rejection
After W-ICA removes some of the most severe artifacts, the EEG
data is more suitable for ICA decomposition with automated
component rejection to address the remaining artifacts. HAPPE
implements the ICA extended-Infomax algorithm as before.
Automated component rejection is achieved through the
Multiple Artifact Rejection Algorithm (MARA), a machine-
learning algorithm that evaluates the ICA-derived components
(Winkler et al., 2011, 2014). Although other algorithms
exist to detect specific categories of artifact automatically
(e.g., eye-movement artifact and signal discontinuities,
Mognon et al., 2011), MARA has been trained on manual
component classifications, and so captures the wide range
of artifact that manual rejection detects. MARA has proven
especially effective at detecting and removing muscle artifact
components (see approach comparisons in section HAPPE
Compared to Other Common Processing Approaches below).
Specifically, MARA evaluates each component on the 6
algorithm features described below and then assigns the
component a probability that it is dominated by artifact signal.
This probability may be interpreted as the percent of artifact
contamination estimated to be in the component. As in the
original applications of MARA, HAPPE automatically rejects
any components with artifact probabilities greater than 0.5 (i.e.,
more than 50% likely to be an artifact component) (Winkler
et al., 2011, 2014). Statistics for all retained components’
artifact probabilities are used to generate data quality metrics
detailed in section Median_Artifact_Probability_of_Kept_ICs
Mean_Artifact_Probability_of_Kept_ICs Range_Artifact_
Probability_of_Kept_ICsMin_Artifact_Probability_of_Kept_ICs
Max_Artifact_Probability_of_Kept_ICs below.

MARA uses 6 data features based on temporal, spectral,
and spatial information to assign artifact probability to an

independent component, as briefly described below (and detailed
in Winkler et al., 2014).

1. Mean local skewness: The first feature is mean local
skewness in the data (a temporal feature calculated over 15 s
increments). The local skewness feature identifies components
with time series outliers, where higher skewness values indicate
likely artifact (e.g., a component capturing blinks, or an electrode
losing contact with the scalp).

The next three features all rely on information from the
frequency domain.

2. Log alpha power: The second feature is the average log
power in the alpha band (defined as 8–13Hz). Brain-derived
components typicallymanifest robust levels of alpha-band power,
whereas artifact-driven components do not (this feature does
not flag any specific artifact types, but instead reflects a shared,
general feature of artifact components). The application of this
feature to developmental data is discussed in detail below.

3. Lambda: The third feature, lambda, captures the degree
to which a component’s power spectrum deviates from
the prototypical 1/f distribution observed in cerebral-derived
components. The power for six frequencies across the power
spectrum are sampled for each component to generate its
spectrum power curve and calculate lambda. This feature is
particularly sensitive to muscle artifact, which typically manifests
as a power spectrum with very poor fit to the 1/f distribution
(including sharply increased power in the higher frequencies like
beta and gamma after an initial decrease in power through the
lower frequencies).

4. Fit error: Similarly, the fourth feature, fit error, represents
the mean squared error of the approximation of the f distribution
to each component’s distribution specifically in the 8–15Hz range
that captures alpha band power and the transition to beta band
power. The fit error feature is nonspecific to artifact types but
instead serves as a generalized marker of artifact probability.

The last two features make use of spatial information to detect
artifactual components.

5. Range within pattern: Specifically, the fifth feature, range
within pattern, takes the (log) difference between the largest and
smallest activation magnitudes across the scalp for a component,
where artifact components typically exhibit larger range within
patterns (e.g., eye artifacts and muscle movement result in
concentrated areas of very high magnitude relative to the other
electrodes’ magnitude, whereas cerebral-derived components
tend to have more consistent magnitudes across electrodes, and
thus smaller magnitude ranges).

6. Current density norm: The final feature, current density
norm, makes use of the 10–20 channel locations input to MARA
and reflects the solution to source-modeling the component
using a model that was designed to fit cerebral-based activity
(the minimum current density norm value reflects the simplest
source model that is most-likely to be cerebral activity). Since
external artifacts were not meant to be modeled with this
approach, artifact-driven components return very high current
density norms (reflecting overly complex source models). The
current density norm feature is similarly non-specific to certain
types of artifact components, but instead captures general artifact
probability.
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Together, these 6 features address a comprehensive range of
artifacts observed in independent components.

MARA was not trained specifically on developmental or
patient data, but several findings support its application in
these contexts. First, the anatomical correlations of the 10–
20 electrodes that MARA uses to calculate its spatial features
are highly consistent across infant and adult brains (Kabdebon
et al., 2014). That is, comparable information is supplied to
MARA’s spatial features from the 10–20 electrodes regardless of
age. Second, a potential concern during HAPPE development
was that one of MARA’s spectral features evaluates EEG alpha
band power, where very young infants or clinical populations
may show a different frequency power peak than the alpha
band observed in healthy adults (Stroganova et al., 1999;
Lansbergen et al., 2011). However, empirically, even the youngest
infants tested (3 months of age) in the present dataset had
enough alpha power in the components to make use of this
MARA criterion appropriately. Indeed, the 3-month files in
the example analysis below had the lowest rates of MARA
component rejection in the sample. Variation in the alpha band
peaks was also preserved across the developmental datasets
and was consistent within individual files before and after
MARA component rejection, suggesting alpha peaks were
unperturbed during the component rejection algorithm. Lastly,
the rates of MARA component rejection for the datasets run
through HAPPE were comparable to both the rejection rates
for the adult data used to validate MARA (Winkler et al.,
2011, 2014) and to rates of manual component rejection with
developmental data decomposed with ICA (Piazza et al., 2016).
HAPPE therefore includes MARA as a robust evaluation tool
for component rejection suitable for developmental and clinical
data.

Segmentation (Optional)
HAPPE includes an optional data segmentation step along with
several additional artifact rejection steps to further optimize
processing. For data with event markers (e.g., event-related EEG
data), data can be segmented around events as specified by user
inputs. For data without event markers (e.g., resting-state EEG),
regularly marked segments of any duration specified by the user
are generated from the start of the EEG file for the duration of the
recording.

After segmentation, several additional artifact-reduction
options are available, although users may also segment their
data without applying the following options. Post-segmentation
artifact reduction parameters that the user chooses may depend
on the number of available segments, as well as the extent of
artifact contamination remaining in individual segments after
prior preprocessing steps.

Users with relatively short data files, for whom segment
rejection would lead to an unacceptably low remaining number
of segments for analysis, may choose an optional post-
segmentation step involving the interpolation of data for
channels determined to be artifact-contaminated within each
individual segment, as implemented by FASTER software (Nolan
et al., 2010). Each channel in each segment is evaluated on
the four FASTER criteria (variance, median gradient, amplitude

range, and deviation from mean amplitude), and the Z score
(a measure of standard deviation from the mean) for each
channel in that segment is generated for each of the four
metrics. Any channels with one or more Z scores that are greater
than 3 standard deviations from the mean for an individual
segment are marked bad for that segment. These criteria
may identify segments with residual high-amplitude artifacts
(e.g., eye artifacts), electrode discontinuity (e.g., electrode has
lost contact with the scalp temporarily), and muscle artifact.
Subsequently, for each segment, the bad channels have their data
interpolated with spherical splines, as in FASTER. This allows
users to maintain the maximum number of available segments,
while still maximizing artifact rejection within individual
segments.

Alternatively, for users with relatively long data files (for
whom some segment rejection is less of a concern), or for
users who wish to avoid interpolating data within individual
segments, the second optional step is segment rejection based
on both amplitude and joint probability criteria. Amplitude-
based rejection is useful for high-amplitude artifacts like eye
blinks, while joint probability-based rejection catches other
classes of artifacts, especially high-frequency artifacts like muscle
artifact. Together, these two criteria are an effective and time-
efficient combination for determining artifact-contaminated
segments. This combination has previously been used with
developmental EEG data (Delorme et al., 2007; Piazza et al.,
2016). Users specify an artifact amplitude threshold for the
amplitude-based rejection step, such that any segment with
at least one channel whose amplitude crosses the threshold
will be marked for rejection. The HAPPE default for the
artifact threshold is 40 microvolts, reflecting the smaller overall
signal amplitude that results from the wavelet-thresholding and
ICA steps. However, users are encouraged to run the semi-
automated HAPPE setting on at least several files to visually
check that this default amplitude results in appropriate segment
rejection in their own datasets. Next, two joint probabilities
are calculated with EEGLAB’s pop_jointprob function. The joint
probability of an electrode’s activity in a segment given that
same electrode’s activity in all other segments is calculated
(single electrode probability), and the joint probability of an
electrode’s activity in a segment given all other electrodes’
activities for that same segment is calculated (electrode group
probability). These joint probabilities are evaluated such that
any segment is marked for rejection when either (1) a
channel’s single electrode probability or (2) its electrode group
probability is outside of 3 standard deviations from the mean are
marked for rejection. This criterion most successfully identified
segments with remaining high-frequency artifact during HAPPE
development. All segments marked from either the amplitude
or joint probability criteria are then rejected simultaneously in
a single step.

Notably, this segment rejection step may be runon all user-
specified channels, or on asubset of channels for a specific
region of interest (ROI). The ROI-channel subset option allows
users to tailor segment rejection for a specific ROI analysis if
multiple ROIs were included in the channels selected for HAPPE
processing.
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Interpolation of Bad Channels
For all HAPPE runs (regardless of segmentation options), any
channels removed during the bad channel rejection processing
step are now subject to spherical interpolation (with Legendre
polynomials up to the 7th order) of their signal. Channel
interpolation repopulates data for the complete channel subset
specified by the user and reduces bias in re-referencing if
the average re-reference option is selected. The identity of all
interpolated channels, if any, for a file are recorded in HAPPE’s
processing report for users who wish to monitor the percentage
or identity of interpolated channels in their datasets before
further analysis.

Rereferencing
HAPPE’s final processing step is to re-reference the EEG data.
The user may specify either re-referencing using an average
across all channels (i.e., average re-reference) or using a channel
subset of one or multiple channels. For both re-referencing
options, only channels within the user-specified channel set
selected for HAPPE processing can be used for re-referencing.
Rereferencing also reduces artifact signals that exist consistently
across electrodes, including residual line-noise.

HAPPE EEG Outputs
HAPPE generates several folders containing EEG files that are
located within the user-specified folder of files for processing.
EEG files are saved out after several intermediate processing
steps so that users can explore in-depth and visualize how
those steps affected the EEG signal in their own datasets. The
intermediate files include minimally-processed EEG data, post-
wavelet-thresholded data, data post-ICA with the component
information intact, post-component rejection EEG data, and
if segmentation parameters are selected, files with post-
segmentation EEG data. HAPPE outputs fully-processed files
that are suitable inputs for further analyses (e.g., time-
frequency decomposition) in one of several formats to increase
compatibility with other software for data visualizations or
statistical analyses. HAPPE also outputs the HAPPE processing
report (described below) for the file batch, and, if users ran
HAPPE in the semi-automated setting, an image for each EEG
file containing the fully-processed EEG’s power spectrum.

HAPPE Processing Report
For each run, HAPPE generates a report table of descriptive
statistics and data metrics for each EEG file in the batch in a
single spreadsheet to aid in quickly and effectively evaluating
pipeline performance and data quality across participants within
or across studies (see example in Table 1). The report table with
all of these metrics is provided as a .csv file in the “processed”
folder generated during HAPPE.

The data metrics are each briefly described below. In
addition, to inform understanding about the distribution of
values for each metric that may be expected in a developmental
population, we provide descriptive distributions from a sample
of 867 developmental EEGs. This dataset includes EEGs from
participants spanning 3months to 36months of age, and contains
three participant groups as part of a larger, longitudinal study on

the emergence of Autism Spectrum Disorder (ASD) (see Tierney
et al., 2012) for detailed description of the project). Typically
developing infants (“Low Risk/No Autism” group), infants at
high risk for ASD by virtue of having an older sibling with
an ASD, but who did not go on to receive an ASD diagnosis
themselves (“High Risk/no Autism” group), and infants at high
risk for ASD who did go on to receive an ASD diagnosis (“High
Risk/Autism” group) contribute data to this sample. The project
was approved by the Institutional Review Board (the local ethics
committee) at Boston University and Boston Children’s Hospital
(#X06-08-0374), and was carried out with written informed
consent from all caregivers prior to their child’s participation
in the study. For each metric, the distribution of values across
this large sample is presented grouped by age, and separately, by
clinical risk status. The descriptive statistics for the entire 867
file sample for all metrics are also provided in Table 2. These
distributions may aid users in setting thresholds for removing
files from further analysis due to poor data quality, and in
comparing HAPPE performance in their own data to HAPPE
performance with the present sample.

Number_Epochs_Post_Epoch_Rejection
First, if the user selected the segment rejection option in HAPPE,
they may evaluate the number of data segments remaining post-
rejection for each file to identify any files that cannot contribute
enough clean data to be included in further analyses (user
discretion). The user may also easily tabulate the descriptive
statistics for remaining segments to report in their manuscript’s
Methods section (e.g., the mean and standard deviation of the
number of usable data segments per file in their study).

Percent_Good_Channels_Selected

Interpolated_Channel_IDs
Next, the percentage of channels contributing uninterpolated
data (“good channels”) and the identity of interpolated channels
are provided. Users wishing to limit the amount of interpolated
data in further analyses can easily identify files for removal
using these two metrics. The distributions of the percent of
good channels for the developmental sample included here are
visualized in Figure 2.

Number_ICs_Rejected

Percent_ICs_Rejected
The number and percent of the independent components
rejected as artifact components by MARA after the post-wavelet-
thresholded ICA decomposition are also given. These measures
may be useful for evaluating how ICA with MARA performs on
the user’s data across files, since poor artifact segregation from
neural signal would result in MARA rejecting most components
consistently across files. The distributions of the percent of
components rejected in the developmental sample included here
are visualized in Figure 3.

Percent_Variance_Kept_of_Post_Waveleted_Data
A complementary metric to the component rejection variables
is the measure of variance in the data retained after MARA
rejection relative to beforeMARA rejection of components. Here,
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TABLE 2 | Descriptive statistics for data quality metrics in a developmental sample.

File length % Good channels % ICs rejected % Variance kept Mean artifact probability Median artifact probability

Mean 208.27 91.65 40.57 67.14 0.14 0.1

Std 125.45 5.29 12.4 16.75 0.05 0.07

25% 134 89.7 32.14 56.84 0.11 0.05

50% 166 92.3 40.54 68.98 0.14 0.09

75% 264 94.87 48.65 79.09 0.18 0.14

Sample size for the dataset is 867 EEG files. For each metric, the mean value (mean), standard deviation (std), and values corresponding to the 25th, 50th, and 75th percentile are given.

FIGURE 2 | Percent good channels retained. The distribution of the percent of channels retained as good channels during channel rejection is shown as a function of

age when the EEG was acquired (A), or clinical group status (B) for a developmental sample.
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FIGURE 3 | Percent of independent components (ICs) rejected. The distribution of the percent of independent components rejected by MARA after ICA

decomposition is shown as a function of age when the EEG was acquired (A), or clinical group status (B) for a developmental sample.

the retained variance across all electrodes is calculated using
the compvar function (Delorme et al., 2001) in EEGLAB. The
amount of variance in the data that each independent component
accounts for can be dramatically different across components
for a file. Thus, a given percentage of components rejected does
not necessarily indicate whether a small part of the EEG signal
or even the majority of the EEG signal was removed. This
relation is illustrated for the large developmental sample included
here (Figure 4). Accordingly, the variance-kept metric may be

useful to distinguish how much of the EEG signal was rejected
by MARA, although users should take into consideration that
artifact signal contributes more than neural signal to the signal
variance in the first place. The variance-kept and the rejected
component metrics together may be used to set a tolerance
threshold (e.g., 20%) for the degree of data rejection with easy
identification of files for removal from further analysis. For
the distributions of the percent of EEG variance kept in the
developmental sample included here, see Figure 5.
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FIGURE 4 | Relation between independent component (IC) rejection and the

percent of data variance retained. The relation between the percent of variance

in the EEG retained after MARA rejection of ICs (x-axis) and the percent of ICs

rejected by MARA (y-axis) is shown for a developmental sample. The

distributions for each metric in the same sample are shown opposite the

labeled axes; top distribution is for percent of variance retained, right

distribution is for percent of ICs rejected.

Median_Artifact_Probability_of_Kept_ICs

Artifact_Probability_of_Kept_ICs

Range_Artifact_Probability_of_Kept_ICs

Min_Artifact_Probability_of_Kept_ICs

Max_Artifact_Probability_of_Kept_ICs
The final set of metrics provided by HAPPE include descriptive
statistics for the MARA-generated probabilities that the
independent components surviving rejection are artifact-
contaminated (artifact probability metrics). It should be noted
that these values are derived before any segment rejection or
segment-level channel interpolation occurs, so these metrics will
overestimate the artifact levels in the fully-processed data if either
segment rejection or interpolation options have been selected.
Still, the artifact probability metrics, especially the median and
mean artifact probabilities, may inform which files remain
too artifact-contaminated to contribute to further analyses.
Distributions for the median and mean artifact probabilities
for the developmental sample included here are provided
(Figures 6, 7, respectively).

Through this report table of metrics, HAPPE therefore aims to
provide a rich, quantifiable, yet easily accessible way to effectively
evaluate data quality for even very large datasets in the context
of automated processing. Visual examination of each file is not
required, although it is available. Over and above the purposes
of rejecting files that no longer meet quality standards for a
study and evaluating HAPPE performance on a given dataset,
we also hope to encourage more rigorous reporting of data

qualitymetrics inmanuscripts by providing these outputs already
tabulated and easily transformed into descriptive statistics for
inclusion. Users may also wish to include one or several of these
metrics as continuous nuisance covariates in statistical analyses
to better account for differences in data quality between files,
or verify whether there are statistically significant differences in
data quality post-processing between study groups of interest.
For further guidance about using the processing report metrics
to evaluate data, users may consult the HAPPE README file
distributed with HAPPE software.

EXAMPLE ANALYSIS WITH HAPPE

In this section, the specifications for and results from one run
of HAPPE with 10 developmental EEG files are provided. The
EEG files contributing to this example dataset may be freely
accessed through Zenodo at: https://zenodo.org/record/998965#.
WdBg2BNSxBw. Acquisition parameters for each of the 10 data
files are given in Table 3. In accordance with HAPPE’s aim
to deliver a processing strategy compatible with short EEG
recordings, the median length of the 10 sample EEG files is only
3.8min (with files ranging from 2.4 to 13min). The HAPPE
script with the configurations selected as run in this example
is provided in Supplemental Materials (Please note that users
will still need to change the path specifying the folder with
the downloaded data to match the destination on their own
machines). This iteration of HAPPE was implemented with
MATLAB version 2017a and EEGLAB version 14.0.0b on an
iMac running OS X El Capitan (Version 10.11.6) with one 2.7
GHz Intel Core i5 processor. This example analysis is included to
enable users to replicate HAPPE performance independently and
to facilitate implementing HAPPE with their own datasets after
working through this example.

The following is a resting-state analysis of developmental
EEG data collected with HydroCel 128-channel Geodesic Sensor
Nets (EGI, Eugene, OR). The 39-channel subset selected for
preprocessing contains bilateral frontal and temporal channels
(in addition to the 10–20 channels), as these locations typically
have the most extreme artifact levels, and therefore provide
the greatest challenge to HAPPE’s performance. To illustrate
both the degree of artifact that occurs in these example files,
and HAPPE performance for the same EEGs, data during
the first 30 s of several EEGs is provided before and after
HAPPE processing (Figure 8). HAPPE was run in the semi-
automated setting to generate visualizations for each file at
multiple steps in the pipeline (these visualizations for each
example file are included in Supplemental Materials). Data were
segmented into 2-s long segments with the segment rejection
option selected, using artifact amplitude thresholds of −40 and
40 microvolts. Data were re-referenced using an average re-
reference. It should be noted that during processing, ICA does
not return identical results each time it is run on the same
data because the decomposition solution searching begins with
a randomly-generated weight matrix each time (Onton and
Makeig, 2006). Therefore users replicating these analyses on the
same data may find small discrepancies between their own set of
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FIGURE 5 | Percent variance retained post-MARA rejection. The distribution of the percent of variance in the EEG signal retained after MARA rejection of independent

components is shown as a function of age when the EEG was acquired (A), or clinical group status (B) for a developmental sample.

results and those described here with respect to percent variance
accounted for in each component, andMARA artifact probability
assigned to each component (and accordingly, the number of
components rejected by MARA, the artifact probabilities of
remaining components, and the variance kept in the data post-
MARA). The HAPPE processing report for this example analysis
is presented in Table 1.

Data quality and HAPPE’s effectiveness for this dataset are
first discussed by way of the HAPPE processing report metrics.
The first evaluation point for assessing data quality is the number
of channels contributing uninterpolated data to further analysis
(i.e., the good channels that weren’t rejected during processing).
In the present dataset, an average of 88% of the channels from the

user-selected channel subset for each file were retained as good
channels for further processing. Only one file contained fewer
than 80% good channels (79%, baselineEEG11), with most of the
bad channels covering the right frontal region of interest (ROI)
for that file. This file may merit removal from further analysis
depending on the ROI(s) to be examined (i.e., frontal ROIs or
temporal ROIs). For this processing example exclusive of specific
statistical analyses, baselineEEG11 is retained.

Next, the effectiveness of W-ICA and ICA in segregating and
rejecting artifact from the neurophysiological signal are evaluated
using the post-MARA data metrics. For this sample of 10 files,
on average, 42% of the components were rejected per file during
HAPPE, comparable to both the rate of MARA component
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FIGURE 6 | Median artifact probability of retained EEG. The distribution of the median artifact probability value for retained independent components post-MARA

rejection is shown as a function of age when the EEG was acquired (A), or clinical group status (B) for a developmental sample.

rejection in adult EEG (Winkler et al., 2014) and the rate of
manual component rejection with infant EEG data (Piazza et al.,
2016). Moreover, following component rejection, 68% of the EEG
variance was retained per file on average, suggesting MARA-
based component rejection did not result in an unacceptable
level of data loss generally. Only one file (baselineEEG9) retained
a minimal amount of variance post-MARA rejection (24%
variance retained), meriting further review or visualization of
the data to determine whether it should be removed from post-
processing analyses. (It was retained in the dataset for this
example analysis). Additionally, on average, the median and

mean artifact probabilities of the retained components post-
MARA rejection was only 0.10 and .13, respectively, suggesting
W-ICA and ICA with MARA achieved robust segregation of
neurophysiological and artifact signals during the decomposition
in the developmental dataset. No individual files post-MARA
rejection had average or median artifact probabilities greater than
0.30, or even a more conservative 0.25, therefore no files were
considered for removal from further analyses based on residual
artifact at this step in the pipeline.

Finally, the number of segments retained after the segment
rejection step, if selected, may be evaluated to determine
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FIGURE 7 | Mean artifact probability of retained EEG. The distribution of the mean (average) artifact probability value for the retained independent components

post-MARA rejection is shown as a function of age when the EEG was acquired (A), or clinical group status (B) for a developmental sample.

whether any files can no longer contribute sufficient data
for further analyses. For the present sample, each EEG file
was segmented into 2-s long windows and each segment was
evaluated for rejection. For the present sample, an average of
66% of the 2-s segments were retained per EEG file after this
step. Post-segment rejection, no individual file had fewer than
20 retained segments (average number of retained segments
= 99), a sufficient number of segment samples for calculating
power (Cuevas et al., 2014; Gabard-Durnam et al., 2015), so
no individual files were considered for removal from post-
processing analyses. Therefore, despite initial high levels of

artifact contamination in the dataset, all 10 files were successfully
processed in HAPPE with the potential for inclusion in further
analyses.

Data quality may also be assessed subjectively for these 10
files by examining the EEG power spectrum for each file after
each processing step in HAPPE (see Figure 9). Post-HAPPE
processing, there is a dramatic reduction in the electrical noise
signal (60Hz spike) across the 10 files, relative to the earliest
stages of processing. In several cases (especially baselineEEG06
and baselineEEG07), alpha peaks in power, a normative feature
of EEG power spectrums, are revealed post-HAPPE processing
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TABLE 3 | Acquisition parameters for a 10-file example dataset.

EEG identifier Participant

age

(months)

EEG length

(s)

EEG

sampling

rate (Hz)

EEG net size

(No. of

channels)

baselinEEG01 6 349 250 128

baselineEEG04 36 189 250 128

baselineEEG05 18 164 250 128

baselineEEG06 3 784 250 128

baselineEEG07 3 145 250 128

baselineEEG08 12 279 500 128

baselineEEG09 12 161 500 128

baselineEEG10 24 349 500 128

baselineEEG11 9 184 250 128

baselineEEG12 6 284 250 128

relative to the earliest processing steps. Moreover, baselineEEG12
initially contained a very large amount of artifact, visible in
the power spectrum for frequencies greater than 20Hz, that
is robustly removed during HAPPE processing. Across the 10
files, the power spectrums post-HAPPE processing appear more
uniform in shape and scale than those for the earliest processing
steps, where artifact contamination had not yet been addressed.
Therefore, through visual inspection of the power spectrums for
the 10 example files, no individual file post-HAPPE processing
appears to merit removal from further analyses. When HAPPE is
run in the semi-automated setting, as in this example analysis,
users may monitor these power spectrum features generated
post-HAPPE processing for their own files as well.

HAPPE COMPARED TO OTHER COMMON
PROCESSING APPROACHES

Here, HAPPE is compared to seven alternative processing
approaches for removing experimental and participant-induced
artifact with the same 10 developmental files. Of these alternative
approaches, one (FASTER) is a comprehensive processing
pipeline that, like HAPPE, takes raw EEG files as inputs
and produces fully-processed EEG data suitable for analyses.
The remaining six alternative approaches consist of artifact-
rejection steps. Therefore, for these alternative artifact-rejection
approaches, data are processed in HAPPE for all steps besides
the alternative rejection steps. Each approach’s performance is
evaluated using the data quality metrics provided in the HAPPE
processing report for consistency across methods (Figure 9B).
Specifically, the percent of independent components rejected by
each method and the percent of EEG variance retained after
component rejection metrics quantify EEG signal preservation
in the artifact rejection process (summarized in Table 4), while
the mean and median artifact probability metrics of retained
components index successful artifact rejection (summarized
in Table 5). The most successful approaches should combine
high percentages of retained EEG variance and components
with low artifact estimates in the retained data, indicating

excellent separation and rejection of artifacts from the EEG
signal of interest. Alternatively, approaches with either high or
low percentages of variance and components retained alongside
high levels of retained artifact indicate incomplete artifact
rejection. Student’s paired sample t-tests were performed on the
data metrics for formal comparisons between approaches. The
comparison between HAPPE and each alternative approach is
provided below (Figure 9B, and see Figure 10 for a summary of
each approach’s processing steps).

Independent Component Analysis (ICA)
The ICA alternative approach remains fully-automatable,
and simply removes the wavelet-thresholding step from the
processing sequence of HAPPE. That is, data are fed directly into
a single ICA decomposition for the purpose of rejecting artifact.
Like HAPPE, this alternative approach does not sacrifice any
data segments during artifact rejection, an appealing feature for
processing short data recordings. Data were processed in HAPPE
for the initial steps of filtering, channel subset selection, line
noise removal through CCleanLine, and bad channel detection,
as these steps may all improve ICA decomposition performance
(Winkler et al., 2015). Where the wavelet-thresholding step
follows in HAPPE, data were instead extracted from the
HAPPE pipeline and input to ICA with the same extended
Infomax algorithm settings as in HAPPE. MARA component
rejection was then carried out using the same settings as in
HAPPE. Data post-MARA processing were then compared
to HAPPE post-MARA data (before segment rejection) (see
Tables 4, 5).

First, independent component rejection rates and retained
variance were compared across approaches as an indicator of
how well the ICA segregated artifact from signal. The ICA
alternative approach rejected significantly more components
(86.3%) compared to HAPPE (42%) [t(9) = 5.31, p = 0.00058,
n = 10]. For half of the files (5), only a single component
was preserved as neurophysiological signal, an unacceptably low
retention rate. The ICA approach also removed a significantly
greater amount of the variance from the data than HAPPE [t(9)
= 5.48, p = 0.00039, n = 10], leaving only 24.8% of the data’s
variance on average, barely above the rejection threshold for
evaluating HAPPE. Next, to assess the quality of the retained
data post-MARA rejection across approaches, the median and
mean artifact probability metrics were compared. Despite the
higher rates of component rejection, the remaining components
after the ICA alternative approach had median and mean artifact
probabilities about twice as large as the components after HAPPE
processing [median artifact probability: t(9) = 2.52, p = 0.0033,
n = 10; mean artifact probability: t(9) = 2.07, p = 0.068, n =

10]. Applying even the more liberal retained-artifact probability
threshold of 0.3 used to evaluate HAPPE performance, the
ICA approach resulted in 3 files meeting criteria for removal
from further analyses, compared to 0 files in HAPPE. Overall,
the alternative ICA approach without an artifact rejection step
preceding it (like W-ICA in HAPPE) performed much more
poorly on the developmental files relative to HAPPE, rejecting
far more components but also retaining higher artifact levels in
the data.
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FIGURE 8 | EEG signal before and after HAPPE processing. Three files from the example dataset are shown (A-C) with 14 s of data extracted from the first 30 s of the

recording. The EEG signal after minimal processing (i.e., filtering, channel subset selection, and average re-referencing) is shown in the left panel. The EEG signal after

HAPPE processing as described in the example analysis results section is shown in the right panel. All scales are in microvolts.
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FIGURE 9 | Results from HAPPE processing steps and comparison to alternative approaches. For each file in the example dataset, the EEG power (y-axis, in

microvolts squared) across a range of EEG signal frequencies (x-axis) is shown as a function of several processing steps within HAPPE. Power spectrums are

generated after the filtering step (filter), after basic preprocessing (filter, CleanLine, bad channel rejection), wavelet-enhanced independent component analysis (wavelet

thresholding), independent component analysis with MARA rejection (ICA with MARA rejection), segment rejection for the retained data (segment rejection), and after

the final channel interpolation and re-referencing steps (fully-processed) (A). All 8 approaches for artifact rejection are compared in terms of the percent EEG data

variance retained (x-axis) and the average artifact level in the retained EEG data (y-axis), where optimal performance would place an approach near the bottom right

corner of the chart, retaining most of the EEG variance with low levels of artifact (B).
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TABLE 4 | Data quality metrics measuring the amount of EEG data that is retained post-processing compared for HAPPE and alternative approaches.

Filename Percent independent components rejected Percent variance kept after rejection

HAPPE ICA Manual ASR ADJUST SASICA FASTER FASTER-

MARA

HAPPE ICA Manual ASR ADJUST SASICA FASTER FASTER-

MARA

baselineEEG01 50 97.37 92.11 82.86 26.32 44.74 5.26 94.44 48.28 1.90 4.21 50.59 85.90 63.13 96.10 4.17

baselineEEG04 38.89 80.56 72.22 64.10 38.89 38.89 2.70 63.89 80.39 37.85 52.92 80.30 95.08 80.10 97.55 21.87

baselineEEG05 37.14 45.71 37.14 53.85 8.57 20.00 5.26 38.89 79.08 74.28 77.48 69.27 78.61 87.49 93.89 80.12

baselineEEG06 2.94 82.35 82.35 81.58 17.65 26.47 2.63 70.27 98.07 52.89 26.15 37.97 96.44 89.65 96.53 55.86

baselineEEG07 2.78 97.22 100 86.49 11.11 11.11 5.41 85.71 99.13 2.50 0 18.88 95.42 91.87 89.00 24.91

baselineEEG08 75.76 96.97 87.88 83.78 15.15 18.18 2.70 83.33 43.67 8.86 22.28 43.02 74.07 86.66 93.28 16.89

baselineEEG09 71.43 97.14 74.29 79.49 62.86 22.86 2.70 86.11 24.25 7.56 30.38 33.58 78.77 77.17 93.28 16.26

baselineEEG10 43.75 78.13 53.13 61.54 53.13 56.25 2.70 83.33 83.82 23.12 70.68 49.18 84.13 62.04 93.40 17.93

baselineEEG11 35.48 90.32 48.39 74.36 16.13 19.35 2.70 75.00 85.15 37.73 59.9 42.41 79.79 89.89 95.75 41.54

baselineEEG12 62.86 97.14 88.57 94.44 54.29 37.14 2.63 94.59 35.67 1.33 11.89 13.53 96.86 75.96 94.46 2.39

Dataset

average

42.10 86.29*** 73.61* 76.25** 30.41 29.50 3.47** 77.56** 67.75 24.80*** 35.59* 43.87* 86.51* 80.40 94.32* 28.19**

*p < 0.05. **p < 0.01. ***p < 0.001. Significant differences between approaches where HAPPE shows the more favorable result are bolded.

TABLE 5 | Data quality metrics measuring the amount of artifact retained post-processing in the EEG data compared for HAPPE and alternative approaches.

Filename Mean artifact probability of retained components Median artifact probability of retained components

HAPPE ICA Manual ASR ADJUST SASICA FASTER FASTER-

MARA

HAPPE ICA Manual ASR ADJUST SASICA FASTER FASTER-

MARA

baselineEEG01 0.14 0.25 0.41 0.18 0.41 0.28 0.87 0.35 0.10 0.25 0.43 0.19 0.26 0.11 0.93 0.35

baselineEEG04 0.16 0.20 0.15 0.20 0.27 0.30 0.63 0.22 0.16 0.2 0.12 0.18 0.20 0.19 0.78 0.29

baselineEEG05 0.08 0.28 0.21 0.25 0.35 0.35 0.46 0.25 0.01 0.34 0.18 0.26 0.10 0.10 0.41 0.28

baselineEEG06 0.05 0.21 0.36 0.30 0.03 0.03 0.67 0.31 0.03 0.22 0.43 0.27 0.03 0.02 0.76 0.38

baselineEEG07 0.05 0.45 0.26 0.04 0.04 0.79 0.36 0.05 0.45 0.24 0.04 0.05 0.89 0.34

baselineEEG08 0.21 0.13 0.23 0.32 0.66 0.69 0.82 0.30 0.25 0.13 0.20 0.28 0.76 0.77 0.94 0.32

baselineEEG09 0.15 0.26 0.21 0.25 0.52 0.63 0.82 0.30 0.08 0.26 0.20 0.23 0.46 0.83 0.94 0.36

baselineEEG10 0.16 0.1 0.24 0.14 0.13 0.14 0.82 0.31 0.12 0.1 0.31 0.03 0.08 0.08 0.95 0.36

baselineEEG11 0.07 0.35 0.25 0.33 0.23 0.23 0.71 0.23 0.03 0.41 0.23 0.45 0.04 0.03 0.86 0.22

baselineEEG12 0.23 0.12 0.33 0.15 0.47 0.57 0.89 0.27 0.18 0.12 0.33 0.15 0.37 0.56 0.96 0.27

Dataset average 0.13 0.23∓ 0.26** 0.24* 0.31** 0.33** 0.75*** 0.29*** 0.10 0.25* 0.27* 0.23* 0.23∓ 0.27∓ 0.84*** 0.32***

∓p < 0.1. *p < 0.05. **p < 0.01. ***p < 0.001. Significant differences between approaches where HAPPE shows the more favorable result are bolded.

Manual Segment Rejection with ICA
(Manual)
The manual alternative approach reintroduces artifact rejection
before the ICA decomposition and MARA rejection steps.
However, the manual approach is not automatable and results
in data loss from files that already have short lengths. For
the manual approach, data files were processed in HAPPE for
filtering, channel subset selection, line noise removal, and bad
channel detection. Data was then removed from HAPPE and
segmented into 2-s segments for manual artifact rejection (by
an experimenter with extensive manual EEG processing training
whowas also blind to theHAPPE results). Aftermanual rejection,
each file was input to ICA (as inHAPPE) withMARA component
rejection.

HAPPE retained more EEG data than the manual rejection
approach across all measures. First, as the manual approach
involves segment rejection, the number of retained data segments
was compared to the retained segment count after the optional,
automated segment rejection step in HAPPE. HAPPE retained

a significantly greater number of data segments relative to the

manual segment rejection approach [t(9) = 3.11, p = 0.0125,

n = 10], preserving 2.9 times the number of segments retained
through manual rejection (HAPPE mean segment number: 98.9;

manual segment number: 33.6). The manual approach left 3
files with fewer than 20 segments, which may be insufficient

for further post-processing analyses. The manual approach also

resulted in MARA rejecting significantly more ICA components
than HAPPE [t(9) = 3.02, p = 0.0145, n = 10], and retained
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FIGURE 10 | Schematic illustrating the HAPPE pipeline in relation to seven alternative processing approaches. Processing steps that are consistent across

approaches, and implemented in HAPPE, are highlighted in light green. Processing steps that are unique to the alternative approaches are highlighted in light blue.

Independent component analysis is abbreviated to ICA. Multiple Artifact Rejection Algorithm is abbreviated to MARA. Wavelet-thresholded ICA is abbreviated to

W-ICA. Artifact Subspace Reconstruction is abbreviated to ASR. Fully Automated Statistical Thresholding for EEG artifact Rejection is abbreviated to FASTER.

Automatic EEG artifact Detector based on the Joint Use of Spatial and Temporal features is abbreviated to ADJUST. SemiAutomated Selection of Independent

Components for Artifact Correction in the EEG is abbreviated to SASICA.

significantly less data variance after component rejection [t(9) =
3.18, p= 0.0112, n= 10], keeping only about half of the variance
retained through HAPPE on average. Indeed, 3 files processed
with the manual approach did not retain the minimum of 20%
of the data variance to be included in post-processing analyses

(criteria set for evaluating HAPPE performance previously).
Despite the higher rates of data rejection, the manual approach
also had median and mean artifact probabilities more than twice
as large as those obtained in HAPPE, [median artifact: t(8) = 3.15,
p = 0.0117, n = 9; mean artifact: t(8) = 3.42, p = 0.0070, n = 9].
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Accordingly, half of the files had artifact probabilities above
the 0.3 threshold for rejection from further analyses. Therefore,
in addition to the disadvantage of requiring manual input for
each file, the manual approach did not result in either greater
retained data or better retained data quality compared with
HAPPE.

Artifact Subspace Reconstruction (ASR)
with ICA
The ASR approach interpolates artifact-contaminated regions
in continuous data, guided by a period of clean data within
the same file (here, clean data was determined by the ASR
algorithm). Although ASR remains fully-automatable, unlike
HAPPE, it is not appropriate for event-related EEG processing.
Still, the performance of ASR was compared to HAPPE for
processing resting-state EEG data. Data were processed as in
HAPPE for filtering, channel selection, and electrical noise
removal steps. The ASR approach was then carried out with
EEGlab’s Clean_rawdata functions adopted from BCILAB (Kothe
and Makeig, 2013; Mullen et al., 2015). Clean_rawdata contains
bad channel rejection and ASR artifact interpolation steps.
Channels were removed if they were flat for more than 10 s
or had correlations below 0.8 with the other channels’ data.
Channels were not removed in the presence of line-noise due to
the prior use of CleanLine. ASR was used to interpolate artifact
“bursts” with variance more than 5 standard deviations different
from the automatedly detected clean data, as in prior work with
clinical populations (Grummett et al., 2014). Data segments post-
interpolation were removed with a time-window rejection setting
of 0.05 (aggressive segment rejection). Data were then submitted
to ICA and MARA component rejection (as in HAPPE).

HAPPE retained more EEG data than the ASR approach
across all measures. Although ASRwas designed for brief “bursts”
of artifact in otherwise clean data, due to the high degree
of artifact contamination in the developmental data, the ASR
approach interpolated an average of 35.7% of the EEG data per
file, which may constitute a prohibitively high interpolation rate.
Even with the high rate of artifact interpolation, MARA rejected
far higher percentages of independent components [t(9) = 4.86,
p = 0.001, n = 10] and retained far less EEG data variance [t(9)
= 4.02, p = 0.003, n = 10] on the ASR-treated data than in
HAPPE. The ASR approach also retained higher mean [t(9) =
3.04, p = 0.014, n = 10] and median [t(9) = 2.55, p = 0.031,
n = 10] artifact levels in the data post-component rejection
compared to HAPPE. Consequently, the ASR approach resulted
in half of the example files meeting either the retained variance
or retained artifact criteria for removal from further analyses,
Thus, by rejecting more EEG data but also retaining higher
levels of artifact, the ASR approach performed less successfully
than HAPPE across all measures in the context of developmental
resting-state EEG files.

Fully Automated Statistical Thresholding
for EEG Artifact (FASTER)
FASTER is a fully-automated pipeline that transforms EEG
data from raw files to processed data inputs for analyses,

with artifact rejection steps implemented here at the channel,
epoch, and independent component levels. For each rejection
step, FASTER calculates statistical parameters for the data and
rejects channels, epochs, or components with Z-scores above a
pre-specified threshold as outliers (here the default settings of
Z-scores of 3 were applied). FASTER’s single-channel, single-
epoch interpolation step was not included in the comparison
to HAPPE because this option has been integrated into HAPPE
(an optional segment rejection setting) with acknowledgement
of FASTER for this capability. FASTER performs optimally with
higher numbers of data points and channels, and assumes normal
distributions of uncontaminated EEG data, conditions that may
not be met with highly-contaminated, short EEG recordings.
FASTER also uses information from EOG channels as one
means to reject independent components, but EOG channel
recordings are not typically performed with developmental
populations (including the present data files), which may
further impair FASTER performance in this context. Here, data
were passed through the channel selection and CleanLine line
noise removal steps first as in HAPPE. Data were then input
to FASTER, where filtering, channel rejection, segmentation
(into regular 2-s epochs as in HAPPE), segment rejection,
and ICA with component rejection steps were performed. To
generate the retained artifact metrics for FASTER-processed data
for comparison across approaches, data were then classified
(but not rejected) according to the 6 artifact features in
MARA.

The FASTER approach retained more data than HAPPE, but
also retained much higher rates of artifact. Specifically, FASTER
rejected a lower percentage of independent components [t(9)
= −4.79, p = 0.001, n = 10] and retained significantly more
EEG data variance [t(9) = 3.07, p = 0.013, n = 10]. However,
FASTER also retained far higher mean [t(9) = 17.36, p =

0.000000031, n = 10] and median [t(9) = 16.14, p = 0.00000006,
n = 10] artifact levels in the data, with mean artifact levels
almost 6 times higher and median artifact levels more than
8 times higher than those found in HAPPE -processed data.
Every one of the example files met artifact retention criteria for
removal from further analyses post-FASTER processing. This
pattern of high levels of retained data together with high levels
of retained artifact through FASTER processing is consistent
with incomplete artifact segregation and rejection. Thus, in
the context of developmental EEG files, HAPPE outperforms
FASTER in rejecting EEG artifact.

FASTER with MARA Component Rejection
(FASTER-MARA)
Next, we tested whether combining the FASTER approach
with MARA independent component rejection would lead
to improved artifact rejection for developmental EEG files
compared to the combination of W-ICA with MARA rejection
in HAPPE. Data were processed as above in FASTER [see
section Fully Automated Statistical Thresholding for EEG
Artifact (FASTER)] and all retained independent components
were then subjected to MARA classification and rejection. The
combined FASTER-MARA approach rejected significantly more
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components [t(9) = 4.4, p = 0.002, n = 10] and retained far
less EEG data variance than HAPPE [t(9) = −5.23, p = 0.001,
n = 10]. Moreover, the FASTER-MARA approach resulted in
higher mean [t(9) = 7.41, p = 0.00018, n = 10] and median
[t(9) = 7.41, p = 0.000040, n = 10] artifact levels in the
preserved components compared to HAPPE. Indeed, 6 of the
10 example files met either the retained variance or retained
artifact criteria for removal from further analyses using the
FASTER-MARA approach. Therefore, HAPPE retained EEG data
variance while rejecting EEG artifact more successfully than
the FASTER-MARA approach for these developmental EEG
files.

W-ICA with Automatic EEG Artifact
Detection Based on the Joint Use of
Spatial and Temporal Features (W-ICA with
ADJUST)
ADJUST is a fully-automated algorithm for classifying and
rejecting independent components using a combination of spatial
and temporal data features optimized for detecting blinks, eye
movements, and generic discontinuities. Importantly, ADJUST
was not designed to robustly detect other kinds of artifact,
including EMG artifact that frequently occurs in developmental
and patient populations. Here, filtering, channel selection,
electrical noise removal, bad channel rejection, W-ICA, and
ICA steps were all performed as in HAPPE to optimize the
ICA decomposition classified by ADJUST. Data were then
subjected to ADJUST component rejection instead of MARA-
based rejection. As with the FASTER approach, retained artifact
metrics for comparison across approaches were then generated
through the artifact feature classification in MARA (without
component rejection).

The ADJUST approach retained somewhat more EEG data
variance than HAPPE [t(9) = 2.33, p = 0.044, n = 10], although
it did not reject significantly fewer components than HAPPE [t(9)
= −1.64, p = 0.14, n = 10]. However, ADJUST retained higher
mean [t(9) = 3.48, p= 0.007, n= 10] andmedian [t(9) = 2.27, p=
0.050, n= 10] artifact levels compared to HAPPE, and half of the
example files met the artifact retention criteria for removal from
further analysis with the ADJUST approach. Taken together, this
pattern of increased data variance retention along with increased
artifact levels suggests more incomplete artifact segregation and
rejection during ADJUST compared with HAPPE, most likely
due to the EMG artifacts that ADJUST was not designed to
robustly eliminate.

W-ICA with Semiautomatic Selection of
Independent Components for Artifact
Correction in EEG (W-ICA with SASICA)
The last approach compared to HAPPE was SASICA, a semi-
automated software for classifying and rejecting independent
components using a combination of data features and statistical
thresholds to guide manual component rejection. SASICA was
not designed to be fully-automated, a drawback in processing
large datasets. Unfortunately, as in FASTER, SASICA performs
optimally when EOG channel information and dipole fit

information is present, which is typically not present or
reliably calculated for developmental data. Thus, the observed
SASICA performance with developmental EEG may not reflect
its entire capability with the lower-artifact, adult EEG data
on which it was tested. Here, filtering, channel selection,
electrical noise removal, bad channel rejection, W-ICA, and
ICA steps were all performed as in HAPPE to optimize
the ICA decomposition classified by SASICA. Data were
then segmented into regular 2-s epochs and subjected to
SASICA component classification, with manual rejection of
all recommended components. All features that could be
calculated with the developmental example files were employed
to classify components, including the autocorrelation feature
(with automatic correlation threshold with 20ms lag selected),
focal component feature (automatic Z threshold selected), focal
trial activity (automatic Z threshold selected), signal to noise
ratio feature (with default settings and threshold ratio of 1), and
correlation with other channels feature (automatic comparison
to other channels and threshold of 4). Retained artifact metrics
for comparison across approaches were then generated as
before through artifact feature classification in MARA without
rejection.

SASICA did not significantly differ from HAPPE in the
amount of EEG signal retained post-component rejection by
any metric. That is, SASICA did not statistically differ from
HAPPE in either the percent of components rejected [t(9) =

−1.530, p = 0.160, n = 10] or the amount of EEG variance
retained after rejection [t(9) = 1.61, p= 0.143, n= 10]. However,
SASICA retained significantly higher mean [t(9) = 3.302, p =

0.009, n= 10] artifact levels after component rejection compared
with HAPPE. Indeed, half of the data files met the artifact
retention criteria for removal from further analysis with the
SASICA approach. There was also a trend-level difference with
higher median artifact levels in retained data through SASICA
compared with HAPPE [t(9) = 1.96, p = 0.082, n = 10]. Thus,
while SASICA retains comparable amounts of EEG variance,
the higher level of retained artifact makes it less successful than
HAPPE processing developmental data.

DISCUSSION

EEG recordings like those collected with developmental
populations present particular challenges from a data processing
perspective, as they typically contain a high degree of artifact
contamination, can by necessity be shorter than recordings
collected in adults, and are often recorded in the absence
of polygraphic signals for localizing physiological artifact.
Multiple toolboxes and pipelines exist for various steps of EEG
processing (e.g., FASTER, SASICA, ADJUST, ASR, TAPEEG),
but these softwares are often optimized for conditions that
are not met for these EEG classes due to data’s constraints. To
date, there is a paucity of resources tested with or targeting
EEG data with high-artifact levels, short recording lengths, or
absent physiological signal co-recordings. As demonstrated
above, direct application of contemporary processing strategies
used with typically-functioning adults, like ICA, without
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additional pre-processing considerations are not effective
under these short-length, high-noise conditions. However, as
fields move toward larger sample sizes with higher-density
EEG channel layouts, the traditional manual data rejection
approach used in many labs is becoming unsustainable.
Moreover, despite the heightened importance of EEG data
quality monitoring and reporting in fields with the highest rates
of artifact contamination, no standardized metrics are currently
systematically referenced in the literature (Cuevas et al., 2014;
Keil et al., 2014).

HAPPE addresses each of these challenges as an automated
EEG pipeline optimized for short recordings and/or high levels
of artifact. HAPPE also encourages standardized reporting of
processing performance through its report of data quality metrics
and the sample distributions for these metrics from a large
developmental dataset for reference. Evaluation with these data
quality metrics revealed that HAPPE’s combination of W-ICA
and ICA with MARA-based component rejection outperformed
seven alternative artifact rejection approaches under conditions
of high artifact, short EEGs. That is, relative to these other
approaches, HAPPE both rejected a greater proportion of
artifacts and in almost all cases, simultaneously preserved a
greater proportion of the underlying signal. HAPPE also retained
more files per dataset with sufficient data for analyses than
any of the alternative approaches. This robust performance
achieved with the small example dataset is supported by
the post-HAPPE data quality metric distributions across a
much larger developmental dataset of 867 files. HAPPE thus
constitutes a robust approach and pipeline to meet the growing
need for automated, accessible pipelines for EEG processing,
especially for developmental neuroscience and psychology
fields.

There are several limitations to HAPPE that should also be
considered. Foremost is that in most cases users must select
a subset of channels for processing in HAPPE ashigh-density
EEG recordings in developmental samples most likely will not
meet the data-length requirements for robust ICA decomposition
without a dimension reduction step. An alternative reduction
approach to channel subset selection is to perform principal
component analysis (PCA) on the entire channel set and
then pass a subset of the resulting PCA components to ICA
(instead of channel-level data). It should be noted, though,
that the PCA approach introduces nonlinearities into the data
(a slight corruption of the signal), and through selecting a
PCA component subset, some amount of brain-origin signal is
discarded with the rejected components (Onton and Makeig,
2006). For these reasons, the current version of HAPPE
implements the channel subset approach, ensuring the entirety
of the selected channels’ data is processed and preserved as
native EEG signal. A second limitation is that HAPPE is not
currently suitable for preprocessing data intended for Event-
related potential (ERP) analyses, due to its utilization of a
1Hz high-pass filter (Acunzo et al., 2012). A complimentary
HAPPE pipeline appropriate for ERP pre-processing is currently
being developed and will be made publically available. Lastly,

the amplitude of the EEG signal (and thus any EEG power
estimates) is often decreased through both W-ICA and ICA
approaches. Prior research has also found power spectrum and
coherence measure distortions after using ICA. However, these
disruptions are improved using the W-ICA approach (although
formal statistical comparisons were not reported; Castellanos and
Makarov, 2006). To the extent that W-ICA reduces the number
of components rejected through subsequent ICA in HAPPE,
this potential distortion may be reduced relative to alternative
ICA approaches in HAPPE as well. In the present example
files, the EEG signal morphology and shape of the EEG power
spectrum appear preserved (see also Levin et al., under review, for
illustrations of this effect). Still, he magnitude of absolute (raw)
power values generated on HAPPE-processed EEG data should
not be directly compared to those from data processed without
either W-ICA or ICA due to the established differences in signal
magnitude.

HAPPE is freely available, covered under the terms of
the GNU General Public License (version 3) (Free Software
Foundation, 2007). HAPPE can be used as stand-alone software
as presented here, and through the Batch EEG Automated
Processing Platform (BEAPP) software (see accompanying
manuscript submission to this issue). HAPPE and associated files
may be accessed at: https://github.com/lcnhappe/happe.
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