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Increasing evidence suggests that abnormally hyperphosphorylated tau plays a vital

role in the pathogenesis of Alzheimer’s disease (AD). Mitochondrial dysfunction also

has a recognized role in the pathophysiology of AD. In recent years, mitochondrial

dysfunction has been strongly associated with tau pathology in AD. Overexpression

of hyperphosphorylated and aggregated tau appears to damage the axonal transport,

leading to abnormal mitochondrial distribution. In addition, pathological tau impairs

mitochondrial dynamics by regulating mitochondrial fission/fusion proteins, and further

causes mitochondrial dysfunction and neuronal damage. Moreover, mitochondrial

dysfunction is also involved in promoting tau pathology in AD. In this article, we evaluate

the relationship between phosphorylated tau and mitochondrial dysfunction in AD.
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INTRODUCTION

To determine the physiopathologic mechanism of AD for effective prevention and treatment,
several modeling hypotheses have emerged, although the exact cause of AD is still unclear. Hardy
and Higgins (1992) first formulated the amyloid hypothesis in 1992, which was widely accepted
at the time but is much questioned now (Hardy and Selkoe, 2002). In the amyloid hypothesis,
amyloid precursor protein (APP) is cleaved by β and γ-secretases and produces amyloid beta 42
(Aβ42) fragments. Aβ42 fragments aggregate into insoluble extracellular fibrils of neuritic plaques
(NPs), and neurofibrillary tangles (NFTs) are subsequently formed. However, several molecular
and genetic abnormalities and inconsistent clinical correlations identified in some research cannot
be explained by this hypothesis. Furthermore, no new drug based on the amyloid hypothesis
has been approved over the past decade. Recently, another phase III clinical trial of Alzheimer’s
drug targeting Aβ was shuttered because the drug has no chance of benefiting AD patients.
Given the failures of the clinical trials based on the amyloid hypothesis, the tau hypothesis, an
alternative pathway, is now attracting increasing attention. It is well-known that NFTs, which
are composed primarily of hyperphosphorylated tau protein (Grundke-Iqbal et al., 1986; Nukina
and Ihara, 1986), have been proposed as the second pathological hallmark of AD. In addition,
increasing evidence suggests that abnormally hyperphosphorylated tau plays a vital role in the
pathogenesis of AD. Hyperphosphorylated tau can lead to microtubule dysfunction, impair axonal
transport of organelles includingmitochondria, and result in synaptic dysfunction (Ittner andGötz,
2011; Cai and Tammineni, 2017). Mitochondrial dysfunction has been indicated as an underlying
mechanism of AD pathophysiology. Accumulating evidence indicates a strong association of
tau pathology with mitochondrial dysfunction in AD (Eckert et al., 2014). Overexpression and
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hyperphosphorylation of tau appear to impair mitochondrial
axonal transportation, mitochondrial dynamics and function,
and finally neuronal health (Eckert et al., 2014). In this article, the
link between phosphorylated tau and mitochondrial dysfunction
in AD is evaluated.

TAU PROTEIN

Tau as a major microtubule-associated protein plays a significant
role in neuronal processes. In adult human brains, high
heterogeneity of the tau protein is apparent; there are six different
tau isoforms, all of which are derived from a single gene by
alternative mRNA splicing. The six isoforms of tau protein differ
from each other in the number of microtubule-binding domains
(3R/4R) (Lee et al., 1989) and in the presence or absence of
either one or two projection domains (0N/1N/2N). Between
the microtubule-binding domain and projection domain lies a
basic proline-rich region (155–242), which contains abundant
phosphorylation sites (Binder et al., 1985). The six isoforms
appear to be broadly functionally similar, but each is likely
to have precise, and to some extent distinctive, physiological
roles. These isoforms appear to be differentially expressed
during development. Normally, the 3R and 4R tau isoforms are
expressed in a one-to-one ratio in most regions of adult brains
(Ballatore et al., 2007).

The interaction of the proline-rich region of tau with the
microtubule-surface contributes to microtubule stabilization
(Amos, 2004). Phosphorylation as the most prominent post-
translational modification of tau plays an important role in the
dynamic equilibrium of tau with the microtubules (Arnold et al.,
1996; Liu et al., 2004; Mazanetz and Fischer, 2007). It is well
established that the serine/threonine-directed phosphorylation of
tau directly regulates the binding affinity of tau for microtubules
(Mazanetz and Fischer, 2007). The nonequilibrium of tau binding
to the microtubules results in aggregation and fibrillization of
tau and dysfunction of microtubules (Kuret et al., 2005). The
microtubule network plays an essential role in axonal transport.
It is likely that the resultant dysfunction of microtubules further
leads to abnormal axonal transport and synaptic dysfunction. By
modulating the microtubule network, tau has profound effects
on axonal transport, which allows signaling molecules, trophic
factors, and essential organelles including mitochondria and so
on, to travel along the axons. Thus, tau contributes to vital
structural and regulatory cellular functions.

TAU IMPAIRS MITOCHONDRIAL

TRANSPORT

To meet high energy demands and regulate calcium buffering
of neuronal cells, efficient delivery of mitochondria in
neurons is essential. The delivery of mitochondria is the
task of microtubules, which perform a “rail track” function.
Mitochondria are cargoes that are delivered by microtubule-
associated proteins, including tau, across axon into synapses
(Wang et al., 2015). Observations from studies of different
cellular and mice models of AD show that overexpression and

hyperphosphorylation of tau impair localization and distribution
of mitochondria (Ebneth et al., 1998; Kopeikina et al., 2011;
Shahpasand et al., 2012; Rodríguez-Martín et al., 2013), which
further cause defects in axonal function and loss in synapses
(Cabezas-Opazo et al., 2015; Wang et al., 2015).

The distribution of mitochondria in neurites containing
tau aggregates was disrupted in an age-dependent manner in
the rTg4510 mouse model (Kopeikina et al., 2011). Similar
alteration of mitochondrial localization observed in human AD
brains further confirmed the association of tau accumulation
with mitochondrial translocation deficits (Kopeikina et al.,
2011). Additionally, the reduction of soluble tau improved
the aberrant mitochondrial trafficking in the rTg4510 mouse
model (Kopeikina et al., 2011). In an axonal study of the squid
AD model, it was filamentous rather than soluble forms of
hyperphosphorylated tau that inhibited anterograde fast axonal
transport through activating glycogen synthase kinase 3 (GSK3)
and axonal protein phosphatase 1 (PP1) (Kanaan et al., 2011).
Increased expression of glycogen synthase kinase-3β (GSK-3β)
and the p25 activator of cyclin dependent kinase 5 were found
to pause the mitochondrial movement in cortical neurons
(Morel et al., 2010). At the same time, inhibition of GSK-3β
reversed axonal transport disrupted by overexpression of tau
in Drosophila (Mudher et al., 2004). These results show that
mitochondrial transport is influenced by overexpression of tau,
especially the aggregated tau. It is indicated that GSK-3β is
involved in regulating overexpressed tau-induced mitochondrial
translocation.

Abnormal phosphorylation of tau at AT8 sites (Ser199,
Ser202, and Thr205) inhibited mitochondrial movement and
affected mitochondrial distribution along the axons of cortical
neurons in the mouse brain, which may contribute to the axonal
degeneration (Shahpasand et al., 2012). As a possible underlying
mechanism, it was reported that in K369I mutant tau transgenic
K3 mice, phosphorylated tau trapped kinesin motor protein
complex JIP1 in the soma. This aberrant JIP1 translocation
caused cargo-selective (such as mitochondria) impairment of
axonal transport (Ittner et al., 2009). Observation of pathological
interaction of tau with JIP1 and trapping of JIP1 in the soma in
AD patients further supports these findings in the mouse model
(Ittner et al., 2009), while loss of axonal mitochondria enhances
the abnormal phosphorylation and the toxicity of tau. Reduction
of axonal mitochondria—caused by RNAi-mediated knockdown
of Miro, an adaptor protein involved in axonal transport of
mitochondria—led to abnormal tau phosphorylation at AD-
related phosphorylation site Ser262 (Iijima-ando et al., 2012).
These studies show a perishing interplay between abnormal
phosphorylated tau and impaired mitochondrial distribution.
A possible signaling pathway underneath the interplay is
implicated. By trapping kinesin motor protein complex JIP1,
hyperphosphorylated tau disrupts the transport of mitochondria
into the axons and synapses. Loss of axonal mitochondria fails
to maintain dynamic equilibrium of tau with the microtubules
in the axons and enhances the abnormal phosphorylation of tau,
which is further entangled in a vicious circle.

In a study with various neuronal and nonneuronal cell lines, it
is shown that tau impaired not only axonal transport of organelles
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(including mitochondria), but also the transport of amyloid
precursor protein (APP) (Mandelkow et al., 2003). Retarded
APP transport caused by tau indicates a possible relationship
between two vital pathogenic factors in AD. In primary neurons
of a tau knockout mouse model, tau was required in the Aβ-
induced impairment of axonal transport, and the inhibition of
tau overexpression protected against the Aβ-induced defective
axonal transport of mitochondria and neurotrophin receptor
TrkA (Vossel et al., 2011). Evidence from these studies suggests
a predominant role of tau in the mitochondrial transport
impairment in AD.

Various pathological forms of tau, such as
hyperphosphorylated and aggregated forms, have been indicated
as noxious (Kopeikina et al., 2012). Current studies show that
overexpression of hyperphosphorylated and aggregated forms
of tau plays a vital role in the impairment of axonal transport,
and also that the resultant aberrant localization and distribution
of mitochondria further cause axonal damage and synapse
degeneration.

TAU IMPAIRS MITOCHONDRIAL

DYNAMICS

Mitochondria are dynamic organelles that constantly undergo
fission and fusion activities. Balanced mitochondrial fission and
fusion are beneficial processes (Westermann, 2012). Firstly,
mitochondrial fission/fusion dynamics promote mitochondrial
distribution along axons into synapses (Chen et al., 2007).
Secondly, they intermix metabolites and mitochondria to enable
the establishment of mitochondrial networks, which are essential
for transmitting mitochondrial membrane potential (Skulachev,
2001) and for buffering calcium signals (Szabadkai et al., 2006).
Also, they can separate defective mitochondrial constituents to
defend against reactive oxygen species (ROS) damage during
aging (Westermann, 2008). In brief, balanced mitochondrial
fission/fusion dynamics are essential to meet high energy
demands and facilitate neuroprotective effects (Chen and Chan,
2009; Santos et al., 2010). A group of guanosine triphosphatases
(GTPases) has been found to regulate mitochondrial fission and
fusion processes. Dynamin-like protein 1 (DLP-1 or Drp1) and
a small molecule fission protein-1(Fis1) are involved in the
regulation of the fission process (Chan, 2006; Su et al., 2010b).
The fusion process is regulated by mitofusin 1 (Mfn1), mitofusin
2 (Mfn2) and optic atrophy protein 1 (OPA-1) (Cipolat et al.,
2004; Youle and van der Bliek, 2012). Mitochondrial dynamics
within the neuronal environment are mediated by the above-
listed proteins.Mitochondrial morphology and function is tightly
regulated in response to cellular and environmental stresses
(Picard et al., 2013). It is reported that mitochondrial dysfunction
and abnormal morphology are prominent features of AD (Wang
et al., 2014b; Gao et al., 2017; Guo et al., 2017). It is generally
accepted that the dynamic balance of mitochondrial fission and
fusion is disturbed in AD, shifting toward immoderate fission
(Wang et al., 2009; Bonda et al., 2010).

Abnormal interaction between hyperphosphorylated tau and
Drp1 caused an excessive mitochondrial fission process and led

to the degeneration of mitochondria and synapses in brain tissues
of APP, APP/PS1, and 3xTg-AD mice. Similar results found in
brain tissues from AD patients further improve the validity of
the role of hyperphosphorylated tau in impaired mitochondrial
dynamics (Manczak and Reddy, 2012a). In addition, reduction
of Drp1 was able to protect against hyperphosphorylated tau-
induced mitochondrial and synaptic impairment (Kandimalla
et al., 2016). In a recent study about the effects of different forms
of tau on mitochondrial dynamics, it is found that truncated
tau fragmented mitochondria combined with reduced levels
of OPA-1 (Pérez et al., 2017). In contrast, human wild-type
full length tau (htau) impaired the balance of mitochondrial
dynamics through increasing fusion proteins OPA-1, Mfn1,
and Mfn2 and enhancing mitochondrial fusion activity in the
HEK293 cell line and primary hippocampal neurons of rats (Li
et al., 2016). Previous studies suggest that mitochondrial fusion
is a protective process, while an excessive fission process is a
sign of malfunction. Adverse results of these two studies may be
due to the difference among the sensibility of diverse cell lines
responding to the toxicity of tau. In Li et al.’s study, the htau
promoted mitochondrial fusion and increased the cell viability
at 48 h. After overexpression of htau, axonal degeneration and
neurite loss were observed (Li et al., 2016). It is proposed
that accumulated tau ameliorates acute apoptosis by promoting
mitochondrial fusion at an early stage while it causes neuronal
degeneration with increasing mitochondrial fission at later stage
(Li et al., 2007; Wang et al., 2010, 2014a).

The dynamic balance of mitochondrial fission/fusion and
normal mitochondrial distribution are essential for maintaining
mitochondrial function (Chen and Chan, 2009). Evidence from
these studies suggests that pathological forms of tau play a
significant role in the impairment of mitochondrial fission/fusion
dynamics in AD, mainly through a molecular mechanism of
increasing mitochondrial fission protein such as Drp1 and
decreasing fusion protein includingOPA-1,Mfn1/2. Tau-induced
abnormal mitochondrial dynamics and impaired mitochondrial
distribution may further lead to mitochondrial dysfunction.

TAU PATHOLOGY AND MITOCHONDRIAL

DYSFUNCTION IN AD

Mitochondrial dysfunction plays a fundamental role in
the pathogenesis of AD (Moreira et al., 2010). Defects in
mitochondrial function are manifested by a variety of indicators,
including decreased ATP synthesis, increased ROS production,
impaired oxidative phosphorylation system (OXPHOS)
complexes and antioxidant enzymes (Cabezas-Opazo et al.,
2015). It is proposed that pathological forms of tau impair
mitochondrial function. In both cell culture and transgenic
mice studies, overexpression of tau inhibits mitochondrial
function by decreasing the activity of complexes and antioxidant
enzymes and repairing ATP synthesis and synaptic function
(Eckert et al., 2011; Wang et al., 2015; Li et al., 2016). Perinuclear
distribution of mitochondria causes ATP depletion, oxidative
stress and even synaptic dysfunction (Chen and Zhong, 2014;
Wang et al., 2014b). It is also found that N-terminal-truncated
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tau localized in mitochondrial membrane impaired ATP
synthesis and membrane potential (Atlante et al., 2008).
It is shown that overexpression and mislocalization of tau
impair mitochondrial function mainly through decreasing ATP
production and increasing oxidative stress, finally leading to
synaptic dysfunction in AD.

Interestingly, indicators of mitochondrial dysfunction found
in the AD patients are also evidenced in different AD-related
mice models expressing pathological tau. Abnormal interaction
of phosphorylated tau with voltage-dependent anion channel
1 protein (VDAC1) observed in AD patients was also found
in APP, APP/PS1, and 3xTg-AD mice models (Manczak and
Reddy, 2012b). It broke the balance of the opening and closure
of mitochondrial pores and led to mitochondrial dysfunction
(Manczak and Reddy, 2012b). The P301L tau transgenic mice
presented notable mitochondrial dysfunction. Brains of these
mice showed that mitochondrial complexes activities were
significantly reduced, especially complex I and V. Moreover,
impaired ATP synthesis together with decreased mitochondrial
respiration and increased ROS levels were also noticed (David
et al., 2005). In the triple transgenic AD mouse model that
generated from cross-breeding of P301L tau transgenic pR5
mice and APPswePS2N141I double-transgenic APP152 mice,
compromised mitochondrial function was notably observed
(Rhein et al., 2009). Proteomic and functional studies found
that expressions and activities of mitochondrial complex I
and IV were significantly deregulated, and deregulation of
complex I was remarkably tau-dependent. Additionally, these
mice also exhibited evident lacking of ATP synthesis, increased
ROS production and depolarized mitochondrial membrane
potential (Rhein et al., 2009). In another triple transgenic
AD mice (3xTg-AD) with transgenes APPswe, PS1M146V, and
TauP301L, mitochondrial impairment was early evidenced by
impaired mitochondrial respiration, and decreased pyruvate
dehydrogenase (PDH), as well as increased oxidative stress (Yao
et al., 2009).

DISCUSSION

We have discussed here the effects of tau overexpression
on mitochondrial transport, dynamics and function in the
pathogenesis of AD. It is demonstrated that pathological forms
of tau impair mitochondrial function through three aspects
including mitochondrial transport, dynamics and bioenergetics.
In spite of that, some AD mice models exhibited cognitive
impairment before observation of NFTs. This evidence raises
doubts about whether pathological tau is a trigger of the
mitochondrial abnormalities that are one of the earliest features
in AD. It is postulated that mitochondrial impairment may also
modulate the pathological hallmark tau in AD (Mondragón-
Rodríguez et al., 2013). However, the underlying mechanism
between mitochondrial dysfunction and tau pathology in AD
remains elusive.

Mitochondria are the main source of ROS, and mitochondrial
oxidative damage is significantly associated with AD (Tönnies
and Trushina, 2017). In a previous study, chronic oxidative stress

in cultured neural cells induced by inhibition of glutathione
synthesis, elevated phosphorylation of tau at AD-specific
phospho-sites. It suggests that chronic oxidative stress is able
to increase phosphorylation of tau (Su et al., 2010a). Treating
cultured neuronal cells with ROS mimicking mitochondrial
oxidative stress, promotes tau phosphorylation (Ibáñez-
Salazar et al., 2017) by increasing the activity of GSK-3β
(Lovell et al., 2004). In addition, astrocytes-mediated fatty
acid oxidative products induced tau hyperphosphorylation
in neurons; further co-treatment of these neurons with an
antioxidant decreased levels of tau hyperphosphorylation.
This study provides a direct link between oxidative stress
and AD-relevant tauopathy (Patil and Chan, 2005). Treating
mice lacking superoxide dismutase 2 (SOD2) with catalytic
antioxidant could decrease the levels of AD-associated tau
hyperphosphorylation, which indicates that mitochondrial
oxidative stress contributes to abnormal hyperphosphorylation
of tau (Melov et al., 2007). In addition, mitochondrial complex
I inhibitor annonacin mediated redistribution of tau from
the axons to the cell soma in cultured neurons (Escobar-
Khondiker et al., 2007). In summary, accumulated mitochondrial
dysfunction contributes to the progressive development of
AD, possibly through a mechanism whereby mitochondrial
oxidative stress promotes abnormal phosphorylation of
tau. However, more studies are needed to find supportive
evidence.

Mitochondria dysfunction, as a prominent early feature in the
pathogenesis of AD, leads to phosphorylation and aggregation
of tau. Meanwhile, pathological tau impairs the mitochondrial
axonal transportation, mitochondrial dynamics and function.
Accumulated mitochondrial impairment and tau pathology in a
vicious circle affect neuronal and synaptic function, leading to
memory loss and cognitive impairment in AD. The relationship
between pathological tau andmitochondrial dysfunction in AD is
like the story of the chicken and the egg. More evidence is needed
to decide whether mitochondrial dysfunction is the cause or
consequence of pathological tau. Moreover, further experiments
focusing on the link between mitochondrial dysfunction and
pathological tau may be helpful for developing therapeutic
targets.
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