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A hybrid walking neuroprosthesis that combines functional electrical stimulation (FES)

with a powered lower limb exoskeleton can be used to restore walking in persons with

paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered

exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid

combination has a potential to lower power consumption and reduce actuator size in

the powered exoskeleton. Its control design, however, must overcome the challenges

of actuator redundancy due to the combined use of FES and electric motor. Further,

dynamic disturbances such as electromechanical delay (EMD) and muscle fatigue must

be considered during the control design process. This ensures stability and control

performance despite disparate dynamics of FES and electric motor. In this paper, a

general framework to coordinate FES of multiple gait-governing muscles with electric

motors is presented. A muscle synergy-inspired control framework is used to derive the

controller and is motivated mainly to address the actuator redundancy issue. Dynamic

postural synergies between FES of the muscles and the electric motors were artificially

generated through optimizations and result in key dynamic postures when activated.

These synergies were used in the feedforward path of the control system. A dynamic

surface control technique, modified with a delay compensation term, is used as the

feedback controller to address model uncertainty, the cascaded muscle activation

dynamics, and EMD. To address muscle fatigue, the stimulation levels in the feedforward

path were gradually increased based on a model-based fatigue estimate. A Lyapunov-

based stability approach was used to derive the controller and guarantee its stability. The

synergy-based controller was demonstrated experimentally on an able-bodied subject

and person with an incomplete spinal cord injury.
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1. INTRODUCTION

Paraplegia in persons with spinal cord injury (SCI) impairs
walking function and lowers their quality of life. Functional
electrical stimulation (FES) and powered exoskeletons are two
potential technologies that aim to reanimate lower-limb function
in these persons. FES is an artificial application of electrical
potential across a muscle group to produce a desired limb
function and is prescribed as an intervention to rehabilitate or
restore gait function in individuals with mobility-impairements
(Peckham and Gray, 1996). FES was used for the first time
in the 1960s by Kantrowitz (1960) and Liberson et al. (1961)
to produce gait patterns and to correct drop foot, respectively.
Since then FES systems that use either percutaneous or surface
electrodes have been used to produce gait (Bajd et al., 1983;
Marsolais and Kobetic, 1987; Kralj and Bajd, 1989; Granat
et al., 1993; Kobetic et al., 1997; Hardin et al., 2007). Despite
this progress, the issue of rapid onset of FES-induced muscle
fatigue remains unresolved. To reduce the effects of muscle
fatigue, FES has been used in conjunction with a passive
orthosis (Solomonow et al., 1988; Goldfarb et al., 2003; Farris
et al., 2009; Kobetic et al., 2009). The addition of an orthosis
mitigates fatigue effects by lowering stimulation duty cycle of
FES because it can be used to support the user’s weight during
standing. However, the gait is still powered by FES during
the swing movement and is affected by FES-induced muscle
fatigue.

Powered exoskeletons by their virtue of generating high, rapid,
and reliable torque are actively being used to provide gait therapy
or restoration (Farris et al., 2011; Neuhaus et al., 2011; Strausser
and Kazerooni, 2011). Compared to sole FES-based walking
systems, however, they may have higher power consumption to
operate high torque motors. Bulky high torque motors and larger
batteries increase weight and reduce wearability. A hybrid device
that combines an FES system with a powered exoskeleton (del
Ama et al., 2012, 2014; Ha et al., 2012; Kirsch et al., 2013, 2014a)
can overcome these limitations by reducing power consumption
and actuator size in the powered exoskeleton. Moreover, the use
of FES provides therapeutic benefits to a user.

In Quintero et al. (2012), FES was combined with a powered
exoskeleton to control knee extension by using an adaptive
gain-based controller and a PD controller. In del Ama et al.
(2014) a cooperative knee joint controller was used in a hybrid
knee-ankle-foot exoskeleton. The approach was tested on able-
bodied subjects. A PID controller and an iterative learning
controller were used to stimulate the quadriceps muscle and
the knee flexors, respectively while a variable stiffness controller
computed the knee electricmotor stiffness based on themeasured
interaction torque between the user and the exoskeleton. In
Ha et al. (2015), another cooperative control approach was
used to coordinate hip motors with the stimulation of the
hamstrings and knee motors with the stimulation of quadriceps
muscle. The approach was tested on three subjects with SCI.
The motors were controlled using a high-bandwidth position
feedback and the FES control was modified by the difference
between the estimated muscle torque and the reference torque
profile.

In our previous research, a dynamic optimization method
was used to optimize a hybrid walking system (FES + passive
orthosis) (Sharma et al., 2014). However, the method computes
FES control inputs offline. Motivated to develop an optimization
method for a real-time implementation, in Kirsch et al. (2014b),
a linear model predictive control (MPC) method was proposed
to dynamically allocate control in a hybrid knee joint control
system composed of FES and an electric motor. However,
a linearized musculoskeletal model was used for the linear
MPC method, which may lose control performance outside the
region of linearization. Therefore a nonlinear model predictive
controller (NMPC) for an FES only case was developed in
Kirsch and Sharma (2017) to elicit knee extension in able-bodied
participants.

Aforementioned research papers in hybrid neuroprosthesis
control focused primarily on coordinating FES and the motors
at a single joint, even though some of these papers provided
pioneering evidence of its benefits.Motivated to provide a general
framework that coordinates stimulation of multiple muscles
and exoskeleton actuators at multiple joints, a muscle synergy-
inspired controllers were presented in Alibeji et al. (2015b,
2017). In Alibeji et al. (2015b), simulations of the synergy
inspired controller for single stepping motion were shown. This
controller was further improved to incorporate effects of fatigue
and electromechanical delay (EMD) in Alibeji et al. (2017). The
experimental evidence of the synergy-inspired controller was
provided using standing-cyclical experiments.

Motivated to extend the synergy-based controller, in this
paper, dynamic postural synergies were used in a control
scheme to generate walking with a hybrid exoskeleton. The
dynamic postural synergies are artificial synergies designed to
drive the system to key dynamic postures when activated.
Then sequential activation of these dynamic postural synergies
drive the system to produce gait motions. An adaptive update
law was used to modify the synergy activation profiles to
compensate for parametric changes in the model. A PID-
based feedback component was used to make the controller
robust to uncertainity and disturbances. The controller uses
dynamic surface control (DSC) (Alibeji et al., 2017) to avoid
the use of acceleration signals in the control design. This DSC
framework was also modified to include a delay compensation
term to account for the EMD. To counter muscle fatigue
effects, the control input terms were scaled by the fatigue
estimate’s inverse. In addition, a scaling factor gain is added
to the feedforward component in case there is mismatch
in model and subjects strength during experiments. Model-
based estimators were designed to estimate the fatigue and
activation state variables. The individual components of this
controller have been validated experimentally and through
simulations in Sharma et al. and Alibeji et al. and have
been shown to provide improved performance compared
with traditional PID controllers (Sharma et al., 2011; Alibeji
et al., 2015a,b, 2017). Finally, experiments were performed
on an able-bodied subject and a person with an incomplete
spinal cord injury to show the feasibility of coordinating
multiple muscles and electric motors with the synergy-inspired
controller.
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FIGURE 1 | A 4-link gait model is used to represent a subject taking a step in a hybrid neuroprosthesis while using a walker.

2. METHODS

2.1. Walking Hybrid Neuroprosthesis Model
Figure 1 represents the 4-linkmodel which is used formodeling a
hybrid neuroprosthesis and a walker. The 4-link model considers
a hybrid neuroprosthesis that uses electric motors and FES
via surface electrodes, which non-selectively apply an external
voltage potential to a muscle group to generate a contraction.
The stance leg is modeled as one rigid segment simulating the
locking of the knee joint and the ankle is fixed to the ground
because only half of the gait cycle is considered. The swing leg has
a thigh, shank, and foot segment but only the hip and knee joints
have active actuation. The knee joint uses 3 actuators: motor
and FES for flexion and extension of antagonistic muscle pairs.
The model only uses electric motors at the hip joints because
it can be difficult to stimulate the hip flexors and extensors, as
these muscle are not easily accessible using surface electrodes.
The trunk dynamics were neglected in the model because the use
of a walker allows the user to stabilize their truck. However, the
model assumes the trunk is fixed at the vertical orientation. The
walker is modeled as a moment acting on the stance leg to help
propel the body forward and also to keep it upright. The lower
limb model is given as:

M
(

q
)

q̈+ C(q, q̇)q̇+ G(q)+ f (q, q̇)+ Ŵd(t)+ Ŵext(t) = Ŵ, (1)

where q, q̇, q̈ ∈ R
4 are the angular positions, velocities, and

accelerations of the leg segments, respectively. In (1), M(q) ∈

R
4×4 is the combined inertia of the hybrid neuroprosthesis

and human limbs, C(q, q̇) ∈ R
4×4 is the centripetal/Coriolis

matrix, G(q) ∈ R
4 is the gravity vector, f (q, q̇) ∈ R

4 is
the viscoelastic vector term that models the passive muscle
dynamics, Ŵext ∈ R

4 is the torque generated at each joint

due to contact with the ground and walker moment (MW), and
Ŵd ∈ R

4 is any unmodeled effects or disturbances in the system.
The active torques at the joints are generated by including the
musculoskeletal dynamics due to FES (Popović et al., 1999), an
electric motor attached at each joint, and the moment generated
by the walker force. The torque term is defined as

Ŵ = b(q, q̇)φ(t)µ(t), (2)

whereµ(t) ∈ R
4 is the intermediate normalized activation vector

containing activation states for the actuators, and is defined as

µ ,

[

µkfx µkex µhm µkm

]T
,

where, µkfx ∈ R is knee flexor muscle activation, µkex ∈ R is

knee extensor muscle activation, µkm ∈ R is normalized current
for the knee motor and µhm ∈ R is normalized current for the
hip motor. In (2), φ(t) ∈ R

4×4 is the fatigue matrix that contains
the fatigue factor corresponding to each stimulated muscle and is
defined as

φ , diag
([

φkfx φkex 1 1
])

,

and b(q, q̇) ∈ R
4×4 is the control gain matrix defined as

b =









0 0 ψkfx 0

0 0 −ψkex 0
0 κh 0 0
0 0 κk 0









T

, (3)

In (3), ψifx , ψiex are the torque-length and torque-velocity
relationships of the flexor and extensor muscles and the
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FIGURE 2 | The dynamic postural synergies computed through the

optimizations and the dynamic postures they result in when activated.

conversion constants (current to torque) of the electric-motor
drives is κi.

The activation state is governed by the following first order
differential equation

µ̇ij = −ωijµij + ωijuij (t − τij ), (4)

where subscripts i = h, k stand for the hip and knee joints of
the swing leg and (j = fx, ex, m) for the type of actuator. In
(4), ωij ∈ R

+ is the actuator decay constant, uij is the normalized
input, and τij is the input delay.

The fatigue dynamics of the muscles, φij ∈ R is generated
from the first order differential equation (Riener et al., 1996)

φ̇ij =
1

Tfij

(φminij
− φij )µij +

1

Trij

(1− φij )(1− µij ), (5)

where φmin ∈ (0, 1) is the unknown minimum fatigue constant
of a muscle, and Tf , Tr ∈ R

+ are unknown time constants for
fatigue and recovery in the muscle, respectively. Because µ ∈

[umin, umax] for muscles, it can be shown that φ ∈ [φmin, 1],
where φ = 1 when the muscle is fully rested, and φ = φmin when
the muscle is fully fatigued. The fatigue state for the motors in the
fatigue matrix are set to one because the motors do not fatigue.

The stimulation applied to the muscle is bounded by two
stimulation levels vmin and vmax to avoid under/over stimulating
the muscles. This allows the normalization of the input function
u(t) ∈ R

4, which is modeled by a piecewise linear recruitment
curve (Schauer et al., 2005), as

u(t) = sat[v(t)] =











0 v < vmin
v(t)−vmin
vmax−vmin

vmin ≤ v ≤ vmax

1 v > vmax

(6)

where vmin, vmax ∈ R
4 are the minimum/maximum input

magnitudes for each actuator (stimulation or motor) and v(t) ∈
R
4 is the input to the system. Based on (4) and (6), a linear

differential inequality can be developed to show that µ ∈

[umin, umax]. The umin, umax values are [0, 1] for muscles because
they are unidirectional and [−1, 1] for electric motors because
they are bidirectional actuators.

2.2. Dynamic Postural Synergies
The purpose of muscle synergies in human motor control is
to reduce the complexity of the system by reducing the input
space and redundant DOF. In this paper, an alternative form
of synergies called dynamic postural synergies are introduced.
Unlike othermethods which identify synergies by using statistical
analysis tools on collected EMG data or simulation results, this
form of synergies is computed independently to create a reduced
input space for a system that can be used to more efficiently
control a system. The dynamic postural synergies generated in
this paper are artificial synergies that are designed to drive the
system to key dynamic postures, which are defined as the joint
positions at any moment during a movement pattern. Then
motions such as walking can be segmented into a finite number
of dynamic postures and a dynamic postural synergy can be
computed for each dynamic posture. These artificial synergies
can then be activated sequentially to drive the system from one
dynamic posture to the next to create the original motion.

In Bajd et al. (1983) rudimentary gait was recreated in
subjects with SCI by stimulating the peroneal nerve and then the
quadriceps to produce two key dynamic postures; the withdrawal
reflex and knee extension. The withdrawal reflex is a spinal
reflex that protects the body from damaging stimuli and can
be triggered by activating the pain receptors at the bottom of
the foot or stimulating the peroneal nerve. The reflex consists
of the flexing of the hip, knee, and ankle joints to immediately
lift the leg off of the ground or the source of the pain. In
this work, the artificial synergies, defined as W ∈ R

4×2, that
produce these dynamic postures were computed using dynamic
optimizations. Then, another set of dynamic optimizations were
used to find the optimal activation of these artificial synergies,
defined as cd ∈ R

2, to reproduce gait trajectories, qd. Below, the
dynamics, excluding the fatigue factor φ, are written in terms of
the kinematic trajectories (qd) and the activation state generated
from the dynamic postural synergies and their optimal activation
(i.e., µd = Wcd) as

M(qd)q̈d + C(qd, q̇d)q̇d + G(qd)+ f (qd, q̇d) (7)

≡ b(qd, q̇d)µd(t)− Ŵ
∗
ext ,

where Ŵ∗
ext is the ground reaction forces and walker moment,

MW , resulting from the optimal trajectories (qd).

2.2.1. Computing the Synergies
The dynamic postural synergies are computed using
optimizations that use the 4-link walking model in (1). The
4-link walking model was modified to reflect the hybrid
neuroprosthesis testbed, therefore, only the hip motors, knee
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FIGURE 3 | (A) The dynamic postural synergies (a) and their activation to produce a half step (b), (B) the joint trajectories they produce, (C) the gait sequence for the

half step.

motors, and the antagonistic muscle pairs of the knee joint
are used. The parameters used for this model were taken from
Popović et al. (1999) for an able bodied person. Optimizations
were conducted to compute the synergies that distribute the
effort to the 4 inputs that minimize the error between the desired
dynamic posture and the resulting motion. The joint angles
for the desired dynamic postures were taken from the optimal
trajectories in Alibeji et al. (2015b). For these optimizations, the
convex cost function’s objective was to minimize the dynamic
posture’s position error and minimize the activation states of the
system and is defined as

min
W

5 =

tf
∫

t0

(

E1(t)
TQ1E1(t)+ µ(t)

TR1µ(t)
)

dt (8)

subject to: M
(

q
)

q̈+ C(q, q̇)q̇+ G(q)+ f (q, q̇)

= b(q, q̇)µ− Ŵext ,

µ ∈ [µl,µu]

where dynamic posture’s position error is defined as E1 =

qdp − q and qdp is the joint positions for the desired dynamic

posture. In (8), Q1 ∈ R
4×4 is a weight on the position

tracking error, the matrix R1 ∈ R
4×4 is a positive-definite

matrix of weights on the activation vector, and the lower and

upper bound on the activations are defined as µl and µu ∈

R
4. Based on the selection of the input weight matrix R1,

the distribution of the effort from the motors or stimulation
can be emphasized. These optimizations were performed by
using Matlab’s fmincon function (MathWorks, Inc., USA). The
dynamic postural synergies computed through the optimization
and the postures they produce; withdrawal reflex and knee
extension, can be seen in Figure 2. The first dynamic postural
synergy activates the hip motor to produce a moment at the hip
in the flexion direction, and activates the knee motor and knee
flexor to produce a moment at the knee in the flexion direction,
to produce the withdrawal reflex. The second dynamic postural
synergy activates the hip motor to produce a smaller moment at
that hip tomaintain the hip joint’s position, and activates the knee
motor and knee extensor to produce amoment at the knee to fully
extend the knee joint.

2.2.2. Computing the Synergies’ Activation
Unlike the synergies extracted through statistical methods, such
as principal component analysis in Alibeji et al. (2015b), these
dynamic postural synergies were determined using separate
optimizations prior to these dynamic optimizations. Using these
already computed dynamic postural synergies, these dynamic
optimizations now compute the optimal synergies’ activations in
order to complete a step.
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FIGURE 4 | (A) The dynamic postural synergies (a) and their activation to produce a full step (b), (B) the joint trajectories they produce, (C) the gait sequence for the

full step.

In order to consistently and easily maintain the initial
condition during experimentation, the subject will start the gait
process while standing upright. Therefore, two sets of dynamic
optimizations are computed; one for a half step (0.2 meters) and
the second for a full step (0.4 meters).

These dynamic optimizations also include the double support
phase (DSP) part of the gait sequence, i.e, when the body is
supported by both legs. During the DSP the load transfers from
the stance leg to the swing leg and the legs switch roles, i.e., the
stance leg from the previous step becomes the swing leg for the
next step and vice versa. To include the DSP, the swing leg has
to the reach the desired position, where the swing leg makes
contact with the ground, in the allotted time, tstep = 1 s., and
maintain that position, i.e., maintain contact with the ground, for
a predetermined duration, tDSP = 0.5 s. For these optimizations,
the convex cost function’s objective was to minimize the synergy
activation for the full duration and the final position error from
t = tstep to t = tDSP. The cost function is defined as

min
c,Mw

5 =

tf
∫

t0

c(t)TR2c(t)dt +

tf
∫

tstep

E2(t)
TQ2E2(t)dt

+5extra (9)

subject to: c ∈ [cl, cu]

where final position error is defined as E = qf − q, qf is the final

joint positions for a complete step, R2 ∈ R
2×2 is the positive-

definite weight matrix for the synergy activation, Q2 ∈ R
4×4 is

the positive-definite weight matrix for the the joint angle errors,
and the lower and upper bound on the synergy activations are
defined as cl and cu ∈ R

2. In the cost function t0 is the time
in which the step begins and tf is the final time for the step
and is defined as tf = tstep + tDSP. The last variable in the cost
function,5extra is an additional cost that is activated when certain
undesirable events occur in the solution, e.g., the foot drags on the
ground or the swing leg overshoots.

These optimizations were performed inMatlab using a genetic
algorithm particle swarm optimization (GAPSO) method to
minimize the cost function. The dynamic postural synergies,
their activations computed through the optimizations, the joint
trajectories they produce, and the gait sequence for the half step
and full step can be seen in Figures 3, 4, respectively. From
the gait sequences, it can be observed that the optimizations
computed the synergy activations to complete the step, whether
half or full, and maintained contact with the ground throughout
the DSP while interacting with the ground reaction model. In
addition, it can be seen that the dynamic postural synergies are
activated in sequence as intended, i.e., for the first 0.5 s. primarily
the first synergy is activated and then for the remainder of time
primarily the second synergy is activated. Even though the model
completes the step by around 1 s. the second synergy is still
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FIGURE 5 | The control schematic for the implementation of the overall controller.

FIGURE 6 | The Finite State Machine determines the desired trajectories and synergy activations based on what state is activated; either half right step, full left step,

or full right step. Then two controllers are used, one for each leg, which work in tandem to produce gait.

activated for the remainder of the time; this is to keep the knee
from buckling since both legs are supporting the body during this
phase.

Note that for the full step results, as the swing leg leaves the
ground, the stance leg is tilted posteriorly which is not typical
for normal gait. This is because this system does not currently
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FIGURE 7 | The walking hybrid neuroprosthesis and the gait support device

used in the experimental demonstration of the synergy-based control system.

This system uses an electric motor at the hip and knee joints of each leg and

FES of the hamstrings and quadriceps muscle group of each leg.

include actuation at the ankle joints to produce push off. During
normal gait the first part of the gait sequence is push off, as a result
of the plantar-flexion of the ankle, to propel the body forward.
The differences between gait with and without push off can be
seen when comparing these results to the walking simulation
results in Alibeji et al. (2015b) where ankle actuation is present. If
the push off phase is to be included in this system, it would have
its own dynamic postural synergy.

2.3. Control Development and Stability
Analysis
2.3.1. Control Objective
The control objective is to track a continuously differentiable
desired trajectory qd ∈ R

4. The tracking error, e ∈ R
4, is defined

as

e , qd − q. (10)

To facilitate the control design and stability analysis, the auxiliary
error signals e1(t), r(t) ∈ R

4 are defined as

e1 , ė0 + α0e0, (11)

r , ė1 + α1e1, (12)

where α0, α1 ∈ R
+ are control gains and e0(t) ∈ R

4 is an
auxiliary signal defined as Downey et al. (2015)

e0 ,

∫ t

t0

e(s)ds, (13)

in order to incorporate integral control. To simplify the
derivations, the following notations are used: (1) the time
dependence of a function is dropped [e.g., e(t) → e] and (2) a
signal delayed by τ is notated as a subscript [e.g., u(t− τ ) → uτ ].
In addition, to facilitate the control development and stability
analysis, the following assumptions were made.

Assumption 1: Only motion in the sagittal plane is
considered.

Assumption 2: The unmodeled effects or disturbances, τd, are
bounded as |τd| ≤ ǫ1 where ǫ1 ∈ R

+ is a constant.
Assumption 3: The dynamic postural synergies, W, are

bounded constants and their activation, cd, are bounded vectors.
Assumption 4: The desired trajectory, qd ∈ R

n, and its
derivatives, q̇d, q̈d ∈ R

n, are bounded.

2.3.2. Closed-Loop Error System
The open-loop error is derived by multiplying the time derivative
of (12) withM(q) and substituting the dynamics in (1) and (2) to
obtain

Mṙ = Mq̈d + Cq̇+ G+ f + d − bφµ+Mα0ë0 +Mα1ė1. (14)

where d is the lumped disturbances and is defined as d = Ŵd +

Ŵext . This expression can be written in the form

Mṙ = −Cr + Ñ + Nd + d − bφµ− e1 − bdφeI , (15)

where bd = b(qd, q̇d), eI ∈ R
4, is defined as eIij ,

∫ t
t−τij

uij (θ)dθ

for each actuator and Ñ ∈ R
4, is defined as Ñ , N − Nd. The

auxiliary signals N(q, q̇, e, ė, eI , t) and Nd(t) are defined as

N , Mq̈d + C
(

q̇d + (α0 + α1) e1 − α
2
0e0

)

+ G+ f

+Mα0
(

r − (α1 + α0) e1 + α
2
0e0

)

+Mα1 (r − α1e1)+ e1 + bdφeI ,

Nd , M(qd)q̈d + C(qd, q̇d)q̇d + G(qd)+ f (qd, q̇d).

The term Ñ in (15) can be upper bounded by using the Mean
Value Theorem as

∥

∥Ñ
∥

∥ ≤ ρ1(‖z‖) ‖z‖ , (16)

where ρ1(‖z‖) ∈ R is a positive monotonic bounded function
and z ∈ R

16 is defined as

z = [ eT0 eT1 rT eTI ]T .

Note that the auxiliary signal Nd is equal to the left hand side
of the desired muscle dynamics in (7). Therefore, (15) can be
rewritten as

Mṙ = −Cr + Ñ + D+ bdµd − bφµ− e1 − bdφeI , (17)
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FIGURE 8 | (A) The desired and actual joint angles of the right and left hip and knee joints resulting from using the developed synergy-based DSC/DC control system

in conjunction with the FSM on a subject with an incomplete SCI. The shaded regions indicate which state of the FSM is active at that time. (B) A sequence of photos

illustrating the gait produce during the experiments. The depicted individual provided written and informed consent for the publication of this image.

where D = d − Ŵ∗
ext . After adding and subtracting the terms

bdφ̂µ̄, bdφµ̄, bdφµ̂, bdφµ, and bdφµf where µ̂ ∈ R
4 and φ̂ ∈

R
4×4 are estimates of the activation state and the fatigue state,

µ̄ ∈ R
4 is the desired activation to be later defined, and µf ∈ R

4

is a filtered desired activation, and rearranging the terms, (17)
becomes

Mṙ =− Cr + bdφS+ bdφy+ Ñ + D+ bdµd + b̃φµ (18)

+ bdφµ̃+ bdφ̃µ̄− bdφ̂µ̄− e1,

where b̃ ∈ R
4×4 is defined as b̃ , bd − b, φ̃ ∈ R

4×4 is defined as
φ̃ , φ̂ − φ, and µ̃ ∈ R

4 is defined as µ̃ , µ̂− µ.
The estimates of the activation and fatigue states in (4) and (5)

are generated through the following dynamics

˙̂µij = −ŵij µ̂ij + ŵijuij (t − τij ), (19)

˙̂
φkj =

1

T̂fkj

(φ̂minkj
− φ̂kj )µ̂kj +

1

T̂rkj

(1− φ̂kj )(1− µ̂kj ), (20)

where ŵij , T̂fkj
, T̂rkj

, and φ̂minkj
are bounded estimates of the real

parameters that can be determined through system identification

experiments (Kirsch, 2016; Alibeji et al., 2017). Note that these
estimators are governed by first-order differential equations, thus
the estimates are bounded as µ̂ ∈ [umin, umax] and φ̂ ∈ [φ̂min, 1].

In (18), the surface error, S ∈ R
4, is defined as

S , µf − µ̂− eI . (21)

The delay compensation term, eI , is added to the surface error,
S, to deal with the input delay in the actuator dynamics. The
boundary layer error, y ∈ R

4, for µ is defined as

y , µ̄− µf . (22)

The filtered desired activation µf is obtained by passing µ̄
through a low-pass filter such as

ζf µ̇f + µf = µ̄; µf (0) = µ̄(0), (23)

where ζf ∈ R
+ is the low-pass filter time constant.

To felicitate the control design the desired activation, µ̄, is
defined as

µ̄ = φ̂−1
[

ζsfWĉ+ kr
]

, (24)
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FIGURE 9 | The desired feedforward component of µ̄ for all of the system inputs. This component is generated from the dynamic postural synergies and their

activation after adaptation and with the scaling up from the fatigue estimate and the scaling factor control gain.

where ĉ ∈ R
2 is the estimate of cd, ζsf ∈ R

4×4 is a control gain

matrix and k ∈ R
4×4 is the feedback gain matrix that is chosen to

only influence the electric motors.
In µ̄, the feedforward component, ζsfWĉ, and the feedback

component, kr, are scaled by the inverse of the fatigue estimate.
This feature is included in the controller so that as a muscle
fatigues, the stimulation input to that muscle increases gradually
to counteract the effects of the fatigue. The estimate of the synergy
activation updates according to the following update law with the
projection algorithm (Dixon et al., 2003).

˙̂c = proj
(

ċd + FWTζTsf b
T
d r

)

, (25)

where F ∈ R
2×2 is a symmetric positive definite gain matrix.

After using (24), (18) becomes

Mṙ =− Cr + bdφS+ bdφy+ Ñ + D+ bdζsfWc̃ (26)

+ bd(I − ζsf )Wcd + b̃φµ+ bdφµ̃

+ bdφ̃φ̂
−1ζsfWĉ+ bdφ̃φ̂

−1kr − bdkr − e1,

where I is the identity matrix and c̃ ∈ R
2 is defined as

c̃ = cd − ĉ.

Using the Mean Value Theorem, Assumption 4, and the property
of projection algorithm the following terms can be bounded as

∥

∥

∥
b̃φµ

∥

∥

∥
≤ ρ2(‖z‖) ‖z‖ ,

∥

∥bd
∥

∥ ≤ ζ , ‖D‖ ≤ ǫ1 (27)

∥

∥bd(I − ζsf )Wcd
∥

∥ ≤ ǫ2,
∥

∥

∥
bdφ̃φ̂

−1ζsfWĉ
∥

∥

∥
≤ ǫ3

where ρ2(‖z‖) ∈ R is a positive monotonically increasing
bounded function and ǫ1, ǫ2, ǫ3, ζ ∈ R

+ are constants.
The surface error dynamics are derived by taking the time

derivative of (21) and using (19), resulting in

Ṡ = µ̇f + ŵµ̂− ŵuτ − (u− uτ ) . (28)

Based on the subsequent stability analysis, the normalized input
u is designed as

u = βS+ µ̇f , (29)

where β ∈ R
+ is a control gain.

Therefore, the closed-loop surface error dynamics can be
written as

Ṡ = −βS+ ŵµ̂+ (1− ŵ)uτ . (30)

The boundary layer error dynamics are found by taking the time
derivative of (22) and using (23), which results in

ẏ = η −
y

ζf
, (31)

where η(e, r, S, y, t) is a continuous nonlinear function defined as

η = d
dt [µ̄] . Based on the definition of u in (29), the control law v

is designed as

v =

[

βS+
φ̂−1

[

ζsfWĉ+ kr
]

− µf

ζf
− umin

]

△v

△u
+ vmin, (32)

where △v = vmax − vmin and △u = umax − umin. The
desired feedback activation, kr, defined in (24) can be expressed
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FIGURE 10 | The desired feedback component of µ̄ which is only applied to the four motors at the hip and knee joints of each leg. It can be observed that they

majority of the effort is occurring during the swing phase of each leg.

FIGURE 11 | The fatigue estimates for the knee flexors and extensors of the right leg. The fatigue estimate ranges from 1 to φmin, which corresponds to no fatigue to

fully fatigued, respectively. It can be observed that the fatigue occurs during the swing phase, and the muscles recover during the stance phase since there is no

stimulation.

in standard PID form as KPe + KDė + KI

∫ t
0 e(θ)dθ where

KP, KD, KI ∈ R
+ are the proportional, derivative, and integral

control gains and are defined as KP = k(α0 + α1), KD = k, and
KI = kα0α1. The control schematic for the implementation of
the overall controller is represented in Figure 5.

2.4. Finite State Machine
The hybrid neuroprosthesis used for experimental
demonstration uses 4 electric motors; one on each hip joint
and knee joint, and 4 stimulation channels; the quadriceps and

hamstrings of each leg. The hybrid neuroprosthesis is controlled
using two of the adaptive synergy-based PID-DSC controller
with delay compensation working in tandem to produce gait,
one for each leg. The Finite State Machine, shown in Figure 6,
is used to determine which trajectories and synergy activations
of the gait sequence are used; i.e., either half right step (State 1),
full left step (State 2), or full right step (State 3). In between the
active states; State 1–3, the standby state (State 0) is activated by
default, in which the motors at the joints hold their positions and
the synergy activations are set to zero. When a leg is activated
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FIGURE 12 | The inputs to all of the system inputs, including feedback and feedforward, for this experimental trial. Note that there is no stimulation occurring during

the stance phase of each leg.

in a state, it becomes the swing leg and its counterpart becomes
the stance leg. When a leg becomes the stance leg the controller
only uses feedback to track the stance hip trajectory and hold
the position of the knee joint. The progression of the FSM is
determined by the progression button, in which the first time it
is pressed State 1 is activated, then each time it is pressed after
that the even transitions activate State 2 and the odd transitions
activate State 3. In addition to the progression button, there is a
safety button which turns off all inputs when pressed.

2.5. Experimental Demonstration
The hybrid neuroprosthesis testbed, shown in Figure 7, can
be broken down into four primary components: an adjustable
orthosis, electric motors, a stimulation unit, and an assistive
support device. The orthosis is designed to be adjustable to
comfortably fit a wide variety of body types while maintaining
the alignment of the joints between the orthosis and subject.
Custom motor mount brackets were fabricated to attach the
electric motors at the joints of the orthosis. The electric motors
(Harmonic Drive LLC, MA, USA) at the hip joints can generate a
maximum torque of 50 Nm. The knee electric motor were EC90
brushless motors (Maxon Motor, Switzerland) combined with a
Harmonic Gear CSD-25-100-2UH (Harmonic Drive LLC, MA,
USA). The knee motor can generate a maximum torque of 56
Nm. A RehaStim 8-channel stimulator (Hasomed Inc., DE) was
used to generate the current modulated biphasic pulse trains used
to elicit muscle contractions. A set of transcutaneous electrodes
was placed on the quadriceps and hamstring muscle groups. The
current modulated pulse train with a frequency of 35Hz and
a 400 µs pulse width is typically used for all experiments. An
assistive support device, called an E-Pacter (Rifton, USA), is used
for the experiments to help the subjects maintain their balance
and propel themselves forward. An xPC target (SpeedGoat, CH)

was used to interface with the different sensors and motor drivers
and implement the controller in real-time at 1 kHz. The control
algorithms were coded in Simulink (MathWorks Inc, USA)
and used Simulink’s (MathWorks Inc, USA) real-time toolbox
software running on a Windows machine (Intel Xeon 3.10 GHz
processor). The hybrid neuroprosthesis is controlled using a
button to control the progression of gait and an emergency stop
button to stop all the inputs.

The overall control system was experimentally demonstrated
on an able-bodied subject (male; 27 years old, height: 1.80 m,
weight: 90 kg) and a person with an incomplete SCI (male; 41
years old, height 1.70 m, weight 70 kg, injury: T10 AIS A). For
these experiments it is assumed that the behavior of the right and
left leg are similar, therefore, both States 2 and 3 use the same
synergies and activations computed in the previous sections. The
optimizations to compute the synergies, their activations, and
the trajectories they produce were performed using the subject’s
height and weight, but the model used the muscle parameters
reported in Popović et al. (1999) for an able-bodied subject and
person with SCI, respectively. If this system is to be implemented
on a subject with a condition in which a injury/disorder in which
one of his or her leg’s response is much different than his or her
other leg such as in hemiplegia due to a stroke, it would probably
be more beneficial to use multiple subject-specific models, one
for each leg.

Prior to any experimentation, an approval from the
Institutional Review Board at the University of Pittsburgh was
obtained. The consent procedure for human participants was
written and informed. During the experiments, the subject was
instructed to relax and refrain from voluntarily interfering with
the hybrid exoskeleton. The estimates of the EMD, activation
time constants, and fatigue/recovery rates were estimated in
system identification experiments in a leg extension machine and
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TABLE 1 | The root mean squared of the input voltage to the motors.

Subject Joint Synergy-based Controller RISE

RMSE

[deg.]

RMS V

[V]

RMSE

[deg.]

RMSV

[V]

Incomplete SCI Right Hip 1.35 2.25 1.68 2.49

Right Knee 1.68 3.10 3.52 3.36

Able Bodied Right Hip 1.56 3.22 2.70 3.39

Right Knee 0.92 2.50 3.03 3.70

Note that the Synergy-based controller uses less motor input which means less power

consumption and results in better tracking performance.

assumed to be the same for both legs. During the experiments,
the subjects used a gait assistive device called the E-Pacer
(Rifton, USA) to help support and propel themselves forward.
The progression and safety buttons were operated by a separate
user and were used to control the FSM. The experiments
were run for 6 steps, including the half right step. In order
to compare the difference in power consumption between a
powered exoskeleton, just motors, and a hybrid neuroprosthesis,
motors and FES, the testbed was tested with two different
control systems. For the first control system for the hybrid
neuroprosthesis configuration, the adaptive synergy-based PID-
DSC controller was used to govern the input to the FES
and motors. For the second control system for the powered
exoskeleton configuration, a Robust Integral of the Sign of the
Error (RISE) (Xian et al., 2004) controller was used to govern
the input to the motors. This controller was used for this case
because it contains a unique integral signum term which can
accommodate for sufficiently smooth bounded disturbances like
the friction in the harmonic drive motors used in this testbed.

3. RESULTS

The experimental results from the subject with the incomplete
SCI can be seen in Figures 8–12. The tracking performance
for the both right and left hip and knee joints can be seen
in Figure 8A. Figure 8B shows a sequence of frames from the
video footage illustrating the gait produced using the control
system1. The root mean squared errors (RMSE) and root mean
squared voltages (RMSV) for the hip and knee joints for the
right leg are presented in Table 1. From the results it can be
seen that not only did the synergy-based controller result in
better tracking performance, but it did so while consuming
less energy compared to the RISE controller. In addition, the
hybrid neuroprosthesis testbed, when using the synergy-based
controller, also includes theraputic health benefits due to the
use of FES. The desired feedforward component, φ̂−1ζsfWĉ,
and desired feedback component, kr, in µ̄ can be seen in
Figures 9, 10. The contribution of the inverse of the fatigue
estimate scaling factor is not apparent in the experimental results
as there is little change in the desired feedfoward activations,

1The video footage of testing of the dynamic postural synergy-based controller on

a subject with an incomplete SCI can be seen in the Supplementary Files.

as seen in Figure 9. This is due to the small changes in the
estimate of the fatigue, as seen in Figure 11. This is due to the
fatigue parameters identified for the subject with an incomplete
SCI. Since his injury level is incomplete, his muscles had not
atrophied and resistant to fatigue. However, for the subjects
with advanced muscle atrophy as a result of their complete SCI,
muscle fatigue would occur more rapidly, hence this is still a
practical feature in the controller. The actual input signals for
all 8 inputs of the system can be seen in Figure 12. It can be
observed, that when a leg takes the role of the stance leg, the
synergy activation is zero which results in zero stimulation and
zero desired feedforward motor activation. Hence, only feedback
control of the motors is used to lock the knee joint of the stance
leg. From the inputs, we can see that the timing of the stimulation
is sensible as for each step the flexors is activated first to produce
the withdrawal reflex and then the extensors to fully extend the
knee.

4. DISCUSSION

As researchers, we often analyze biological systems to devise
innovative solutions to real world applications. To overcome
the challenge of actuator redundancy, we studied how scientists
believed the human body solves its high degree of freedom and
actuator redundancy problem to achieve fluid and coordinated
movements such as gait. It is hypothesized that the human central
nervous system (CNS) activates multiple muscle fibers in groups
or patterns called muscle synergies, or motor primitives, to
efficiently perform complex movements such as reaching, hand
manipulations, or posture control (Sherrington, 1910; d‘Avella
and Tresch, 2001; Ting, 2007; Vinjamuri, 2008; Vinjamuri et al.,
2010). The benifit of synergies is their function of transforming a
higher dimensional and complex systems into lower dimensional
and simpler systems that are easier to control (Tresch and Jarc,
2009). In Neptune et al. (2009), muscle synergies for human
locomotion were extracted and successfully applied to complex
human walking models to reproduce realistic gait motions. For
a more thorough literature review on synergies, readers are
referred to these references (Vinjamuri, 2008; Tresch and Jarc,
2009).

In this research, a synergy-based control system is used
to distribute the control effort to the multiple actuators of a
walking hybrid neuroprosthesis. This approach is inspired from
the human motor control concept of muscle synergies. In most
studies, muscle synergies are proposed as a basis employed
during human motor control and found by decomposing
recorded EMG signals (collected from multiple muscles) to
extract muscle synergies. Unlike these studies, in this paper
dynamic postural synergies are designed, using dynamic
optimizations, to be used as a basis for the control system for the
walking hybrid neuroprosthesis. This synergy design approach,
using optimizations to distribute the control effort among the
available actuators, offers multiple advantages and convenience
such as allowing for the incorporation of external inputs, i.e.,
electric motors and FES. Another benefit for this method of
designing dynamic postural synergies is the ease of adding
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additional restrictions on the synergies, i.e., no co-activation
or no negative stimulation. Based on the synergy principle,
fewer control signals are used to control multiple actuators in
a hybrid neuroprosthesis, therefore the use of synergies will
not only solve the actuator redundancy problem similarly to
how the body is hypothesized to do so, but it will do it in a
more computationally efficient way. However, there are still other
remaining challenges that could hamper the effectiveness of a
closed-loop synergy-based control system if not addressed. These
remaining challenges are EMD, actuator dynamics, and muscle
fatigue. Therefore, Lyapunov-based control design approaches
were used to derive this class of synergy-based controllers that
are robust to EMD and compensate for activation dynamics and
muscle fatigue. While the developed control system was capable
of reproducing gait, the finite state machine can still be scaled-up
to achieve motions other than gait such as sitting/standing and
ascending/descending.

5. CONCLUSION

In this paper, the adaptive synergy-based DSC controller is
developed and experimentally tested on an able-bodied subject
and person with an incomplete SCI using a walking hybrid
neuroprosthesis. This control system used dynamic postural
synergies designed to reproduce the key dynamic posture; the
withdrawal reflex and knee extension, which have been shown to
be able to reproduce gait. Dynamic optimizations were then used
to compute the optimal synergies’ activation to produce a half
step and full step. A finite state machine was developed to switch
between the trajectories and synergy activations depending on
three states; half right step, full right step, and full left step.
The control system then used two of the synergy-based DSC
controller, one for each leg, working in tandem to reproduce gait.
The overall control system was able to recreate gait using the
hybrid neuroprosthesis and the gait assistive device.
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