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Age-related hearing loss (ARHL), presbycusis, is a chronic health condition that

affects approximately one-third of the world’s population. The peripheral and central

hearing alterations associated with age-related hearing loss have a profound impact on

perception of verbal and non-verbal auditory stimuli. The high prevalence of hearing loss

in the older adults corresponds to the increased frequency of dementia in this population.

Therefore, researchers have focused their attention on age-related central effects that

occur independent of the peripheral hearing loss as well as central effects of peripheral

hearing loss and its association with cognitive decline and dementia. Here we review

the current evidence for the age-related changes of the peripheral and central auditory

system and the relationship between hearing loss and pathological cognitive decline

and dementia. Furthermore, there is a paucity of evidence on the relationship between

ARHL and established biomarkers of Alzheimer’s disease, as the most common cause of

dementia. Such studies are critical to be able to consider any causal relationship between

dementia and ARHL. While this narrative review will examine the pathophysiological

alterations in both the peripheral and central auditory system and its clinical implications,

the question remains unanswered whether hearing loss causes cognitive impairment or

vice versa.
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INTRODUCTION

Age-related hearing loss (ARHL) or Presbycusis, used interchangeably in this paper, is a common
chronic health problem affecting individuals above 65 years old (WHO, 2012). ARHL is defined as a
progressive, bilateral, and symmetrical hearing loss primarily observed in the high frequency region
(Fetoni et al., 2011). Gates and Mills (2005) defined ARHL as a multifactorial disorder affecting
hearing sensitivity varying from mild to substantial, resulting from lifetime insults to the auditory
system. This review discusses the ARHL prevalence and risk factors, mechanisms of peripheral and
central hearing loss, changes in the peripheral and central hearing pathway, and its consequences
for speech understanding and cognition.
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Prevalence of ARHL
Frequencies

Most of the ARHL epidemiological studies have reported hearing
loss prevalence data in the 500 Hz−4 kHz (Cruickshanks et al.,
1998b; Gopinath et al., 2009), and/or between 4 and 8 kHz
regions. However, age-related changes in hearing thresholds
occur significantly earlier in the extended high frequencies, i.e.,
>8 kHz (Matthews et al., 1997; Sakamoto et al., 1998; Lee et al.,
2005, 2012). Lee et al. (2012) reported two different aging process
that impact the hearing thresholds across the entire frequency
range: a slower process in the low frequencies (up to 4 kHz)
and a faster process at higher frequencies (6–12.5 kHz) that in
combination represent the thresholds spectrum across the entire
hearing frequency range. For frequencies at 6, 8, 10, 11.2, and
12.5 kHz, the faster aging process starts at age 51, 47, 46, 36,
and 30. In addition, for individuals aged 65–81 years old there
was a decline of 0.7 dB per year at 0.25 kHz, increasing to 1.2
dB per year at 8 kHz, and 1.23 dB per year at 12 kHz (Lee et al.,
2005). These results imply that by the time the first conventional
pure tone audiogram (0.25–8 kHz) demonstrates ARHL, higher
frequency loss (i.e., 10–12.5 kHz) could have already occurred.
Therefore, preventive measures should be applied much earlier
than previously thought, if the subsequent consequences of
ARHL is to be minimized.

Race

National Health and Nutritional Examination Survey
(NHANES), 2005-2006 data on participants aged > 70 years
old revealed that on average, speech frequency (0.5–4 kHz),
and high-frequency (3–8 kHz) PTA thresholds of the black
participants were better than white participants by−5.8 (95% CI:
−8.6 to −3.1), and −11.1 (95% CI: −13.9 to −8.2), respectively
(Lin et al., 2011b). Agrawal et al. (2008) found that the odds
of hearing loss was 70% lower in black vs. white individuals.
Similarly, Helzner et al. (2005a) reported that from a sample of
2,052 participants, white participants were 63% more likely to
have a hearing loss compared to black participants. The data
from the National Health and Nutritional Examination Survey
(NHANES) on 20–59 year old participants revealed that darker-
skinned Hispanics showed better speech and high-frequency
PTA compared to lighter-skinned Hispanics by an average of
−2.5 dB hearing level (HL; 95% CI, −4.8 to −0.2) and −3.1 dB
HL (95% CI, −5.3 to −0.8), respectively (Lin et al., 2012). These
results indicate that melanocyte function may be protective
against hearing loss in darker skin Hispanics (Lin et al., 2012).

Gender

For frequencies between 0.5–8 kHz, the prevalence of ARHL is
two times higher in men compared to women (Agrawal et al.,
2008; Gopinath et al., 2009). For example, bilateral hearing loss
across the 60–69 years old age group is reported to be 43% and
20% in American men and women (Agrawal et al., 2008), and
29% and 17% in Australian men and women, (Gopinath et al.,
2009), respectively. The onset of ARHL can be detected around
the age of 30 years in men across the 0.5–8 kHz frequencies,
however, the onset of ARHL in women occurs much later in life
and varies across frequencies (Pearson et al., 1995). In addition,

the rate of decline in hearing thresholds is much higher in men
than women across 4–8 kHz frequencies, especially after the age
of 50 years (Pearson et al., 1995). In contrary, hearing thresholds
at 6 to 12 kHz frequencies decline at a significantly faster rate in
women than men (Lee et al., 2005). Surprisingly, gender effect
for extended high frequencies >8 kHz has not been reported for
10–65 year old individuals (Lee et al., 2012) or for 60–79 year age
groups (Matthews et al., 1997).

ARHL Risk Factors
Many attempts have been made to identify possible
environmental and genetic risk factors associated with ARHL
(Fetoni et al., 2011). Epidemiological studies have indicated that
many of these factors are indeed very significant in the trajectory
of ARHL. Yamasoba et al. (2013) identified four categories of risk
factors associated with ARHL in humans: genetic predisposition,
environment, health co-morbidities and cochlear aging. The first
three risk factors associated with ARHL are reviewed here and
cochlear aging will be discussed in the section on the impact of
aging on the peripheral hearing system.

Genetics

Contribution of the genetic factors to ARHL in humans
have been well-documented. Primary evidence comes from
epidemiological studies on twin families in Swedish, North
American, and Danish cohorts. A heritability of 0.47 for ARHL
in Swedish mono-and dizygotic twins aged > 65 years (Karlsson
et al., 1997), 0.4 for siblings (worse-ear average high-frequency
thresholds) and 0.25 for parents and children (for worse ear
middle and low frequency thresholds) have been reported
(Framingham study; Gates et al., 1999). The heritability of
hearing loss, as assessed using self-reports, for Danish twins aged
75 years old and over was at 0.4 (Christensen et al., 2001).

Genome wide association studies have reported a strong link
between ARHL and single nucleotide polymorphisms (SNPs)
located in GRM7, a gene encoding metabotropic glutamate
receptor type 7 protein (mGluR7) (Friedman et al., 2009;
Newman et al., 2012).

A number of genes and mutations responsible for monogenic
non-syndromic hearing loss are linked to ARHL, including: (i)
SNPs in 13-kb region in the middle of the KCNQ4, a gene which
encodes a voltage-gated K-channel found in both outer and inner
hair cells of cochlea (Van Eyken et al., 2006); (ii) 35delGmutation
of GJB2, a gene that encodes gap junction proteins expressed in
the inner ear (Van Eyken et al., 2007c); (iii) GRHL2, a gene that
encodes a transcription factor expressed in cells lining cochlear
duct (Lin et al., 2011); and (iv) mutation in MYO6, a gene that
encodes myosin VI found in inner ear hair cells (Oonk et al.,
2013).

In addition, genes that are linked to oxidative stress such as
mutant allele (NAT2∗6A), an isoform of N-acetyltransferases-
encodes metabolism of reactive oxygen species (Ünal et al., 2005;
Van Eyken et al., 2007b), and Glutathione S-transferases (GSTs)-
encodes synthesis of glutathione antioxidant enzymes (Ateş
et al., 2005) and mitochondrial dysfunction such as deletion of
mitochondrial DNA 4,977 bp (Bai et al., 1997) and mitochondrial
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DNAhaplogroups U andK are also reported to be associated with
ARHL (Manwaring et al., 2007).

Furthermore, several candidate genes including
apolipoprotein E (APOE) ε4 allele (O’Grady et al., 2007),
variants of Endothelin-1 (EDN1) (Uchida et al., 2009) and
polymorphisms of uncoupling proteins UCP2 Ala55Val (Sugiura
et al., 2010) that are responsible for age-related diseases or
clinical syndromes are found to be linked to ARHL (see also:
Bovo et al., 2011).

In animal model studies, mice have been a useful animal
model for studying the underlying cellular and genetic
mechanism of human ARHL due to their small size, short
life span, and genetic standardization (Ohlemiller, 2006). A
number of loci that contribute to ARHL have been identified
in inbred mice strains (Johnson et al., 2006). In various,
inbred mouse strains an Ahl gene (age-related hearing loss)
on chromosome 10 in C57BL/6J mice was found to be present
(Johnson et al., 1997). Resistant alleles for Ahl 2, 4, and 8
were reported in the same mouse model (Johnson and Zheng,
2002; Johnson et al., 2008) and for Ahl 5 and 6 were found in
CAST/Ei mice strains (Drayton and Noben-Trauth, 2006). Few
other mouse models have been used to investigate the genetic
mutations involved in ARHL (for examples see: Johnson et al.,
2008; Sha et al., 2008; Ohlemiller, 2009). Further investigation
into genetic bases of ARHL will further our understanding of
pathogenesis processes that occur during aging and will also help
provide more refined preclinical models of the disease.

Environmental Factors

A variety of environmental risk factors such as exposure to
industrial chemicals (Campo et al., 2013), occupational (Helzner
et al., 2005a; Fransen et al., 2008), and recreational noise
exposure (Clark, 1991) are reported to be associated with
ARHL. Synergistic effects of simultaneous exposure to industrial
chemicals and noise has a greater effect on ARHL than the impact
of either one of the agents acting on its own (Morata et al., 2002;
Sliwinska-Kowalska et al., 2004; Chang et al., 2006; Fuente and
McPherson, 2006).

Exposure of mice to loud noises resulted acutely in substantial
loss of cochlear afferent terminals and a slower degeneration of
spiral ganglion cells, without significant cochlear hair cell loss or
pure-tone hearing threshold loss (Kujawa and Liberman, 2009).
Further, dysfunction of synaptic ribbons, which are essential for
the accurate acoustic transmission between cochlear inner hair
cells and post-synaptic afferent neurons (Fuchs et al., 2003) are
documented in ARHL (Stamataki et al., 2006) and in noise-
induced hearing loss (Kujawa and Liberman, 2009). For a review
see Moser et al. (2013). Acoustic over-exposure also results in
selective loss of low- and medium-spontaneous rate auditory
nerve fibers in albino guinea pigs (Furman et al., 2013). The
loss of spiral ganglion neurons (Kujawa and Liberman, 2006,
2009) and selective loss of low and medium spontaneous rate
fibers (Furman et al., 2013) leads to poor temporal and frequency
discrimination leading to impaired speech discrimination in
noise in the absence of any audiometric loss (Plack et al., 2014).
Such a hearing loss is known as “hidden hearing loss” (Plack
et al., 2014). Kujawa and Liberman (2006) detected an increased

vulnerability to primary neural degeneration of cochlea from
mice that were exposed to noise at a younger age. Interestingly,
genes (Ahl/Ahl) associated with ARHL increase the susceptibility
to noise-induced hearing loss at a younger age in mice (Erway
et al., 1996). These findings support the interaction between
genetic predisposition to ARHL, noise and ARHL and should be
taken into account in future preventive clinical trials.

Health Co-Morbidities

A number of health-related factors are reported to either increase
the risk of ARHL or in fact provide protection against its
development. Risk factors increasing ARHL include smoking
(Helzner et al., 2005a; Nomura et al., 2005; Fransen et al., 2008)
cardiovascular disease (Helzner et al., 2011), Type II Diabetes
Mellitus (Frisina et al., 2006; Mitchell et al., 2009), and subclinical
atherosclerosis (Fischer et al., 2015) are reported to increase the
risk of ARHL. A number of oto-toxic medication are associated
with irreversible hearing loss (Koegel, 1985; Brummett and
Fox, 1989; Kwong et al., 1996). In contrast, moderate alcohol
consumption (Popelka et al., 2000; Helzner et al., 2005a; Fransen
et al., 2008), high bone mineral density (Helzner et al., 2005b),
and dietary restrictions (Seidman et al., 2002) are described as to
provide some protective impact against ARHL.

The Mechanisms of Aging in the Peripheral
Auditory System
The inner ear is more vulnerable to age-related changes than
both the external and middle ear (Schmiedt, 2010). Hence,
pathophysiological changes related to cochlea and afferent
neurons are discussed here. Based on underlying case history
information, audiometric configurations, and temporal bone
analyses, Schuknecht (1974) divided ARHL into four distinct
classes: sensory (loss of hair cells and supporting cells), neural
(loss of afferent neurons), strial (atrophy of cochlear lateral
wall and Stria vascularis), and cochlear conductive (cochlear
atrophy mainly basilar membrane and organ of Corti). Rapid
high-frequency sloping hearing loss, flat hearing loss, poor word
discrimination and gradual hearing loss with no pathological
evidence are characteristics of sensory, strial, neural, and cochlear
conductive presbycusis, respectively (Schuknecht and Gacek,
1993). Later, Schuknecht and Gacek (1993) added two more
categories: (i) mixed-consisting of a mixture of pathological
characteristics and (ii) indeterminate-consisting of none of the
aforementioned pathological characteristics. Contrary to the
above-mentioned findings, Allen and Eddins (2010) reported
that hearing phenotypes do not naturally form distinct classes
of ARHL and rather form a continuum. However, subtypes of
ARHL can still be identified if the distribution of data are in the
extremes of either flat or sloping loss (Allen and Eddins, 2010).

Evidence for age-related pathological changes were reported
in human temporal bone studies as well as in animal models.
Histopathological studies have reported progressive loss and
degeneration of spiral ganglion cells (Mills et al., 2006b; Hinojosa
and Nelson, 2011), loss of nerve fibers in spiral lamina (Belal,
1975; Mills et al., 2006a) and hypertrophy of the internal elastic
lamina of the internal auditory artery (Belal, 1975) in aged adults.
Progressive outer hair cell loss with no degeneration of the
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cells have been reported in Stria vascularis (Sha et al., 2008),
spiral ganglion cell degeneration (Keithley et al., 2004), and
degeneration of organ of Corti and afferent neurons (Ohlemiller
and Gagnon, 2004) in mouse models. Loss of outer hair cells and
detachment of the stria vascularis from the spiral ligament was
seen in aging Fisher rat F344 models (Buckiova et al., 2007). Loss
of marginal and intermediate cells of Stria vascularis (Gates and
Mills, 2005) and loss of Stria capillaries (Gratton and Schulte,
1995) were noted in aged gerbil models.

Two most prominent physiological changes have
been observed in the aging cochlear: decline in cochlear
endolymphatic potentials (EP) and increase in action potential
(CAP) of the auditory nerve (Gates and Mills, 2005). Recent
studies have concluded that metabolic/strial presbycusis or
degenerative changes in the lateral wall and stria vascularis
as the predominant cause of ARHL (Gates and Mills, 2005;
Ohlemiller, 2009). The above mentioned pathological changes
of the stria vascularis leads to loss of expression of key ion
transport enzymes, such as Na+, K+-ATPase, and the Na+,
K+, Cl− co-transporter, impairment in outer hair cell functions
and decline in endolymphatic potential (EP) values (Salt et al.,
1987; Wangemann, 2002). The EP provides voltage for the
cochlear amplifier, thus, a decline in EP results in impairment in
cochlear amplifier ultimately resulting in poor hearing thresholds
(Schmiedt et al., 2002; Gates and Mills, 2005).

Another physiological impairment observed in aging cochlear
is asynchronous firing of the auditory nerve fibers as indicated
by increased thresholds of the compound action potential of
the auditory nerve (Gates and Mills, 2005). A combination of
pathological changes of the spiral ganglion cells and synaptic
connections between the inner hair cells and afferents and decline
in EP is thought to be one of the underlying causes of the auditory
nerve malfunction (Gates and Mills, 2005).

Yamasoba et al. (2013) proposed a model to explain the
development of ARHL. According to this model, a number
factors (aging, genetic, environmental, health co-morbidity)
and their interactions contribute to ARHL. Mitochondrial
dysfunction associated with reactive oxygen species (ROS) plays
a major role in the age-related cochlear cells degeneration (Cheng
et al., 2005; Someya and Prolla, 2010). Noise trauma also generate
excess of ROS in the cochlea (Henderson et al., 2006) triggering
necrotic or apoptic cell death in cochlea (Henderson et al., 2006).
Oxidative stress can be accelerated by hypoxic situations resulting
from decline in cochlear blood supply due to noise trauma (Wen
et al., 2017) or cardiovascular diseases (Nomiya et al., 2008)
and genetic factors (Uchida et al., 2009), Ototoxic medication
(Tabuchi et al., 2011), and health co-morbidity (Cruickshanks
et al., 1998a) factors. Long-duration mitochondrial function
leads to Bak-dependent apoptosis of the cochlear cells leading
to increase in hearing thresholds (Someya and Prolla, 2010).
Details of ARHL environmental and health-related co-morbid
risk factors are described in Environmental Factors and Health
Co-morbidities. Genetic investigations have identified a number
genes associated with cochlear aging (see section Genetics). In
addition, genes that are associated with antioxidant protection,
mitochondrial dysfunction (see section Genetics), also contribute
to the cochlear hair cell dysfunction.

The Mechanisms of Aging in the Central
Auditory System
The age-associated changes reported in cochlear nucleus and the
auditory cortex have also been a focus of research. As Figure 1
shows afferent auditory fibers from the cochlea terminate
at the cochlear nucleus (CN) complex which includes the
anteroventral cochlear nucleus (AVCN), posteroventral cochlear
nucleus (PVCN), and dorsal cochlear nucleus (DCN) (Brawer
et al., 1974). First stage of centralized auditory processing occurs
at the CN complex (Schmiedt, 2010). AVCN and PVCN carry
out the spectral analysis of the auditory signal (Rhode and
Greenberg, 1994) and AVCN and DCN process the localization
cues (May, 2000). Both animal and humanmodels have been used
to investigate the underlying patho- physiological changes of the
central auditory system associated with aging. The alterations in
animal models from the CN to the auditory cortex are discussed
first.

Evidence From Animal Studies

A number of important age-associated changes of the CN has
been reported in animal models, briefly including: (i) decline
in overall volume, total number, and neuron size of octopus
cells in PVCN (C57 and CBA mice; Willott et al., 1992, 1994);
(ii) decline in glycine mediated inhibition in DCN reported in
Fisher-344 rats (Caspary, 2005); (iii) increase in total number
and percentage of calcium binding protein (parvalbumin and
calbindin) positive neurons in DCN and PVCN reported in
C57BL/6J mice (Idrizbegovic et al., 2004); (iv) increase in the
number of parvalbumin and nicotinamide adenine dinucleotide
hydrogen phosphate diaphorase (NADPH-d) positive neurons
in PVCN (Rhesus Macaque; Gray et al., 2014a); (v) decline
in spontaneous miniature excitatory post-synaptic currents
(mEPSC) in the high-frequency regions of AVCN [DBA mice]
(Wang and Manis, 2005); and finally, (vi) age-related decline
in processing of the temporal properties of the complex signals
in DCN (e.g., Fischer Brown Norway rats; Schatteman et al.,
2008). It is thought that age- associated changes in calcium
binding proteins disrupt the calcium homeostasis and could
lead to impaired synaptic transmission, reduced neural plasticity,
and degeneration of neurons (Mattson, 2007). Spherical and
globular bushy cells of the AVCN are involved in processing
inter-aural time difference cues which are essential for sound
localization in horizontal plane (Carney, 1990), hence, age-
related alterations that occur in synaptic transmission in AVCN
cells could result in poor sound localization and pitch detection of
the acoustic signals. Furthermore, changes in processing in DCN
could underlie the temporal deficits observed in older adults
(Schatteman et al., 2008).

Only a handful of studies on the effect of aging of the superior
olivary complex (SOC) are available. The SOC comprises three
main nuclei, namely the medial and lateral superior olive (MSO
and LSO, respectively) and medial nucleus of the trapezoid
body (MNTB), (Harrison and Warr, 1962). The SOC plays a
vital role in sound localization (Masterton, 1992) by processing
inter-aural temporal and intensity differences (Grothe, 2000) and
conveying the information to higher [lateral lemniscus (LL),
inferior colliculi (IC), and medial geniculate nucleus (MGB)] and
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FIGURE 1 | Schematic diagram of the auditory pathway. This schematic diagram represents ipsi and contralateral auditory pathways from cochlea to the auditory

cortex. Main nuclei of the central auditory pathway, namely Superior Olivary Complex (SOC), Dorsal and Ventral Cochlear Nuclei (DCN & VCN), Lateral lemniscus (LL),

Inferior Colliculus (IC), Medial Geniculate body (MGB), and Primary Auditory Cortex (AC) are shown in the figure.

lower (to the cochlea and CN) centers of the auditory pathway
(Oliver, 2000; Thompson and Schofield, 2000). Age-associated
axonal and dendritic degeneration and loss of synaptic terminals
have been observed in Sprague-Dawley rat medial nucleus of
the trapezoid body (Casey and Feldman, 1982, 1985, 1988),
however, no neuronal loss has been reported in LOS and MSO of
aged Fischer 344 rats (Casey, 1990). Additionally, an age-related
increase in parvalbumin and NADPH-d have been reported in
MSO of rhesus macaques, but not in LSO and MNTB, suggesting
an underlying compensatory mechanism to account for the poor
auditory processing ability of the aging non-human primates
(Gray et al., 2014b).

The inferior colliculus (IC) is considered one of the major
convergence centers for both mono-and-binaural auditory
information (Figure 1). It simultaneously processes the acoustic
features of complex signals along with the other relay stations
of the auditory pathway (Schmiedt, 2010). Age-associated
cytochemical changes of the IC include: (i) a marked decline
in GABA mediated inhibition (Burianova et al., 2009); (ii)
increase in parvalbumin positive neurons (Engle et al., 2014);
(iii) decline in the number of calbindin and calretinin
positive neurons (Ouda and Syka, 2012); and (iv) decline
in number of SMI-32-immunoreactive neurons and levels of

non-phosphorylated neuro-filament proteins (Burianová et al.,
2015). These changes influence the temporal processing of
acoustical stimuli and reported to be contributing to central
presbycusis (Ouda and Syka, 2012; Ouda et al., 2012).

Auditory thalamus/medial geniculate body (MGB) neurons
transmit auditory stimuli to cortex and other subcortical
structures by filtering and enhancing acoustic features of the
auditory signal (Figure 1) (Bartlett, 2013). Gamma-aminobutyric
acid (GABA) mediated inhibitory inputs are fundamental for
auditory processing in the MGB (Cotillon-Williams et al., 2008).
This inhibitory neurotransmission is obtained through synaptic
and high-affinity GABAA receptors (Richardson et al., 2013).
More than 45% reduction in GABAA receptor density and
GABAA receptor mediated tonic whole cell Cl− currents was
found in aged rat MGB. In addition, an increase in the number
of parvalbumin positive neurons have also been reported in
aged rhesus macaque MGB (Gray et al., 2013). Ouda et al.
(2012) reported a decrease in calbindin positive neurons in
Long Evans and -Fischer 344 rat MGB. These results are
indicative of significant age-dependent deficits in the inhibitory
neurotransmission within theMGB. Burianová et al. (2015) failed
to observe age-associated decline in total number of neurons
in IC, MGB, or primary auditory cortex (A1) of Long Evans
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and Fischer F344 rats. Temporal processing speed is affected
by the senescent changes that occur in the cortex but not in
the auditory thalamus or midbrain (Mendelson and Ricketts,
2001; Lee et al., 2002). Burianová et al. (2015) reported decline
in number of neurons containing non-phosphorylated neuro-
filaments and their protein levels, which are known for their
conductance properties in the central auditory system. Overall,
these changes may negatively impact processing of complex
auditory signals in older adults (Richardson et al., 2013).

A number of animal experiments have reported age-related
changes of A1. These include, (i) decline in the number of
calcium binding positive neurons in rat A1 (Ouellet and de
Villers-Sidani, 2014); (ii) decrease in the number and firing of
V/U-shaped receptive field neurons in A1(Turner, 2005a); (iii)
decline in number of neurons containing non- phosphorylated
neuro-filaments and proteins (Burianová et al., 2015); and
increase in (iv) spontaneous (29%), peak (24%), and steady
state (38%) neuronal response rates in A1-layer V (Turner,
2005a); and (v) the number and firing of complex receptor
field neurons in the A1-layer V (Turner, 2005a). These findings
indicate that age-dependant changes in A1-layer V neurons
could be responsible for diminished signal/noise coding (Turner,
2005a). Further, degradation of processing between cortical areas
is reported to contribute to cognitive decline associated with
the aging process (Juarez-Salinas et al., 2010). Cytochemical
findings in C57BL/6J mice suggest that age-related alterations
of glial cells in A1 are exacerbated by peripheral hearing loss
(Tremblay and Burkhard, 2012). The A1 shows age-related
decreases in pre- and post-synaptic GABA neurotransmission
(Caspary et al., 2013). A significant age-associated decline in
the number and density of GAD65 and 67 immuno-reactive
neurons and GAD67 proteins in A1 layers have been observed
in aged rats compared to their young adult controls (Ling et al.,
2005; Burianova et al., 2009). These changes are accompanied
by age-dependant alterations in the expression of GABAA
receptor subunits. Together, these findings support the notion
that age-related alterations of GABA neurotransmission alter the
temporal coding properties of the primary auditory cortex. (Šuta
et al., 2011) provided further evidence for age-related decline
in temporal processing in Long Evans rats through behavioral
and electrophysiological experimental measures. In sum, current
animal model studies suggest that temporal processing of
acoustical signals is associated with aging of the central auditory
system and thus considered a major contributor to the poor
speech perception skills seen in older adults (Ling et al., 2005;
Caspary et al., 2013).

Finally, a number of animal experiments suggest that age-
related pathophysiological changes of the central auditory system
are further exacerbated by the peripheral hearing loss. For
example, tonotopic reorganization of central auditory system
following peripheral hearing loss has been reported in several
animal experiments (Willott, 1984, 1986; Willott et al., 1993).
Robertson and Irvine (1989) provided convincing evidence for
cortical reorganization in guinea pigs 35–81 days following
unilateral cochlear lesions. The auditory cortical areas that
represented the frequencies of the damaged cochlea were
responsive to the sound frequencies adjacent to the damaged

frequency range. Response thresholds of the characteristic
frequencies of these reorganized cortical neurones were close to
their normal thresholds (Mean difference = −3.8 dB). Similar
findings have been observed few hours after a cochlear lesion
except that the reorganized cortical neurons had higher response
thresholds compared to their normal thresholds (mean difference
31.7 dB).

Evidence From Human Studies

Recent human studies have utilized several different
neuroimaging techniques to investigate the age-related changes
of the human central nervous system including magnetic
resonance imaging (MRI) to measure brain volumes and MRI
spectroscopy for delineating neurochemical and metabolic
changes (Ouda et al., 2015). Some of studies on the brain-related
changes associated with auditory system will be summarized in
this section.

Central auditory pathway changes due to healthy aging

process
Structural MRI studies have shown a reduction in both gray (Raz
et al., 1997, 2004; Lemaitre et al., 2012) and white matter volumes
(Silver et al., 1997; Raz et al., 2004, 2007) and cortical thinning
due to aging (Lemaitre et al., 2012). Hedman et al. (2012)
reviewed 56 longitudinal MRI studies to investigate the age-
related brain volume changes in healthy adults. Results revealed
annual brain volume loss of 0.2% at 35 years old reaching 0.5%
by the age of 60 years. Greater than 0.5% annual brain volume
loss observed after 60 years. Age-associated marked decline in
temporal lobe volume (Scahill et al., 2003), hippocampal volume
(Scahill et al., 2003; Raz et al., 2004), and prefrontal cortex
(Raz et al., 1997) have been reported in region-specific imaging
studies. Alterations in the above mentioned neural networks
are implicated in impaired cognitive functions such as verbal
recognition memory (Fletcher and Henson, 2001; Henson,
2005), episodic visuospatial memory, learning and association
ability (Sweeney et al., 2000), working memory and executive
functions (Owen et al., 1995, 1996), and attention switching
(Makhani et al., 2015).

MRI spectroscopy has been used to describe age-related
neurochemical and metabolic changes of the central nervous
system (Gujar et al., 2005; Gruber et al., 2008; Kirov et al.,
2008; Reyngoudt et al., 2012; Gao et al., 2013, 2015). Age-
related decrease in glutamate and N-acetyl aspartate levels have
been observed in elderly participants with mild and expressed
ARHL (Profant et al., 2013). An increase in lactate levels has
been observed in elderly participants with expressed ARHL,
however, no significant changes in GABA concentrations was
noted between young and elderly participants(Profant et al.,
2013). Contrary to these observations, Gao et al. (2015) reported
significantly lower GABA+ concentrations in participants
with ARHL as compared to normal hearing controls. Data
from participants with ARHL revealed a significantly negative
correlation between pure-tone audiometric average across 500–
4,000Hz and GABA+ concentrations (Gao et al., 2015). These
results are consistent with the hypothesis of dysfunctional
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GABAergic neurotransmission in central auditory system in
those with ARHL.

Changes in the central auditory pathway due to ARHL
Fewer studies have investigated the impact of ARHL on central
auditory system using neuroimaging techniques. In a cohort of
126 participants aged between 56 and 86 years old with normal
to severe sensorineural hearing loss, ARHL was shown to be
independently associated with higher rate of decline in the entire
brain volume and right temporal lobe volume (Lin et al., 2014).
A summary of MRI studies revealed that the ARHL results in the
changes of the central auditory pathway, including (i) decline in
gray matter volume observed in superior and middle temporal
gyri (Husain et al., 2011), superior and medial frontal gyrus
(Husain et al., 2011; Boyen et al., 2013), primary auditory cortex
(Peelle et al., 2011; Eckert et al., 2012), occipital lobe (Boyen et al.,
2013), and hypothalamus (Boyen et al., 2013); (ii) a decline in
both gray and white matter areas near auditory cortex (Husain
et al., 2011); (iii) a decrease in fraction anisotropy values in
SOC (Chang et al., 2004), LL & IC (Chang et al., 2004; Lin
et al., 2008), and auditory cortex (Chang et al., 2004); and (iv)
a decrease in fraction anisotropy values in a number of white
matter tracks including right superior and inferior longitudinal
fasciculi and corticospinal tract (Husain et al., 2011). Collectively,
these findings suggest that ARHL not only results in secondary
pathophysiological changes in the central auditory pathway, but
also in the areas of the brain that are not directly involved
in processing auditory stimuli. The underlying mechanism for
the association of peripheral hearing loss and cortical tonotopic
reorganization secondary to peripheral hearing loss may further
compromise listening and comprehension abilities of older adults
(Peelle et al., 2010, 2011)

CONSEQUENCES OF ARHL

Speech Understanding
Difficulties expressed by older adults in understanding speech
could be due to age-related deficits in peripheral and/or
central auditory pathways (Gates and Mills, 2005). Among
the peripheral factors that impact speech understanding, poor
audibility resulting from cochlear pathology is considered to
play a significant role (George et al., 2007). However, part of
the problem in recognizing speech in older adults seem to
be associated with temporal deficits resulting from aging and
ARHL (Gordon-Salant and Fitzgibbons, 1993). Several studies
have investigated the impact of aging on central auditory
processing of speech stimuli (See Humes et al., 2010 for a
review). These studies have used competing speech (Jerger et al.,
1991; Gates et al., 2008), temporally-distorted speech (Gordon-
Salant and Fitzgibbons, 2001), and/or binaural speech stimuli
(Jerger et al., 1991; Gates et al., 2008). A review by Humes
and Dubno (2010) concluded that aging significantly impairs
all three speech test measures and hearing loss was the major
factor on negatively impacting participants’ performance on tasks
that utilized competing and time compressed speech stimuli.
The above mentioned temporal processing deficits could explain
some of the difficulties faced by older adults, with or without

hearing loss, in perceiving speech in challenging situations-
i.e., accented speech (Gordon-Salant et al., 2013) and speech
in noise or reverberation (Dubno et al., 1984; Gordon-Salant
and Fitzgibbons, 1993). Further, speech comprehension in quiet
and in noise also relies on cognitive functions (Pichora-Fuller
et al., 1995). These include searched based attention (Pichora-
Fuller and Singh, 2006), selective attention (Alain and Arnott,
2000), divided attention (Kemper et al., 2003), working memory
(Pichora-Fuller et al., 1995), and processing speed (Pichora-
Fuller and Souza, 2003).

Dementia and Cognitive Impairment
There are two key components of the auditory system involved
in the processing of incoming auditory stimuli; the peripheral
hearing system and the central hearing system (Katz, 2015).
Approximately 83% of adults aged 70 years and above suffer
from a peripheral hearing loss (Cruickshanks et al., 1998b).
Peripheral hearing loss not only affects the auditory processing
of speech sounds but also the higher-level cognitive functions
required to process linguistically demanding stimuli (Stewart
and Wingfield, 2009; Peelle et al., 2011). For example, the
hearing impaired individuals show difficulty in attending to
working memory (Wingfield et al., 2006) and auditory and
visual free recall tasks (Wingfield et al., 2006) and require
longer latencies to make accurate perceptual judgments (Tun
et al., 2010). Evidence from both cross-sectional (Valentijn et al.,
2005; Tay et al., 2006; Jayakody et al., 2018a), and longitudinal
(Valentijn et al., 2005; Lin et al., 2011a; Deal et al., 2016)
studies found an association between peripheral hearing loss
and cognitive impairment in older adults. A meta-analysis study
reported an association between hearing loss and cognitive
impairment, with the degree of cognitive impairment being
significantly associated with the severity of both untreated and
treated peripheral hearing loss (Taljaard et al., 2015). Further, an
association between ARHL and risk of incident dementia (Lin
et al., 2011a; Gallacher et al., 2012; Gurgel et al., 2014; Deal et al.,
2016) and risk of incident Alzheimer’s disease (AD) (Lin et al.,
2011a) has also been reported. Most of the studies reported above
have considered verbally loaded cognitive measures to assess
the cognitive functions of older adults. Cumulative evidence
strongly suggest that hearing loss could result in overestimation
of the level of cognitive impairment in hearing impaired
participants (Jorgensen, 2012; Dupuis et al., 2015). Therefore,
non-verbal cognitive measures could be more appropriate
for older adults with potential ARHL. A small number of
recent studies that investigated the association between ARHL
and cognitive impairment by removing auditory items of the
cognitive screening tests (Dupuis et al., 2015) or using non-
auditory tests of cognition (Lin et al., 2013, 2017; Wong et al.,
2014; Jayakody et al., 2018a) have also reported an association
between peripheral hearing loss and cognitive impairment.

In some individuals, difficulties experienced during
comprehending speech in noisy backgrounds or competing
speakers could be related to central auditory processing (CAP)
difficulties rather than peripheral hearing deficits (Panza et al.,
2015). Results from a number of longitudinal studies suggest that
CAP in the absence of severe peripheral hearing loss is associated
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with high incidence of cognitive decline and dementia due to AD
(Gates et al., 1996, 2002, 2008, 2011; Profant et al., 2015). These
studies have demonstrated that individuals with central auditory
dysfunction were at a significantly increased risk for incident
dementia with hazard ratios ranging from 9.9 (95% confidence
interval [CI], 3.6–26.7) to 23.3 (95% CI, 6.6–82.7) (Gates et al.,
1996, 2011; Profant et al., 2015). Gates et al. (1996) reported
that the relative risk of developing cognitive decline or dementia
was twice higher for those with bilateral poor CAP scores as
measured by Synthetic Identification-Ipsilateral Competing
Message (SSI-ICM) scores compared to those with unilateral
poor SSI-ICM scores. Furthermore, impaired central auditory
functions have been observed five to ten years prior to an official
AD diagnoses (Iliadou et al., 2003; Bateman et al., 2012).

Numerous attempts have been made to provide plausible
explanations for the association between ARHL and cognitive
decline. Cognitive load on perception hypothesis argues that the
decline in cognitive capacity increases the cognitive load resulting
in a sensory loss (CHABA, 1988; Lindenberger and Baltes,
1994). Sensory Deprivation hypothesis proposes that hearing
loss leads to permanent deterioration in cognitive functions
(CHABA, 1988; Lindenberger and Baltes, 1994; Schneider and
Pichora-Fuller, 2000; Pichora-fuller, 2003; Lin et al., 2011b,
2013; Humes et al., 2013). Cortical reorganization following
ARHL provides substantial evidence to support the sensory
deprivation hypothesis (Husain et al., 2011; Peelle et al., 2011;
Eckert et al., 2012; Boyen et al., 2013). Findings demonstrating
that severe to profound hearing impaired children and young
adults with a long duration of hearing impairment performed
similar to their hearing peers on tests of intelligence seem to
contradict the sensory deprivation hypothesis (Vernon, 2005).
Hence, one could argue that hearing is not the sole contributor
to cognitive impairment, rather one of the factors. Information
degradation hypothesis postulates that hearing loss results in
reversible cognitive decline (CHABA, 1988; Schneider and
Pichora-Fuller, 2000; Pichora-fuller, 2003). Supportive evidence
for the information degradation hypothesis can be found in
a large number of existing research studies. In sum, these
studies suggest that older adults rely more on cognitive resources
to interpret degraded speech signals, resulting from hearing
loss thereby placing more demand on executive functions and
working memory (Pichora-Fuller et al., 1995; Pichora-fuller,
2003; Pichora-Fuller and Singh, 2006; Amichetti et al., 2013).

Common cause hypothesis argues that a common mechanism
underlies age-associated changes observed in cognition, hearing,
and other sensory modalities (CHABA, 1988; Lindenberger
and Baltes, 1994; Baltes and Lindenberger, 1997). It has been
suggested that general age-related neuropathological changes in
the brain may actually explain this relationship, but current
data do not support this general domain and function specific
underlying mechanism theory (Lindenberger and Ghisletta,
2009). For example, when the relationship between hearing
loss and memory was examined, a significant relationship was
observed even after controlling for the effects of age and the
type of task (e.g., verbal vs. visual), confirming hearing loss is an
independent factor involved in cognitive decline (Lindenberger
and Ghisletta, 2009).

Wayne and Johnsrude (2015) proposed a new framework
with a common cause phenomena approach, where age-related
changes of the brain result in decline of sensory (e.g., ARHL)
and cognitive abilities. According to this hypothesis, the changes
in sensory abilities increase the demand on the already strained
cognitive system resulting in functional cognitive impairment
(Wayne and Johnsrude, 2015).

Recently, a cognitive reserve hypothesis has been proposed
to explain how individuals with similar neuropathological
conditions differ substantially in their ability to make efficient
use of brain reserve during tasks (Stern, 2002). Intelligence
(Alexander et al., 1997) and higher education (Amieva et al.,
2014), occupational level (Staff et al., 2004), participation in
leisure activities (Scarmeas et al., 2001), and social networking
(Fratiglioni et al., 2000) are considered to be contributing factors
to the cognitive reserve. If sensory or cognitive demands exceeds
the cognitive reserve capacity, it could lead to impairment
in cognitive abilities (Wayne and Johnsrude, 2015). However,
according to cognitive reserve hypothesis, the observed cognitive
impairment could be reversed if the perceptual challenges were
reduced (i.e., improved speech perception through amplification;
Wayne and Johnsrude, 2015). In summary, no single hypothesis
has been able to provide a comprehensive inference with
regards to the causal relationship between ARHL and cognitive
impairment.

Even though, ARHL is still not considered as a major
risk factor for AD, it is a modifiable age-associated condition
linked to dementia and late-life cognitive decline (Livingston
et al., 2017). The Lancet International Commission on Dementia
Prevention, Intervention, and Care has estimated that a third
of AD diagnoses worldwide could be delayed or prevented,
with early intervention and changes to lifestyle and utilizing
available public health strategies (Livingston et al., 2017) such
as post-lingual hearing loss correction. Furthermore, studies
demonstrate that if the prevalence of each risk factor is reduced
by only 10–20% per decade, the number of AD diagnoses could
reduce by between 8.8 and 16.2 million worldwide by 2050
(Norton et al., 2014). As an example of potential changes in
outcome measures following hearing loss correction, we have
recently reported that cochlear implant recipients performed
significantly better on cognitive function measures compared to
similar individuals on a waiting list to receive cochlear implants
(Jayakody et al., 2017). Others have also reported similar positive
results following hearing loss improvement using hearing aids
and cochlear implantation (Castiglione et al., 2016; Sonnet et al.,
2017). Whether the correction of ARHL could significantly delay
or arrest the late life pathological cognitive decline, dementia,
or AD neurodegeneration is yet to be investigated. However,
treating ARHL is extremely low risk, has significant health, social,
and safety benefits beyond cognition, and there are enough
evidence to discuss this option with ARHL patients (Golub,
2017).

Frailty
ARHL is an important marker in frailty (Panza et al., 2015).
Frailty has been defined as a clinical syndrome that contains
three or more of the following symptoms: unintentional weight
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loss (10 lbs in past year), self-reported exhaustion, weakness
(grip strength), slow walking speed, and low physical activity
(Fried et al., 2001). Frailty increases the risk of detrimental
health hazards such as falls (Speechley and Tinetti, 1991),
institutionalization (Rockwood et al., 1996), hospitalization
(Purser et al., 2006), and death (Ensrud et al., 2007). Interestingly,
the risk of frailty in older adults with hearing loss increases by
63% and ARHL appears to be an independent risk factor for
frailty with great risk of falls (Kamil et al., 2016). Further, ARHL
has been shown to be associated with health-related outcomes
linked to frailty, such as low level of physical activity (Gispen
et al., 2014), slow gait speed (Li et al., 2013), and incident falls
(Lin and Ferrucci, 2012). In addition, frailty is reported to be
associated with cognitive impairment (Ávila-Funes et al., 2009;
Yassuda et al., 2012), cognitive decline (Samper-Ternent et al.,
2008; Auyeung et al., 2011) and incident dementia (Solfrizzi et al.,
2013). See Robertson et al. (2013) for a review.

Mental Health and ARHL
Social isolation and loneliness is considered one of the risk
factors for ARHL. Mick and Lin (2013) found a significant
association between ARHL and social isolation in the 60–
69 year old age group [odds ratio = 2.4, 95% CI = (1.36,
4.23) p = 0.003]. The association was more pronounced
in females than in males (Ramage-Morin, 2016). ARHL is
significantly associated with late-life depression, anxiety, and
stress (Jayakody et al., 2018b). Depression is considered an
early manifestation of dementia and AD (Panza et al., 2010).
Accumulated evidence suggest that depression accelerates the
aging process by increasing the incident risk factors of age-
associated diseases such as cardiovascular diseases (Frasure-
Smith et al., 1993), metabolic disturbances (McIntyre et al.,

2007), and cognitive impairment (Lee et al., 2011; Dawes
et al., 2015). Further, a bidirectional association between
depression and late-life frailty has also been reported (Mezuk
et al., 2012). Freret et al. (2015) proposed that an imbalance
between brain reserve, resilience, neuroplasticity, and impaired
pathophysiological mechanisms associated with aging, stress, and
synaptic plasticity may lead to late-life depression. Although the
pathophysiological mechanisms underlying depression, ARHL,
and dementia remain to be further elucidated, a putative
mechanism underlying both depression and dementia linked to
neuro-inflammation and perfusion deficits in older adults (Maes
et al., 2009; see Popa-Wagner et al., 2014, for a review).

Based on the above reported findings, there seems to
be a bidirectional association between ARHL and cognitive
impairment, depression and social isolation, depression,
and frailty (Figure 2). As shown in the schematic approach
in Figure 2, primary factors including aging, genetic
predispositions, environmental factors, and medical and health
related conditions accompany cognitive decline, ARHL, and
frailty. Furthermore, ARHL increases the risk of depression and
frailty, both of which are associated with age-related cognitive
decline and future risk of dementia. As ARHL is the primary
modifiable risk factor for cognitive decline, depression, and
social isolation in this model, its treatment may, to some degree,
improve the associated outcomes and change the trajectory
of cognitive impairment. The diagram shown in Figure 2 is a
simplified account of the relationship between various known
factors with the understanding that so many are yet to be
determined. However, this model provides a basic rationale to
argue that treating ARHL will provide multiple benefits, each
with significant implications for future trajectory of cognitive
functioning in older adults.

FIGURE 2 | Directional associations between aging, ARHL, depression, social isolation and loneliness, frailty and cognitive impairment. The schematic diagram

represents the unidirectional association between aging, age-related hearing loss (ARHL), and cognitive impairment, and unidirectional association between ARHL and

social isolation, depression and frailty, and bidirectional association between depression and social isolation and depression and frailty.
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SHORTCOMINGS OF THE CURRENT
LITERATURE AND FUTURE DIRECTION

A number of limitations can be identified in the existing
body of literature on neuro- patho-physiological changes in
the peripheral and central auditory systems due to aging.
As mentioned in the previous sections, ARHL is influenced
by different factors including aging, lifestyle choices, genetics,
and environmental factors (Van Eyken et al., 2007a), hence,
pathophysiological consequences of ARHL cannot be studied
in isolation. Most of the inferences on the aging human
auditory system have been drawn from the results of animal
experiments or post-mortem human temporal bone studies.
Inadequate sample size across lifespan studies, lack of robust
experimental designs, and a paucity of comprehensive case
history information cannot be underestimated in the available
human studies. Another limitation relates to the hearing
assessmentsmethods used in previously published ARHL studies.
The majority have utilized selective audiometric data to identify
the decline in hearing sensitivity. Even though it has been
established that the ARHL primarily affects high-frequency
hearing thresholds, most of the studies have reported either
3 PTA (i.e., average of pure-tone thresholds at 500Hz, 1
and 2 kHz) or 4PTA (i.e., average of pure-tone thresholds at
500Hz, 1, 2, and 4 kHz) data, thereby omitting the vital high-
frequency information. Whilst it has been well-documented that
older adults have difficulty with perceiving complex sounds
(speech or music-in-noise; Kim et al., 2006; Alain et al.,
2014), only a handful of studies have incorporated speech-
perception-in-noise tests in their designs. Further, no study,
to our knowledge, has used vocal or instrumental sounds in
the presence of background accompaniment, thus failing to
provide an accurate picture of the real-life difficulties faced
by elderly participants with ARHL. Finally, hearing thresholds
should be taken into consideration while assessing cognitive
functions of older adults. Failure to do so could underestimate
the level of cognitive functioning in older adults with a hearing

(Jayakody et al., 2018a) and/or visual impairment (Dupuis et al.,
2015).

In conclusion, aging results in pathological and physiological
changes in both peripheral and central auditory systems. A
number of genetic, environmental, and health co-morbid factors
increase the risk of ARHL. Peripheral hearing loss further
exacerbates the changes in the central auditory pathway. In
this review, we have described the evidence for the association
between ARHL and cognitive impairment, AD, depression,
social isolation, and frailty. There is no substaintial evidence
of how ARHL and AD-related biomarkers are associated
prior to the clinical manifestation of the dementia syndrome.
This is a necessary yet expensive research question that will
inform our understanding of the statistical associations reported
between the two. However, it is clear that ARHL represents
a modifiable condition and a useful target for secondary
prevention of cognitive impairment, frailty, social isolation,
and depression in older adults. Further research is required to
comprehensively address underlying mechanisms and determine
whether hearing loss treatment could delay or arrest late life
cognitive decline or dementia. Specifically, longitudinal studies
including randomized clinical trials with representative samples
of hearing aid, and hearing implant users and rehabilitation
programs could further elucidate the association between ARHL
and other components of our proposed model in Figure 2.
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