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A fundamental challenge in machine learning today is to build a model that can learn

from few examples. Here, we describe a reservoir based spiking neural model for

learning to recognize actions with a limited number of labeled videos. First, we propose

a novel encoding, inspired by how microsaccades influence visual perception, to extract

spike information from raw video data while preserving the temporal correlation across

different frames. Using this encoding, we show that the reservoir generalizes its rich

dynamical activity toward signature action/movements enabling it to learn from few

training examples. We evaluate our approach on the UCF-101 dataset. Our experiments

demonstrate that our proposed reservoir achieves 81.3/87% Top-1/Top-5 accuracy,

respectively, on the 101-class data while requiring just 8 video examples per class for

training. Our results establish a new benchmark for action recognition from limited video

examples for spiking neural models while yielding competitive accuracy with respect to

state-of-the-art non-spiking neural models.

Keywords: reservoir model, driven-autonomous construction, action recognition, limited training example,

supervised plasticity, micro-saccade spike encoding, eigenvalue spectra

1. INTRODUCTION

The exponential increase in digital data with online media, surveillance cameras among others,
creates a growing need to develop intelligent models for complex spatio-temporal processing.
Recent efforts in deep learning and computer vision have focused on building systems that learn
and think like humans (Mnih et al., 2013; LeCun et al., 2015). Despite the biological inspiration and
remarkable performance of such models, even beating humans in certain cognitive tasks (Silver
et al., 2016), the gap between humans and artificially engineered intelligent systems is still great.
One important divide is the size of the required training datasets. Studies on mammalian concept
understanding have shown that humans and animals can rapidly learn complex visual concepts
from single training examples (Lake et al., 2011). In contrast, the state-of-the-art intelligent models
require vast quantities of labeled data with extensive, iterative training to learn suitably and yield
high performance. While the proliferation of digital media has led to the availability of massive raw
and unstructured data, it is often impractical and expensive to gather annotated training datasets
for all of them. This motivates our work on learning to recognize from few labeled data. Specifically,
we propose a reservoir based spiking neural model that reliably learns to recognize actions in video
data by extracting long-range structure from a small number of training examples.
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Reservoir or Liquid Computing approaches have shown
surprising success in recent years on a variety of temporal data
based recognition problems (though effective vision applications
are still scarce) (Lukoševičius and Jaeger, 2009; Maass, 2011;
Srinivasa and Cho, 2014). This can be attributed to populations
of recurrently connected spiking neurons, similar to the
mammalian neocortex anatomy (Wehr and Zador, 2003), which
create a high-dimensional dynamic representation of an input
stream. The advantage with such an approach is that the reservoir
(with sparse/random internal connectivity) implicitly encodes
the temporal information in the input and provides a unique
non-linear description for each input sequence, that can be
trained for read out by a set of linear output neurons. In fact,
in our view, the non-linear integration of input data by the
high-dimensional dynamical reservoir results in generic stable
internal states that generalize over common aspects of the
input thereby allowing rapid learning from limited examples.
While the random recurrent connectivity generates favorable
complex dynamic activity within a reservoir, it poses unique
challenges that are generally not encountered in constructing
feedforward/deep learning networks.

A pressing problem with recurrently connected networks
is to determine the connection matrix that would be suitable
for making the reservoir perform well on a particular task,
because it is not entirely obvious how individual neurons should
spike while interacting with other neurons. To address this,
Abbott et al. (2016) proposed an elegant method for constructing
recurrent spiking networks, termed as Autonomous (A) models,
from continuous variable (rate) networks, called Driven (D)
models. The basic idea in the D/A approach is to construct
a network (Auto) that performs a particular task by copying
another network (Driven) statistics that does the same task. The
copying provides an estimate of the internal dynamics for the
autonomous network including currents at individual neurons
in the reservoir to produce the same outputs. Here, we adopt the
D/A based reservoir construction approach and modify it further
by introducing approximate delay apportioning to develop a
recurrent spiking model for practical action recognition from
limited video data. Please note, we use Auto/Autonomous
interchangeably in the remainder of the text.

Further, in order to facilitate limited example training in a
reservoir spiking framework, we propose a novel spike based
encoding/pre-processing method to convert the raw pixel valued
videos in the dataset into spiking information that preserves the
temporal statistics and correlation across different frames. This
approach is inspired by how MicroSaccades (MS) cause retinal
ganglion cells to fire synchronously corresponding to contrast
edges after the MS. The emitted synchronous spike volley thus
rapidly transmits the most salient edges of the stimulus, which
often constitute the most crucial information (Masquelier et al.,
2016). In addition, our encoding eliminates irrelevant spiking
information due to ambiguity such as, noisy background activity
or jitter (due to unsteady camera movement), further making
our approach more robust and reliable. Hence, our encoding,
in general, captures the signature action or movement of a
subject across different videos as spiking information. This, in
turn, enables the reservoir to recognize/generalize over motion

cues from spiking data, to enable learning various types of
actions from few video samples per class. Our proposed spiking
model is much more adept at learning object/activity types,
due in part to our ability to analyze activity dynamically as it
takes place over time. Furthermore, besides the advantage of
learning with limited training examples, the spiking foundation
of the proposed model provides an energy-efficient alternative
for neuromorphic hardware implementation than conventional
machine learning models (Merolla et al., 2014; Han et al.,
2015).

It is worth mentioning that there has been substantial
effort toward implementing a neural model with human-level
concept learning capability (Fei-Fei et al., 2007; Lake et al.,
2015; Santoro et al., 2016; Vinyals et al., 2016; Burgess et al.,
2017). For instance, Burgess et al. (2017), Lake et al. (2015),
and Fei-Fei et al. (2007) use Bayesian updates on a pre-trained
network to classify a new image category with limited instances.
Santoro et al. (2016) use relatively complex architectures such
as memory-augmented neural turing machines to perform one-
shot learning. Recently, Google proposed a combined non-
parametric/parametric matching network for one-shot learning
demonstrating state-of-the-art accuracy on ImageNet dataset
(Vinyals et al., 2016). While our paper complements these works,
our spiking model approach to few-shot learning is first of its
kind. While most of the previous works have shown the efficacy
of one-shot learning on static image data, the inherent time-
based processing capability of reservoir models allows us to
demonstrate the effectiveness of our model on complex temporal
video data.

2. MATERIALS AND METHODS

2.1. Reservoir Model: Framework and
Implementation
2.1.1. Model Architecture
Let us first discuss briefly the Driven/Autonomous model
approach (Abbott et al., 2016). The general architecture of the
Driven/Autonomous reservoir model is shown in Figure 1A.
Both driven/auto models are 3-layered networks. The input layer
is connected to a reservoir that consists of nonlinear (Leaky-
Integrate-and-Fire, LIF), spiking neurons recurrently connected
to each other in a random sparse manner (generally with a
connection probability of 10%), and the spiking output produced
by the reservoir is then projected to the output/readout neurons.
In case of driven, the output neurons are rate neurons that simply
integrate the spiking activity of the reservoir neurons. On the
other hand, the auto model is an entirely spiking model with
LIF neurons at the output as well as within the reservoir. Please
note, each reservoir neuron here is excitatory in nature and
the reservoir does not have any inhibitory neuronal dynamics
in a manner consistent with conventional Liquid or Reservoir
Computing.

Essentially, the role of the driven network is to provide targets
(fout) for the auto model, which is the spiking network we are
trying to construct for a given task. To achieve this, the driven
network is trained on an input (fD) that is a high pass filtered
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FIGURE 1 | (A) Structure of driven (autonomous) networks with rate (spiking) output neurons and fast (fast-slow) synaptic connections. Here, all fast connections

have equivalent delay time constant. (B) (Top) Structure of Driven-Autonomous model with the proposed τfast apportioning to construct variable input(denoted as

X )/output (denoted as Y ) reservoir models. Here, each fast connection has a different delay time constant. (Bottom) Desired output produced by an autonomous

model and its corresponding Driven model, that is constructed using approximate τfast apportioning. Please note, input spiking activity (blue curve) and output

(red/green curve) in driven are similar since input is a filtered version of the output, while autonomous model works on random input data.

version of the desired output (fout),

fD = fout + τfast
dfout

dt
(1)

The connections from the reservoir to the readout neurons (w)
of the driven model are then trained to produce desired activity
using the Recursive Least Square (RLS) rule (Haykin, 2008;
Sussillo and Abbott, 2009). Once trained, the driven network
connections (Jfast) are imported into the autonomous model and
a new set of network connections (Jslow) are added for each fast
connection. The combination of the two sets of synapses, Jfast
and Jslow, allows the auto model to match its internal dynamics
to that of the driven network that is already tuned to producing
desired fout . In fact, the connections u and Jslow in the auto
model are derived from the driven network as, u = uDuR and
Jslow = uDBw, where uR and B are randomly chosen. Note,
the time constants of the two sets of synapses is different i.e.,
τslow ∼ 10 ∗ τfast that allows the autonomous network to slowly
adjust its activity to produce fout during training. For further
clarification, please refer to Abbott et al. (2016) to gain more
details and insights on D/A approach. After the autonomous
model is constructed, we train its output layer (that consist of LIF
spiking neurons),w′, using a supervised Spike TimingDependent
Plasticity (STDP) rule (Ponulak and Kasiński, 2010) based on the
input fin.

The motif behind choosing fD as a filtered version of fout is to
compensate for the synaptic filtering at the output characterized
by time constant, τfast (Eliasmith, 2005; Abbott et al., 2016).
However, it is evident that the dependence of fD on fout from
Equation (1) imposes a restriction on the reservoir construction,
that is, the number of input and output neurons must be same.

To address this limitation and extend the D/A construction
approach to variable input-output reservoir models, we propose
an approximate definition of the driven input using a delay
apportioning method as,

(fDk)j = (fout)j + τfastk

(dfout)j

dt
(2)

Here, k varies from 1 to X, j varies from 1 to Y, where X/Y are
the number of input/output neurons in our reservoir model
respectively and τfast =

∑N
i=1 τfast i, where N is the number of

neurons in the reservoir. Figure 1B (Top) shows the architecture
of the D/Amodel with the proposed delay apportioning. For each
output function ((fout)j), we derive the driven inputs (fDk = 1...X)j
by distributing the time constant across different inputs. We
are essentially compensating the phase delay due to τfast in an
approximate manner. Nevertheless, it turns out this approximate
version of fD still drives the driven network to produce the desired
output and derive the connection matrix of the autonomous
model that is then trained on the real input (video data in
our case). Figure 1B (Bottom) illustrates the desired output
generated by a D/A model of 2 (input)× 400 (reservoir neurons)
× 1 (output) configuration constructed using Equation (2). Note,
for the sake of convenience in representation and comparative
purposes, the output of both driven/auto models are shown as
rate instead of spiking activity. It is clearly seen in the driven
case that the input spiking activity for a particular input neuron
fDk, even with τfast apportioning, approximates the target quite
well. Also, the autonomous model derived from the driven
network in Figure 1B (Bottom), produces the desired spiking
activity in response to random input upon adequate training of
w′ connections.
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2.1.2. Supervised STDP and One-Hot Encoding
Reservoir framework relaxes the burden of training by fixing
the connectivity within the reservoir and that from input to the
reservoir. Merely, the output layer of readout neurons (w,w′

in Figure 1A) is trained (generally in a supervised manner)
to match the reservoir activity with the target pattern. In
our D/A based reservoir construction, readout of the driven
network is trained using standard RLS learning (Sussillo and
Abbott, 2009) while we use a modified version of the supervised
STDP rule proposed in Ponulak and Kasiński (2010) to conduct
autonomous model training. An illustration of our STDP model
is shown in Figure 2A. For a given target pattern, the synaptic
weights are potentiated or depressed as

1w = xtrace(ttarget − tactual) (3)

Where tactual/ttarget denotes the time of occurrence of
actual/desired spiking activity at the post-synaptic neuron
during the simulation and xtrace, namely the presynaptic
trace, models the pre-neuronal spiking history. Every time
a pre-synaptic neuron fires, xtrace, increases by 1, otherwise
it decays exponentially with τpre that is of the same order as
τfast . Fundamentally, as illustrated in Figure 2A, Equation (3)
depresses (or potentiates) the weights at those time instants
when actual (or target) spike activity occurs. This ensures that
actual spiking converges toward the desired activity as training
progresses. Once the desired/actual activity become similar, the
learning stops, since at time instants where both desired and
actual spike occur simultaneously, the weight update value as per
Equation (3) becomes 0.

Since the main aim of our work is to develop a spiking
model for action recognition in videos, we model the desired
spiking activity at the output layer based on one-hot encoding. As
with standard machine learning applications, the output neuron
assigned to a particular class is trained to produce high spiking

activity while the remaining neurons are trained to generate
zero activity. Figure 2B shows the one-hot spike encoding for
a 3-class problem, wherein the reservoir’s readout has 3 output
neurons and based on the training input’s class, the desired
spiking activity (sort of “bump”) for each output neuron varies.
Again, we use the supervised STDP rule described above to train
the output layer of the autonomous model. Now, it is obvious
that since the desired spiking activity of the auto model (fout
referring to Figure 1) follows such one-hot spike encoding, the
driven network (from which we derive our auto model) should
be constructed to produce equivalent target output activity. To
reiterate, the auto model (entirely spiking) works on the real-
world input data and is trained to perform required tasks such
as classification. The connection matrix (Jslow) of the auto model
is derived from a driven network (with continuous rate-based
output neurons) that, in turn, provides the target activity for the
output neurons of the auto model.

2.2. Input Processing
In this work, we use the UCF101 dataset (Soomro et al., 2012) to
perform action recognition with our reservoir approach. UCF101
consists of 13,320 realistic videos (collected from YouTube) that
fall into 101 different categories or classes, 2 of which are shown
in Figure 3. Since the reservoir computes using spiking inputs,
we convert the pixel valued action information to spike data in
steps outlined below.

2.2.1. Pixel Motion Detection
Unlike static images, video data are a natural target in event-
based learning algorithms due to their implicit time-based
processing capability. First, we track the moving pixels across
different frames so that the basic action/signature is captured.
This is done by monitoring the difference of the pixel intensity
values (Pdiff ) between consecutive frames and comparing the
difference against some threshold (ǫ, that is user-defined) to

FIGURE 2 | (A) Supervised STDP rule (defined by Equation 3) using pre-synaptic trace to perform potentiation/depression of weights. t1, t2...t7 are the time instants

at which target/actual spiking activity occurs resulting in a weight change. The extent of potentiation or depression of weights 1w is proportional to the value of the

pre-synaptic trace x1, x2...x7 at a given time instant. (B) One-hot spike encoding activity for a 3-class problem: Based on the class of the training input, the

corresponding output neuron is trained to produce high activity while remaining neurons yield near-zero activity.
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FIGURE 3 | Fixed threshold spiking input (denoted by spike difference) and variable threshold weighted input data (denoted by weighted spike) shown for selected

frames for two videos of the UCF101 dataset. As time progresses, the correlation across spiking information is preserved. Encircled regions show the background

captured in the spiking data.

detect the moving edges (for each location (x,y) within a
frame), as

Pdiff (x, y) = Framej − Framej−1;

(where j = 2 to Number Of Frames)

If Pdiff (x, y) ≥ ǫ, Spikediff (x, y) = 1

WSpikediff (x, y) =

∑

i ǫiSpikediff (x, y)
∑

i ǫi
; (where i=1 to N)

(4)

The thresholding detects the moving pixels and yields an
equivalent spike pattern (Spikediff ) for each frame. It is evident
that the conversion of the moving edges into spikes preserves
the temporal correlation across different frames. While Spikediff
encodes the signature action adequately, we further make
the representation robust by varying the threshold (ǫi =
{1,2,4,8,16,32}; N = 6 in our experiments) and computing the
weighted summation of the spike differences for each threshold
as shown in the last part of Equation (4). The resultant weighted
spike differenceWSpikediff (x, y) is then binarized to yield the final
spike pattern for each frame. This kind of pixel-change based
motion detection to generate spike output is now possible with
a new breed of energy efficient sensors inspired by the retina (Hu
et al., 2016).

Figure 3 shows the spiking inputs captured from the moving
pixels based on fixed threshold spike input and varying threshold
weighted input for selected frames. It is clearly seen that
the weighted input captures more relevant edges and even
subtle movements, for instance, in the PlayingGuitar video,
the delicate body movement of the person is also captured

along with the significant hand gesture. Due to the realistic
nature of the videos in UCF101, there exists a considerable
amount of intra class variation along with ambiguous noise.
Hence, a detailed input pattern that captures subtle gestures
facilitates the reservoir in differentiating the signature motion
from noise. It should be noted that we convert the RGB
pixel video data into grayscale before performing motion
detection.

2.2.2. Scan Based Filtering
We observe from Figure 3, for the BabyCrawling case, that along
with the baby’s movement, some background activity is also
captured. This background spiking occurs on account of the
camera movement or jitter. Additionally, we see that majority
of the pixels across different frames in Figure 3 are black since
the background is largely static and hence does not yield any
spiking activity. To avoid the wasteful computation due to non-
spiking pixels as well as circumvent insignificant activity due
to camera motion, we create a Bounding Box (BB) around the
Centre of Gravity (CoG) of spiking activity for each frame and
scan across 5 directions as shown in Figure 4. The CoG (xg , yg)
is calculated as the average of the active pixel locations within
the BB. In general, the dimensionality of the video frames in
the UCF101 dataset is ∼ 200 × 300. We create a BB of size
41×41 centered at the CoG, capture the spiking activity enclosed
within the BB, in what we refer to as the Center (C) scan, and
then stride the BB along different directions (by number of
pixels equal to ∼ half the distance between the CoG and the
edge of the BB), namely, Left (L), Right (R), Top (T), Bottom
(B), to capture the activity in the corresponding directions.
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FIGURE 4 | Scan based filtering from the original spike data resulting in Center, Left, Right, Top, Bottom scans per frame for (A) BabyCrawling video,

(B) PlayingGuitar video. Each row shows the original frame as well as the different scans captured.

These five windows of spiking activity can be interpreted as
capturing the salient edge pixels (derived from pixel motion
detection above) after each microsaccade (Masquelier et al.,
2016). In our model, the first fixation is at the center of the
image. Then, the fixation is shifted from the center of the image
to the CoG using the first microsaccade. The rest of the four
microsaccades are assumed to occur in four directions (i.e., top,
bottom, left, and right) with respect to CoG of the image by
the stride amount. It should be noted that this sequence of four
miscrosaccades is assumed to be always fixed in its direction.
The stride amount can, however, vary based on the size of
the BB.

Figure 4A clearly shows that the CRLTB scans only retain
the relevant region of interest across different frames of the
BabyCrawling video while filtering out the irrelevant spiking
activity. Additionally, we also observe that in the PlayingGuitar
video shown in Figure 4B, different scans capture diverse aspects
of the relevant spiking activity, for instance, hand gesture in C
scan while guitar shape in L scan shown in the 3rd row. This
ensures that all significant movements for a particular action in
a given frame are acquired in a holistic manner.

In addition to the scan based filtering, we also delete
certain frames to further eliminate the effect of jitter or camera
movement on the spike input data. We delete the frames based
on two conditions:

• If the overall number of active pixels for a given spiking
frame are greater/lesser than a certain maximum/minimum
threshold, then, that frame is deleted. This eliminates all the
frames that have flashing activity due to unsteady camera
movement. In our experiments, we use a min/max threshold
value of 8/75% of the total number of pixels in a given frame.
Note, we perform this step before we obtain the CRLTB scans.

• Once the CRLTB scans are obtained, we monitor the activity
change for a given frame in RLTB as compared to C (i.e., for
Framei check Ci − {Ri, Li,Ti,Bi}) . If the activity change (say,
Ci − Ri) is greater than the mean activity across Ci, then, we
delete that particular frame (Ri) corresponding to the scan that
yields high variance.

It is noteworthy to mention that the above methods of filtering
eliminate the ambiguous motion or noise in videos with minimal
background activity or jitter motion (such as PlayingGuitar) to
a large extent. However, the videos where the background has
significantmotion (such asHorseRacing) or those wheremultiple
human subjects are interacting (such as Fencing, IceDancing),
the extracted spike pattern does not encode a robust and reliable
signature motion due to extreme variation in movement. For
future implementations, we are studying using a DVS camera
(Hu et al., 2016; Li et al., 2017) to extract reliable spike data
despite ego motion. Nonetheless, our proposed input processing
method yields reasonable accuracy (shown later in Results
section) with the D/A model architecture for action recognition
with limited video examples. Supplementary Videos 1, 2 give
better visualization of the spiking data obtained with the pixel
motion detection and scan based filtering scheme.

2.3. Network Parameters
The proposed reservoir model and learning was implemented
in MATLAB. The dynamics of the reservoir neurons in the
Driven/Autonomous models are described by

τmem
dV

dt
= Vrest − V + (Jfastf (t)+ uDfD); Driven

τmem
dV

dt
= Vrest − V + (Jfastf (t)+ Jslows(t)+ ufin); Auto

(5)

where τmem = 20 ms, fin denotes the real input spike data, fD
is the derived version of the target output (refer to Equation
2), uD/u are the weights connecting the input to the reservoir
neurons in the driven/auto model respectively. Each neuron fires
when its membrane potential, V , reaches a threshold Vth =

−50 mV and is then reset to Vreset = Vrest = −70 mV.
Following a spike event, the membrane potential is held at the
reset value Vreset for a refractory period of 5 ms. The parameters
f (t), s(t) correspond to fast/slow synaptic currents observed in
the reservoir due to the inherent recurrent activity. In the driven
model, only fast synaptic connections are present while auto
model has both slow/fast connections. The synaptic currents are
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encoded as traces, that is, when a neuron in the reservoir spikes,
f (t) (and s(t) in case of auto model) is increased by 1, otherwise it
decays exponentially as

τslow
ds(t)

dt
= −s(t); τfast

df (t)

dt
= −f (t) (6)

where τslow = 100 ms, τfast = 5 ms. Both Jslow and Jfast
recurrent connections within the reservoir of D/A model are
fixed during the course of training. Jfast of the driven model
are randomly drawn from a normal distribution. Jslow and u
(refer to Figure 1A) of the auto network are derived from the
driven model using uR = 1, B = random number drawn from a
uniform distribution in the range [0, 0.15]. We discuss the impact
of variation of B on the decoding capability of the autonomous
reservoir in a later section. If the reservoir outputs a spike pattern,
say x(t), the weights from the reservoir to the readout (w) are
trained to produce the desired activity, fout . The continuous rate
output neurons in driven network are trained using RLS such that
w∗x(t) ∼ fout(t). The spiking output neurons of the auto model
(with similar neuronal parameters as Equation 5) integrate the
net current w′∗x(t) to fire action potentials, that converge toward
the desired spiking activity with supervised STDP learning.

2.4. D/A Model for Video Classification
The input processing technique yields 5 different CRLTB scan
spike patterns per frame for each video. In the D/A based
reservoir construction, each of the 5 scans for every video is
processed by 5 different autonomous models. Figure 5A shows
an overview of our proposed D/A construction approach for
video classification. Each scan is processed separately by the
corresponding autonomous model. An interesting observation
here is that since the internal topology across all auto models is
equivalent, they can all be derived from a single driven model
as shown in Figure 5A. In fact, there is no limit to the number
of autonomous models that can be extracted from a driven
network, which is the principal advantage of our approach. Thus,
in case, more scans based on depth filtering or ego motion
monitoring are obtained during input processing, our model
can be easily extended to incorporate more autonomous models
corresponding to the new scans.

During training, the driven network is first trained to produce
the target pattern (similar to the one-hot spike encoding
described in Figure 2B). Then, each autonomous model is
trained separately on the corresponding input scan to produce
the target pattern. In all our experiments, we train each auto
model for 30 epochs. In each training epoch, we present the
training input patterns corresponding to all classes sequentially
(for instance, Class1→Class 2→Class 3) to produce target
patterns similar to Figure 2B. Each input pattern is presented
for a time period of 300 ms (or 300 time steps) . In each time
step, a particular spike frame for a given scan is processed by the
reservoir. For patterns where total number of frames is< 300, the
network still continues to train (even in absence of input activity)
on the inherent reservoir activity generated due to the recurrent
dynamics. In fact, this enables the reservoir to generalize its’
dynamical activity over similar input patterns belonging to the

same class while discriminating patterns from other classes.
Before presenting a new input pattern, the membrane potential
of all neurons in the reservoir are reset to their resting values. It is
worth mentioning that the training of the driven model accounts
for a slight portion (∼ 10%) of the total training complexity
(training 1 Driven + 5 Auto models) in the overall D/A based
reservoir construction. This can be attributed to the fact that
the driven model essentially receives a slightly modified version
of the target output to produce the same target output and
hence requires lesser training epochs (15 epochs). In contrast, the
autonomous models are trained on the real world input-data to
produce the desired targets and eventually require more training
epochs (30 epochs per auto model, Total 30×5 = 150 epochs) to
reach an optimal point. Generally, since numerous autonomous
models can be derived from the same driven model, the overall
training overhead of the driven model (that is trained only once
to produce the required targets) tends to be negligible.

After training is done, we pass the test instance CRLTB
scans to each auto model simultaneously and observe the output
activity. The test instance is assigned a particular class label based
on the output neuron class that generated the highest spiking
response. This assignment is done for each auto model. Finally,
we take a majority vote across all the assignments (or all auto
models) for each test input to predict its class. For instance,
if majority of the auto models (i.e., ≥ 3) predict a class (say
Class 1), then predicted output class from the model is Class 1.
Now, a single auto model might not have sufficient information
to recognize the test input correctly. The remaining scans or
auto models, in that case, can compensate for the insufficient or
inaccurate output prediction from the individual models. While
we reduce the computational complexity of training by using the
scan based filtering approach that partitions the input space into
smaller scans, the parallel voting during inference enhances the
collective decision making of the proposed architecture, thereby
improving the overall performance.

Figure 5B summarizes the parameter values of the D/A
model used for the action recognition experiments described
below. The reservoir (both driven/auto) topology in case of the
video classification experiments consist of X(Input Neurons) −
N(Reservoir Neurons)−Y(Output Neurons) with p% connectivity
within the reservoir. X is equivalent to the size of the
bounding box used during scan based filtering (in our case
X = 41× 41 = 1, 681). The number of output neurons vary
based on the classification problem, that is, Y = 5 for a 5-
class problem. In most experiments below, we use p = 10%
connectivity to maintain the sparseness in the reservoir. In
the Results section below, we further elaborate on the role of
connectivity on the performance of the reservoir. The number of
neurons N are varied based upon the complexity of the problem
in order to achieve maximum classification accuracy.

3. RESULTS

3.1. Classification Accuracy on UCF101
First, we considered a 2-class problem of recognizing
BenchPress/GolfSwing class in UCF101 to test the effectiveness
of our overall approach. We specifically chose these 2 classes
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in our preliminary experiment since majority of videos in
these categories had a static background and the variation in
action across different videos was minimal. We simulated an
800N-2Output, 10% connectivity D/A reservoir (N:number of
reservoir neurons) and trained the autonomous models with a
single training video from each class as shown in Figure 6. It is
clearly seen that even with single video training, the reservoir
correctly classifies a host of other examples irrespective of the
diverse subjects performing the same action. For instance,
in the golf examples in Figure 6A, the reservoir does not
discriminate between a person wearing shorts or trousers while
recognizing the action. Hence, we can gather that the complex
transient dynamics within a reservoir latches onto a particular
action signature (swing gesture in this case) that enables it to
classify several test examples even under diverse conditions.

Investigating the incorrect predictions from the reservoir for
both classes, we found that the reservoir is sensitive toward
variation in views and inconsistencies in action, which results
in inaccurate prediction. Figure 6 shows that the incorrect
results are observed when the view angle of the training/test
video changes from frontal to adjacent views. In fact, in case
of BenchPress, even videos with similar view as training are
incorrectly classified due to disparity in motion signature (for
instance, number of times the lifting action is performed).
Note, we only show a selected number of videos classified
correctly/incorrectly in Figure 6.

To account for such variations, we increased the number
of training examples from 1 to 8. In the extended training
set, we tried to incorporate all kinds of view/signature based
variations for each action class as shown in Figure 7A. For the

FIGURE 5 | (A) Proposed driven/autonomous construction scheme for processing the CRLTB scans obtained from the scan based filtering. (B) Parameter values

used for D/A based action recognition experiments.

FIGURE 6 | Training/testing video clips of the 2-class problem (A) GolfSwing, (B) BenchPress: Column 1 shows the training video, Column 2/3 show the test video

examples correctly/incorrectly classified with our D/A model.
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FIGURE 7 | (A) Clips of the 8 training videos for each class (BenchPress/GolfSwing) incorporating multiple views/variation in action signature. (B) Confusion matrix

showing the overall as well as class-wise accuracy for 2-class BenchPress/GolfSwing classification.

2-class problem, with 8 training examples for each class, we
simulated a 2,000N-10% connectivity reservoir that yields an
accuracy of 93.25%. Figure 7B shows the confusion matrix for
the 2-class problem. BenchPress has more misses than GolfSwing
as the former has more variation in action signature across
different videos. Now, it is well-known that the inherent chaotic
or spontaneous activity in a reservoir enables it to produce a
wide variety of complex output patterns in response to an input
stimulus. In our opinion, this behavior enables data efficient
learning as the reservoir learns to generalize over a small set of
training patterns and produce diverse yet converging internal
dynamics that transform different test inputs toward the same
output. Note, testing is done on all the remaining videos in the
dataset that were not selected for training.

To further characterize the discriminative performance of
the D/A based reservoir network, we plotted the intra-/inter-
trajectory distance of the states of the reservoir neurons
in the Auto model for same class (for instance, within-
BenchPress) vs. those of different classes (between-BenchPress
and GolfSwing). The trajectory distance is measured from

the Euclidean distance (as

√

1/N
∑N

i=1(ri,1(t)− ri,2(t))2 , where

r1(t) (r2(t)) is the firing rate activity of the reservoir neurons
corresponding to input instances I1 (I2)), at each time step.
Here I1, I2 correspond to the different test instances presented
to the trained Auto network (learnt with 8 examples per class)
for the 2-class problem. Figure 8 shows the inter-/intra-class
trajectory distance averaged across the Euclidean measured
for all the testing instances presented to the network. It is
desirable to have larger inter-trajectory distance and small intra-
trajectory distance such that the network easily distinguishes
between two different class of inputs while being able to
reproduce the required output response for varying instances
belonging to the same class. We observe a similar behavior in
Figure 8. Now, it is clear that inter-trajectory distance quantifies
discriminative capability while generalization ability can be
inferred from the intra-trajectory. This ascertains the ability of
our reservoir model to classify even with limited training. An
interesting observation here is that the intra-trajectory distance
measured across test instances belonging to GolfSwing class is
higher than that of BenchPress. This implies that the network
finds GolfSwing instances to be more confusing/difficult than
BenchPress. This further corroborates the declined prediction
accuracy observed for GolfSwing in the Confusion Matrix in
Figure 7B.

FIGURE 8 | Euclidean distance between trajectories of same (and different)

classes observed during testing for the 2-class problem(with 8 training

example per class) of BenchPress/GolfSwing classification.

Next, we simulated a reservoir of 4K/6K/8K/9K neurons
(with 10% connectivity) to learn the entire 101 classes in the
UCF101 dataset. Note, for each of the 101 classes, we used 8
different training videos that were randomly chosen from the
dataset. To ensure that more variation is captured for training, we
imposed a simple constraint during selection, that each training
example must have a different subject/person performing the
action. Figure 9A illustrates the Top-1, Top-3, Top-5 accuracy
observed for each topology. Note, in all our experiments with
D/A model, during testing, we present the test patterns for 10
epochs (wherein the entire test data corresponding to all classes
is presented in each epoch). The prediction accuracy across 10
epochs is then averaged and then reported as the final accuracy.
The standard deviation for accuracy across the 10 epochs, during
testing, ranges between 0.8 and 1.3% across all experiments. We
also report the average number of tunable parameters for each
topology. The reservoir has fixed connectivity from the input
to reservoir as well as within the reservoir that are not affected
during training. Hence, we only compare the total number of
trainable parameters (comprising the weights from reservoir to
output layer) as the reservoir size varies in Figure 9A.We observe
that the reservoir with 8K neurons yields maximum accuracy
(Top−1 : 80.2%,Top−5 : 86.1%). Also, the classification accuracy
improves as the reservoir size increases from 4K→ 8K neurons.
This is apparent since larger reservoirs with sparse random
connectivity generate richer and heterogeneous dynamics that
overall boosts the decoding capability of the network. Thus,
for the same task difficulty (in this case 101-class problem),
increasing the reservoir size improves the performance. However,
beyond a certain point, the accuracy saturates. Here, the reservoir
with 9K neurons achieves similar accuracy as 8K. In fact, there is
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FIGURE 9 | (A) Top-1/3/5 accuracy on 101-classes obtained with 8-training example (per class) learning for D/A models of different topologies. (B) Effect of variation

in sparsity (for fixed 1 :800 number of connections per neuron across different reservoir topologies) on the Top-1 accuracy achieved by the reservoir. Note, all results

are performed on the D/A reservoir scheme with 8 training videos per class processed with the input spike transformation technique mentioned earlier.

a slight drop in accuracy from 8K → 9K. This might be a result
of some sort of overfitting phenomenon as the reservoir (with
more parameters than necessary for a given task) might begin
to assign, instead of generalizing, its dynamic activity toward a
certain input. Note, all reservoirmodels discussed so far have 10%
connectivity. Hence, the reservoirs in Figure 9A have increasing
number of connections per neuron (1 : 400 → 1 : 900) as we
increase the number of neurons in the reservoir from 4,000 to
9,000. Please refer to the supplementary information (see Figures
S1, S2) that details out the confusion matrix for the 101-class
problem with 8K neurons and 10% connectivity.

3.2. Impact of Variation of Reservoir
Sparsity on Accuracy
Since sparsity plays an important role in determining the
reservoir dynamics, we simulated several topologies in an iso-
connectivity scenario to see the effect of increasing sparseness
on the reservoir performance. Figure 9B shows the variation
in Top-1 accuracy for 101-classes as the reservoir sparseness
changes. From Figure 9A, we observe that the 8,000N-10%
connectivity reservoir (with 1 : 800 number of connections per
neuron) gave us the best results. Hence, in the sparsity analysis,
we fixed the number of connections per neuron to 1 : 800
across different reservoir topologies. Initially, for a 2,000N-
40% connectivity reservoir, the accuracy observed is pretty low
(60.1%). This is evident as lesser sparsity limits the richness in
the complex dynamics that can be produced by the reservoir that
further reduces its’ learning capability. Increasing the sparseness
improves the accuracy as expected. We would like to note that
the 4,000N-20% connectivity reservoir yields lesser accuracy
than that of the sparser 4,000N-10% connectivity reservoir of
Figure 9A. Another interesting observation here is that the
10,000N-8% reservoir yields higher accuracy (∼1% more) than
that of the 8,000N-10% reservoir. This result supports the fact
that in an iso-connectivity scenario, more sparseness yields
better results. However, the accuracy again saturates with a
risk of overfitting or losing generalization capability beyond a
certain level of sparseness as observed in Figure 9B. Hence,
there is no fixed rule to determine the exact connectivity/sparsity
ratio for a given task. We empirically arrived at the results by
simulating a varying set of reservoir topologies. However, in
most cases, we observed that for an N-reservoir model 10%

connectivity generally yields reasonable results as seen from
Figure 9A. It is worth mentioning that while the 10K neuron
reservoir yields the highest accuracy of 81.3%, it consists of
larger number of tunable parameters (total connections/weights
from reservoir to output) 40.4M as compared to 32.3M observed
with the 8K-10% connectivity reservoir (Figure 9A). In fact,
the best accuracy achieved with our approach corresponds
to the 10K-8% connectivity reservoir with Top-1/Top-3/Top-
5 accuracy as 81.3/85.2/87%, respectively. Hence, depending
upon the requirements, the connectivity/size of the reservoir
can be varied to achieve a favorable efficiency-accuracy tradeoff.
Please note that the total number of tunable parameters in the
reservoir model include all 5-autonomous models. To highlight
the universality of our approach, we verified the D/A model
for speech classification on TI46 speech corpus dataset. Please
refer to the supplementary to get further details and insights (see
Figure S4).

3.3. EigenValue Spectra Analysis of
Reservoir Connections
We analyzed the EigenValue (EV) spectra of the synaptic
connections (both Jslow and Jfast of the autonomous models) to
study the complex dynamics of the reservoir. EV spectra has been
shown to characterize thememory/learning ability of a dynamical
system (Rajan, 2009). Rajan et al. (Rajan and Abbott, 2006; Rajan,
2009) have shown that stimulating a reservoir with random
recurrent connections activates multiple modes where neurons
start oscillating with individual frequencies. These modes then
superpose in a highly non-linear manner resulting in the complex
chaotic/persistent activity observed from a reservoir. The EVs of
the synaptic matrix typically encode the oscillatory behavior of
each neuron in the reservoir. The real part of an EV corresponds
to the decay rate of the associated neuron, while frequency
is given by the imaginary part. If the real part of a complex
EV exceeds 1 (or Re(EV)) > 1), the activated mode leads to
long lasting oscillatory behavior. If there are a few modes with
Re(EV)) > 1 , the network is at a fixed point, meaning the
reservoir exhibits the same pattern of activity for a given input.
It is desirable to construct a reservoir with multiple fixed points
so that each one can be used to retain a different memory. In
a recognition scenario, each of the fixed points latch onto a
particular input pattern or video in our case, thereby yielding a
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good memory model. As the number of modes with Re(EV) > 1
increases, the reservoir starts generating chaotic patterns, that
are complex and non-repeating. In order to construct a reservoir
model with good memory, we must operate in a region between
singular fixed point activity (Re(EV) << 1) and complete chaos
(Re(EV) >> 1).

Since our autonomous models have two kinds of synapses
with different time constants, we observe two different kinds
of EV spectra that contribute concurrently to the dynamical
state of the auto network. While the overall reservoir dynamics
are dictated by the effective contribution of both connections,
Jslow (due to larger time constant of synaptic decay) will have
a slightly more dominating effect. Figure 10A illustrates the
EV spectra corresponding to the bottom scan autonomous
800N-reservoir model simulated earlier for the 2-class problem
(BenchPress/GolfSwing) with just 1 training video (refer
Figure 6). Now, the EV of Jfast have considerable number of
modes with Re(EV)> 1 that is characteristic of chaotic dynamics.
Hence, as discussed above, we need to compensate for the
overwhelming chaotic activity with modes that exhibit fixed
points to obtain a reliable memory model. This can be attained
by adjusting the Jslow connections. From Figure 10A, we see that
as the range of B (random constant used to derive the Jslow
connections from the driven model) increases, the EV spectral
radius of the Jslow connections grows. For B = [0 − 0.01], the
EVs are concentrated at the center. Such networks have almost
no learning capability as the dynamics converge to a single point
that produces the same time-independent pattern of activity for
any input stimulus. As the spectral circle enlarges, the number
of modes with Re(EV) > 1 also increases. For B = [0 − 0.15],
the number of fixed point modes reaches a reasonable number
that in coherence with the chaotic activity due to Jfast results in
generalized reservoir learning for variable inputs. Increasing B
further expands the spectral radius for Jslow (with more Re(EV)
>1) that adds onto the chaotic activity generated due to Jfast . In
such scenarios, the reservoir will not be able to discern between
inputs that look similar due to persistent chaos. This is akin to the

observations about the need for the reservoir to strike a balance
between pattern approximation and separability (Rajan, 2009).

Figure 10B demonstrates the accuracy variation for the same
2-class 1-training example learning model with different values
of B. We repeated the experiment 5 times wherein we chose
a different training video per class in each case. As expected,
the accuracy for a fixed state reservoir with B = [0 − 0.01]
is very low. As the number of modes increase, the accuracy
improves justifying the relevance of stable and chaotic activity
for better learning. As the chaotic activity begins to dominate
with increasing B, the accuracy starts declining. We also observe
that the overall accuracy trend (for the 2-class 1-training example
model) represented by the min-max accuracy bar is consistent
even when the training videos are varied. This indicates that
the reservoir accuracy is sensitive to the B-initialization and
is not biased toward any particular training video in our
limited training example learning scheme. While the empirical
result corroborates our theoretical analysis and justifies the
effectiveness of using the D/A approach in reservoir model
construction, further investigation needs to be done to gauge the
other advantages/disadvantages of the proposed approach. Please
refer to Rajan and Abbott (2006) and Rajan (2009) for more
clarification on random matrices and EV spectra implication on
dynamical reservoir models.

3.4. Comparison With State-of-the-Art
Recognition Models
Deep Learning Networks (DLNs) are the current state-of-the-
art learning models that have made major advances in several
recognition tasks (Mnih et al., 2013; Cox and Dean, 2014). While
these large-scale networks are very powerful, they inevitably
require large training data and enormous computational
resources. Spiking networks offer an alternative solution by
exploiting event-based data-driven computations that makes
them attractive for deployment on real-time neuromorphic
hardware where power consumption and speed become vital

FIGURE 10 | (A) Change in EigenValue spectra of the Jfast and Jslow connections of an autonomous network. Note, the Jfast spectra (corresponding to the

connections imported from driven model) remains constant, while the Jslow spectra changes with varying B values. (B) Impact of variation in B, representative of

stable/chaotic reservoir dynamics, on the accuracy for 2-class (BenchPress/GolfSwing) 1-training example problem (Figure 6). The minimum and maximum accuracy

observed across 5 different trials, where each trial uses a different video for training, is also shown.
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constraints (Merolla et al., 2014; Han et al., 2015). While
research efforts in spiking models have soared in the recent past
(Masquelier and Thorpe, 2007; Srinivasa and Cho, 2012; Maass,
2016; Panda and Roy, 2016), the performance of such models are
not as accurate as compared to their artificial counterparts (or
DLNs). From our perspective, this work provides a new standard
establishing the effectiveness of spikingmodels and their inherent
timing-based processing for action recognition in videos.

Figure 11 compares our reservoir model to state-of-the-art
recognition results (Simonyan and Zisserman, 2014a; Srivastava
et al., 2015; Feichtenhofer et al., 2016). We simulated a VGG-
16 (Simonyan and Zisserman, 2014b) DLN architecture that
only processes the spatial aspects of the video input. That
is, we ignore the temporal features of the video data and
attempt to classify each clip by looking at a single frame.
We observe that the spatial VGG-16 model yields reduced
accuracy of 66.2% (42.9%) when presented with the full training
dataset (8-training examples per class), implying the detrimental
effect of disregarding temporal statistics in the data. Please
refer to the supplementary information (see Figure S3) that
details out the efficiency vs. accuracy tradeoff between our
proposed reservoir and the spatial VGG-16 model. The static
hierarchical/feedforward nature of DLNs serves as a major
drawback for sequential (such as video) data processing. While
deep networks extract good flexible representations from static
images, addition of temporal dimension in the input necessitates
the model to incorporate recurrent connections that can capture
the underlying temporal correlation from the data.

Recent efforts have integrated Recurrent Neural Networks
(RNNs) and Long Short-Term Memory (LSTMs) with DLNs to
process temporal information (Donahue et al., 2015; Srivastava
et al., 2015). In fact, the state-of-the-art accuracy on UCF-101
is reported as 92.5% (Feichtenhofer et al., 2016) as illustrated in
Figure 11, where a two-stream convolutional architecture with
two VGG-16 models, one for spatial and another for temporal
information processing is used. While the spatial VGG model is
trained on the real-valued RGB data, the temporal VGG model
uses optical flow stacking to capture the correlated motion. Here,
both the models are trained on the entire UCF-101 dataset
that significantly increases the overall training complexity. All
models noted in Figure 11 (including the LSTM model) use
the temporal information in the input data by computing
the flow features and subsequently training the deep learning/
recurrent models on such inputs. The overall accuracy shown in
Figure 11 is the combined prediction obtained from the spatial
RGB and temporal flow models. The incorporation of temporal
information drastically improves a DLN’s accuracy.

It is evident that the main idea of using the D/A based
reservoir construction is to determine a suitable recurrent
connection matrix such that the reservoir (Auto model in our
case) performs well on a given task. In order to quantify the
effectiveness of the D/A approach, we compared the performance
of our D/A based reservoir with that of a vanilla Liquid State
Machine (LSM) (Maass et al., 2002; Maass, 2011). The LSM
was constructed with randomly initialized recurrent connections.
Moreover, since our input consists of 5 different scanned spike
patterns, namely CRLTB, each of the 5 scans were processed

by 5 different LSMs (each with a different set of recurrent
connectivity). Considering same connectivity for all 5 LSMs
yielded lower accuracy. Hence, we conducted the analysis on
LSMs with diverse connectivity. As with our D/A model, a
majority based output prediction yielded the final prediction class
for a given instance from the 5-LSM system. While both D/A
model and vanilla LSM were able to give a lower error and better
convergence during training on a small 10-class problem, the
prediction capability of the vanilla LSM severely decreased when
we increase the number of classes to 20-/30-classes. Note, we
trained both the networks (D/A, vanilla LSM) with 8 training
examples per class. Figure 11 shows the accuracy obtained from
a vanilla LSM with similar topology as our D/A reservoir model
for 101-class problem. We believe that the combination of
fast/slow synapses in our reservoir model renders the network
more flexibility to learn and hence discriminate better than
that of a vanilla LSM. However, in spite of the low accuracy,
the vanilla LSM still performs better than the spatial VGG-16
model in the iso-training scenario. Thus, we can deduce that
the recurrent and inherent spike-time based processing capability
of a spiking network enables training with fewer examples.
However, the D/A based approach provides an additional avenue
of constructing a better reservoir with improved discriminative
capability. Note, the simulation parameters (neuronal constants,
training/test epochs) of the vanilla LSMwere similar to that of the
parameters of the autonomous model. As there are only one set
of synapses in the vanilla LSM, the synaptic time constant in this
case was set to τ = 40 ms to calculate the synaptic current (refer
to Equation 6).

Figure 11 also quantifies the benefits with our reservoir
approach as compared to the state-of-the-art models from a
computational efficiency perspective. We quantify efficiency in
terms of total number of resources utilized during training a
particular model. The overall resource utilization is defined as
the product of the Number of (tunable) Parameters × Number
of training Data Examples. The number of data examples are
calculated as Number of Frames per video×Number of Training
videos (≡ 180 × 9, 537 for full training data). Referring to the
results for spatial VGG-16 model, we observe that the reservoir
(10K-10% connectivity) is 2.4× more efficient, while yielding
significantly higher accuracy, in the iso-data scenario where both
the models are shown 8 video samples per class. In contrast,
the efficiency improves extensively to 28.5× in the iso-accuracy
scenario wherein the reservoir still uses 8 video samples per class
(808 total videos), while the VGG-16 model requires the entire
training dataset (9,537 total videos) during training. Comparing
with the models that include temporal information, our reservoir
(10K-10% connectivity), although with lower accuracy, continues
to yield significantly higher benefits of approximately 54× and
7× as compared to Two-stream architecture and Temporal
Convolutional network, respectively, on account of being trained
on limited data. However, in limited training example scenario,
the reservoir (81.3% accuracy) continues to outperform an LSTM
based machine learning model (67% accuracy) while requiring
lesser training data. It is worth mentioning that our reservoir
due to the inherent temporal processing capability requires
only 30 epochs for training. On the other hand, the spatial
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FIGURE 11 | Accuracy and Efficiency comparison with state-of-the-art recognition models. Resource Utilization (B) is the product of Number of Parameters ×

Number of Data Examples, where B denotes billion. The model efficiency is calculated by normalizing the net resource utilization of each model against our reservoir

model (10K–10% connectivity). Full Training (in column corresponding to # Training Videos) denotes the entire training dataset that comprises of 9,537 total videos

across 101 classes.

VGG-16 model needs 250 epochs. As the number of epochs
required for training increase, the overall training cost (can be
defined as, Number of Epochs × Resource Utilization) would
consequently increase. This further ascertains the potential of
reservoir computing for temporal data processing. Note, in terms
of inference time, spiking networks (such as our reservoir) unlike
deep learning models will have higher latency as the reservoir
has to process each test video input for the entire simulation
time period (300 ms in our case) before we monitor the output
at the readout neurons. However, spiking networks owing to
the inherent sparse event driven activity will be more power-
efficient than their non-spiking (or standard DLN) counterparts.
Essentially, a large part of the spiking network (in terms of
activity) is idle at any given time instant that makes it a low
power option in comparison to non-spiking models where each
and every unit is active throughout the testing/inference period.

4. DISCUSSION

In this paper, we demonstrated the effectiveness of a spiking-
based reservoir computing architecture for learning from
limited video examples on UCF101 action recognition task.
We adopted the Driven/Autonomous reservoir construction
approach originally proposed for neuroscientific use and gave it
a new dimension to perform multi input-output transformation
for practical recognition tasks. In fact, the D/A approach opens
up novel possibilities for multi-modal recognition. For instance,

consider a 5-class face recognition scenario. Here, the driven
network is trained to produce 5 different desired activity. The
auto models derived from the driven network will process the
facial data to perform classification. Now, the same driven model
can also be used to derive autonomous models that will work on,
say voice data. Combining the output results across an ensemble
of autonomous models will boost the overall confidence of
classification. Apart from performance, the D/A model also has
several hardware oriented advantages. Besides sparse power-
efficient spike communication, the reservoir internal topology
across all autonomous models for a particular problem remains
equivalent. This provides a huge advantage of reusability of
network structures while scaling from one task to another.

Our analysis using eigenvalue spectra results on the reservoir
provide a key insight about D/A based reservoir construction
such that the complex dynamics can converge to fixed memory
states. We believe that this internal stabilization enables it
to generalize its memory from a few action signatures. We
also compared our reservoir framework with state-of-the-art
models and reported the cost/accuracy benefits gained from our
model. We would like to note that our work delivers a new
benchmark for action recognition from limited training videos
in spiking scenario. We believe that we can further improve
the accuracy with our proposed approach by employing better
input encoding techniques. The scan-based filtering approach
discussed in this paper does not account for depth variations
and is susceptible to extreme spatial/rotational variation. In fact,
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we observe that our reservoir model yields higher accuracy for
classes withmore consistent action signatures and finds it difficult
to recognize classes with more variations in movement (refer
to Figure S1 for action specific accuracies). Using an adequate
spike processing technique (encompassing depth based filtering,
motion based tracking or a fusion of these) will be key to
achieving improved accuracy. Another intriguing possibility is
to combine our spike based model that can rapidly recognize
simpler and repeatable actions (e.g., GolfSwing) with minimal
samples for training with more other DLN models for those
actions that have several variations (e.g., Knitting) or the actions
that appear different dependent on the view point or both.
We are also studying the extension of our SNN model to a
hierarchical model that could possibly capture more complex
and subtle aspects of the spatio-temporal signatures in these
actions. Further, we would like to mention the state-of-the-
art reservoir based techniques (Norton and Ventura, 2010; Roy
and Basu, 2016; Panda and Roy, 2017) that rearrange/learn
the connections within the reservoir, in addition to training
the reservoir to readout connections, to yield a network that
performs better than a randomly generated reservoir. Our
D/A based reservoir construction approach provides a simpler
avenue (without synaptic plasticity within the reservoir) to build
functional spiking models that yield competitive accuracy with
lesser training complexity. However, combining the separation
driven/structural plasticity mechanisms from Roy and Basu
(2016), Norton and Ventura (2010), and Panda and Roy (2017)
with the D/A approach is a promising direction of future
research. The nature and mode of action of such mechanisms
might help us replace the least-squares adjustment of synaptic
weights in the driven model with more biophysically realistic
learning mechanisms.

Finally, our reservoir model, although biologically inspired,
only has excitatory components. The brain’s recurrent circuitry
consists of both excitatory and inhibitory neurons that operate
in a balanced regime giving it the staggering ability to make
sense of a complex and ever-changing world in the most
energy-efficient manner (Herculano-Houzel, 2012). In the future,
we will concentrate on incorporating the inhibitory scheme
that will further augment the sparseness in reservoir activity

thereby improving the overall performance. An interesting line
of research in this regard can be found here (Srinivasa and Cho,

2014; Brendel et al., 2017). Although there have been multiple
efforts in the spiking domain exploring hierarchical feedforward
and reservoir architectures with biologically plausible notions,
most of them have been focused on static images (and some
voice recognition) that use the entire training dataset to yield
reasonable results (Masquelier and Thorpe, 2007; Norton and
Ventura, 2010; Diehl et al., 2015; Kheradpisheh et al., 2016; Panda
and Roy, 2016; Roy and Basu, 2016). To that effect, this work
provides a new perspective on the power of temporal processing
for rapid recognition in cognitive applications using spiking
networks. In fact, we are currently exploring the use of this model
for learning at the edge (such as cell phones and sensors where
energy is of paramount importance) using a recently developed
neural chip called the Loihi (Morris, 2017) that enables energy
efficient on-chip spike timing based learning. We believe that
results from this work could be leveraged to enable Loihi based
applications such as video analytics, video annotation and rapid
searches for actions in video databases.
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