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Amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) share similar

pathophysiological mechanisms. From a neurochemical point of view, the serotonin

(5-hydroxytryptamine; 5-HT) dysfunction in both movement disorders—related to

probable lesioning of the raphe nuclei—is profound, and, therefore, may be partially

responsible for motor as well as non-motor disturbances. More specifically, in ALS,

it has been hypothesized that serotonergic denervation leads to loss of its inhibitory

control on glutamate release, resulting into glutamate-induced neurotoxicity in lower

and/or upper motor neurons, combined with a detrimental decrease of its facilitatory

effects on glutamatergic motor neuron excitation. Both events then may eventually give

rise to the well-known clinical motor phenotype. Similarly, disruption of the organized

serotonergic control on complex mesencephalic dopaminergic connections between

basal ganglia (BG) nuclei and across the BG-cortico-thalamic circuits, has shown

to be closely involved in the onset of parkinsonian symptoms. Levodopa (L-DOPA)

therapy in PD largely seems to confirm the influential role of 5-HT, since serotonergic

rather than dopaminergic projections release L-DOPA-derived dopamine, particularly

in extrastriatal regions, emphasizing the strongly interwoven interactions between both

monoamine systems. Apart from its orchestrating function, the 5-HT system also exerts

neuroprotective and anti-inflammatory effects. In line with this observation, emerging

therapies have recently focused on boosting the serotonergic system in ALS and PD,

which may provide novel rationale for treating these devastating conditions both on the

disease-modifying, as well as symptomatic level.

Keywords: serotonin (5-HT), dopamine, glutamate, amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD),

raphe nuclei, basal ganglia

BACKGROUND

The neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) is produced in the raphe nuclei
(RN), a moderately sized cluster of caudal and rostral neurons (B1-B9) found in the brainstem
(Dahlstroem and Fuxe, 1964). Axons arising from the caudal group (B1-B4) form a descending
system projecting to the spinal cord, cerebellum, pontine, and midbrain structures, whereas
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ascending fibers emanating from the more rostral clusters
(B5-B9) connect with the cerebral cortex, (hypo)thalamus,
basal ganglia and hippocampus among others. About roughly
300,000 5-HT-containing neurons in the human brain bear
a tremendous number of collateral branches so that the
serotonergic system densely innervates nearly all brain
regions (Jacobs and Azmitia, 1992). It is, therefore, not
surprising that this extensive neuronal network is implicated
in the regulation of numerous physiological events, such
as hormone secretion, sleep-wake cycle, motor control,
immune system functioning, nociception, food intake, energy
balance/metabolism, cardiovascular/respiratory functioning,
body temperature, affect/aggression, consciousness, learning,
and memory (Ciranna, 2006; Sandyk, 2006). Serotonin receptors
are subdivided into seven families (5-HT1−7), based on
structural, biochemical and pharmacological characteristics,
resulting into 14 subtypes (5-HT1A/1B/1D/1e/1F, 5-HT2A/2B/2C,
5-HT3, 5-HT4, 5-HT5A/5b, 5-HT6, and 5-HT7). With the sole
exception of 5-HT3, which belongs to the ligand gated ion
channels, all 5-HT receptors are G protein-coupled receptors,
mediating a variety of physiological and behavioral functions
(Filip and Bader, 2009). Regarding amyotrophic lateral sclerosis
(ALS) and Parkinson’s disease (PD) pathophysiology, especially
5-HT1A/1B and 5-HT2A/2B/2C seem crucial (Cummings et al.,
2013; Miyazaki et al., 2013; De Deurwaerdère and Di Giovanni,
2016; El Oussini et al., 2016). In short, the 5-HT1A receptor
is expressed in the RN as a presynaptic autoreceptor, while it
also functions as a postsynaptic heteroreceptor in areas of the
limbic system, such as the prefrontal cortex, hippocampus,
lateral septum, and amygdala, as well as in (hypo)thalamus,
and basal ganglia (Hoyer et al., 1994). Activation of 5-HT1A

autoreceptors on the cell bodies or dendrites of the RN
neurons exerts inhibitory feedback in response to local 5-
HT release. The 5-HT1B receptors are centered on axonal
terminals of (non)serotonergic neurons, mainly found in
the basal ganglia and substantia nigra (SN) (Bonaventure
et al., 1997). Interestingly, it has been indicated that 5-HT1B

receptors are preferentially located on presynaptic terminals
of È-amino-butyric acid (GABA)ergic neurons, and, it has
also been suggested that thalamostriatal and/or corticostriatal
glutamatergic neurons express presynaptic 5-HT1B receptors
(Bonaventure et al., 1998). In contrast, the 5-HT2A receptor
is found mainly in the periphery and neocortical areas, where
they are implicated in the pathogenesis of schizophrenia and
hallucinations (Burnet et al., 1995; Hannon and Hoyer, 2008).
These receptors are highly expressed in both pyramidal cells and
GABAergic interneurons. Moreover, cerebral 5-HT2B receptors
are present in the cerebellum, cerebral cortex, hypothalamus,
corpus callosum and amygdala, causing anxiolytic effects among
others (Duxon et al., 1997). Noteworthy, this receptor subtype
is likely to be expressed by RN neurons, where this autoreceptor
might play a role in the regulation of the serotonin transporter
(SERT) (Diaz et al., 2012). Next, the 5-HT2C subtype is widely
distributed throughout the brain and has been proposed as
the main mediators of the different actions of 5-HT in the
central nervous system (Hannon and Hoyer, 2008). Additionally,
5-HT2C receptors are commonly found in the choroid plexus,

where they modulate cerebrospinal fluid (CSF) production
(Pasqualetti et al., 1999).

The serotonergic system is organized in such a way that
it exerts widespread effects on targeted neurons, such as
motor neuron excitability threshold control, and interacts
with many other neurotransmitters, including dopamine (DA),
noradrenaline (NA), glutamate, GABA, and various peptides
(Ciranna, 2006). Remarkably, 5-HT also plays an important part
in the development of the embryonic nervous system, which
relates to neurite outgrowth and other aspects of neuronal
differentiation, including synaptogenesis (Lauder, 1990). Given
its complex but critical modulating characteristics, 5-HT can
be regarded as one of the principal orchestrators of the
central nervous system, with a very significant role in motor
activity. In PD and ALS, two invariably fatal neurodegenerative
conditions, themotor and non-motor features have been partially
attributed to disease-related malfunctioning of this overseeing
neurotransmitter system.

SEROTONERGIC DEGENERATION IN PD
AND ALS

Staging of brain pathology in PD demonstrated an early
involvement of Lewy body depositions within the RN. In more
detail, Halliday et al. (1990) firstly described a 56% loss of
serotonergic neurons in the median RN of PD compared to
control brain. Afterwards, Braak et al. (2003) determined six
stages in the evolution of PD-related pathology, with lesions
being present in the median RN in the caudal brainstem
already from stage two onwards. Furthermore, 5-HT depletion
was observed in various target areas of the RN, such as in
the basal ganglia, hypothalamus, hippocampus, and prefrontal
cortex (Fahn et al., 1971; Shannak et al., 1994). This was
later confirmed by in vivo imaging studies, revealing new
insights. For instance, Politis et al. (2010) applied 11C-DASB-
PET to early-stage PD patients, and demonstrated reduced SERT
binding in the caudate nucleus, (hypo)thalamus, and anterior
cingulate cortex, whereas PD subjects with established disease
showed additional 11C-DASB binding reductions in the putamen,
insula, posterior cingulate cortex, and, prefrontal cortex. Further
binding reductions were noticed in the ventral striatum, RN,
and amygdala of advanced PD patients. Interestingly, the loss
of SERT binding in the RN occurred in later stages, pointing to
an earlier loss of serotonergic projections instead of the neurons
themselves.

In ALS, distribution patterns of TAR DNA-binding protein
(TDP)-43 intraneuronal inclusions have only recently been
investigated, summing up into a total of four discriminative
neuropathological stages (Brettschneider et al., 2013). Notably,
it has been theorized that sites with projections to the cortex
remain intact in ALS, unlike those receiving corticofugal axonal
projections, supporting the hypothesis of prion-like propagation
of TDP-43, potentially from the motor cortex downwards (dying
forward/back hypotheses, Figure 1). In agreement, the upper
RN with diffuse cortical projections barely become affected by
TDP-43 pathology in ALS, which is in great contrast with PD
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FIGURE 1 | Schematic representation of dysfunctional serotonergic pathway

interactions in ALS and PD, mediated by lesioned raphe nuclei (RN) centered

in the brainstem. In summary, serotonergic loss in amyotrophic lateral sclerosis

(ALS) brain and subsequent loss of its inhibitory control on glutamate release

cause glutamate-induced excitotoxicity leading to upper/lower motor neuron

damage. In this regard, the dying forward hypothesis proposes that ALS is a

disorder primarily of the corticomotoneurons, with anterior horn cell

degeneration propagated via an anterograde glutamate-dependent excitotoxic

process. In contrast, the dying back hypothesis proposes that ALS begins

within the muscle or neuromuscular junction, with pathogens being

retrogradely transported from the neuromuscular junction to the cell body

where they may exert their deleterious effects. Simultaneously, this figure

illustrates the pathophysiological serotonergic-dopaminergic interactions on

the striatal level in Parkinson’s disease (PD), where lesioning of the RN (red

spheres) in addition to dopamine (DA) depletion in the striatum and substantia

nigra (black-bolded dashes) give rise to a net decreased activity of the motor

cortex. Adapted from Vucic et al. (2013), ©2013 with permission from BMJ

Publishing Group Ltd.

or Alzheimer’s disease (AD) (Braak et al., 2013). Nevertheless,
a marked reduction in both cortical and RN 5-HT1A receptor
binding (21%) has been observed (Turner et al., 2005), and,
several studies previously evidenced decreased levels of 5-HT, 5-
hydroxyindoleacetic acid (5-HIAA; main metabolite of 5-HT) or
tryptophan (precursor of 5-HT) in CSF, plasma, and/or spinal
cord (Monaco et al., 1979; Ohsugi et al., 1987; Bertel et al., 1991;

Sofic et al., 1991). Platelet 5-HT levels also positively correlated
with survival in ALS subjects (Dupuis et al., 2010). Consequently,
it has been postulated that 5-HT1A/2 receptor (anta)agonists,
5-HT precursors [e.g., 5-hydroxytryptophan (5-HTP)] (Turner
et al., 2003) or 5-HT2B/C receptor inverse agonists (Dentel et al.,
2013) might improve locomotor function and even strategically
interfere with ALS disease course. On the whole, the serotonergic
theory in ALS has gained renewed interest especially due to
several recent publications (Dentel et al., 2013; El Oussini et al.,
2016, 2017).

5-HT AND THE CONTROL OF MOTOR
NEURON EXCITABILITY: POSSIBLE
IMPLICATIONS

The indolamine 5-HT has facilitatory effects on glutamatergic
motor neuron excitation by augmenting weak or polysynaptic
inputs, bringing motor neurons to threshold. This effect on
spinal motor neurons is exerted through 5-HT1/2 receptors (for
review: Sandyk, 2006). In ALS, serotonergic denervation has
been hypothesized to lead to significant loss of inhibitory control
on glutamate release, via decreased binding on presynaptic
5-HT1B receptors, triggering glutamate-induced neurotoxicity,
and, eventually, rapid-onset loss of upper and lower motor
neurons (Muramatsu et al., 1998). Upper motor neurons are
glutamatergic neurons located in layer V of the motor cortex,
project to spinal motor neurons through the corticospinal tract,
and are the major source of descending motor commands for
voluntary movement (Lemon, 2008). Meanwhile, progressive
degeneration of 5-HT neurons in the motor cortex, RN and their
projections may lead to a compensatory increase in glutamate
excitation (Bertel et al., 1991), adding up to the clinical motor
phenotype (Figure 1). Conversely, motor neuron groups such
as the oculomotor, trochlear, and abducens nuclei, and the
cerebellum, which only receive sparse serotonergic innervation,
appear more resistant to the process of neurodegeneration
in ALS. Moreover, it is possible that differences between
bulbar and spinal ALS in the course of the disease may
be related to the degree of cerebral 5-HT depletion, which
seems more extensive in the bulbar subtype (Turner et al.,
2005). Additionally, 5-HT is a precursor of melatonin, which
inhibits glutamate release and glutamate-induced neurotoxicity
(Zhang et al., 1999).

One of the possible implications of serotonergic degeneration
with regard to motor symptoms in ALS, is spasticity (Dentel
et al., 2013; El Oussini et al., 2017). For instance, El Oussini
et al. (2017) recently demonstrated that degeneration of
brainstem 5-HT neurons in transgenic SOD1 (G37R) mice, more
particularly the dorsal and median RN, induced spasticity. This
hyperreflexia is able to compensate for motor deficits, allowing
the maintenance of motor function after disease onset. Spasticity
is a painful symptom which can severely restrict quality of life
on a daily basis. Remarkably, SB206553 administration, a 5-
HT2B/C receptor inverse agonist, completely abolished spasticity
symptoms (Murray et al., 2010; El Oussini et al., 2017). The
authors further stress that selective degeneration of the RNmight
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directly lead to motor neuron hyperexcitability and spasticity—
rather than degeneration of upper motor neurons in the cerebral
motor cortex.

RELATED TREATMENT OPTIONS

So far, riluzole and edaravone—of which latter drug has recently
been FDA-licensed in the US and Japan (Hardiman and van
den Bergh, 2017)—only modestly improve motor symptoms
and daily functioning in ALS patients, but with a reasonable
safety profile of riluzole 100mg daily (Miller et al., 2007).
However, the treatment regimen for edaravone is inconvenient
and costly (Hardiman and van den Bergh, 2017). Riluzole
acts as an N-methyl-D-aspartate (NMDA)-receptor antagonist,
whereas edaravone is a free radical scavenger. Both mechanisms
of action thus support the glutamate excitotoxicity-driven
hypothesis.

As for clinical trials with serotonergic therapies, Meininger
et al. (2004) carried out two randomized, double-blind, placebo-
controlled multicenter studies (phase III) with xaliproden,
a 5-HT1A receptor agonist which has neurotrophic and
neuroprotective effects, to assess its safety and efficacy at two
doses. ALS patients were randomly assigned to placebo, 1
or 2mg xaliproden orally once daily as a monotherapy (867
patients), or, to the same regimen with addition of riluzole
50mg (1,210 patients). In the end, however, the primary outcome
measures (time to death, tracheostomy, or permanent assisted
ventilation) did not reach statistical significance. There only was
a therapeutic benefit on the second outcome measure, i.e., vital
capacity (maximum volume of air exhaled at a steady state after
maximum inhalation of a single breath) at the 1 and 2mg dose
without riluzole, which let the authors conclude that xaliproden
does not effectively slow down disease progression. In short,
strong evidence is currently lacking and insufficient regarding
the potential benefits of serotonergic therapies in ALS, despite
of its remarkable 5-HT-related pathophysiological characteristics
described above.

Finally, monoamine oxidase-B (MAO-B) inhibitors such as
deprenyl, rasagiline, or selegiline affect the release and increase
the content of not only DA and NA, but also of 5-HT (for review:
Finberg, 2014). MAO-B inhibitors also have neuroprotective
properties. Following the introduction of rasagiline to the
therapeutic armamentarium for PD, various successes have been
reported (Rascol et al., 2005, 2011). In ALS, results are less
consistent, with selegiline treatment having no significant effect
on the rate of clinical progression or outcome in ALS as
evidenced by Lange et al. (1998), whereas deprenyl and rasagiline
seem more promising, but necessitate further scrutiny (Jossan
et al., 1994; Macchi et al., 2015).

SEROTONERGIC MODULATION OF BASAL
GANGLIA AND MESENCEPHALIC
DOPAMINERGIC ACTIVITY IN PD

The basal ganglia (BG) are composed of the striatum (caudate
nucleus and putamen), subthalamic nucleus (STN), internal and

external globus pallidus (GPi/e) and SN, and are part of the
BG-cortico-thalamic circuits. This highly organized network is
important for motor control, emotion, and cognition. It has
been firmly established that BG nuclei receive vast serotonergic
input mainly coming from the rostral RN clusters (B7), with
effects on mesencephalic dopaminergic activity depending on
the specific nucleus and its receptor distribution (excitatory
via 5-HT1A/1B/2A/3/4/7 and inhibitory via 5-HT2C/6 receptors
(Paolucci et al., 2003; Miguelez et al., 2014; De Deurwaerdère
and Di Giovanni, 2016). In PD, lesioning of the RN in addition
to DA depletion in the striatum and SN—particularly of the
pars compacta (SNc)—are hallmarks of the disease, leading
to overactivation of the output regions of the BG, i.e., GPi
and SN pars reticulata (SNr), which contain large GABAergic
neurons. This cascade results in a net decreased activity of
the supplementary motor areas, premotor, and primary motor
cortices, triggering parkinsonian symptoms (Albin et al., 1989;
Figure 1). Overall, the loss of 5-HT neurons is not as profound
as the loss of DA neurons, and may not be sufficient to cause
motor or non-motor symptoms per se, however, both systems
closely interact, and combined depletion certainly seems to
aggravate the situation, as was shown in a parkinsonian rat
model (Delaville et al., 2012).Moreover, 5-HT and 5-HIAA levels,
as well as SERT expression, are reduced in various BG nuclei
(Scatton et al., 1983; Guttman et al., 2007; Kish et al., 2008), and
the serotonergic system is strongly involved in the mechanism
of action of antiparkinsonian therapeutics, such as levodopa
(L-DOPA), and high frequency stimulation of the STN (Navailles
and De Deurwaerdère, 2012).

L-DOPA ACTIONS VIA SEROTONERGIC
NERVE TERMINALS IN PD: THE
INFLUENTIAL EFFECT OF 5-HT

Levodopa (L-DOPA), the metabolic precursor of DA, is a well-
established symptomatic treatment for the motor deficits in
PD. Paradoxically, L-DOPA-induced dyskinesia (LID), as well
as hallucinations, are unfortunate but more or less inevitable
corollaries of its long-term administration (De Deurwaerdère
et al., 2017). Despite the traditional assumption that L-DOPA
is transformed in residual striatal dopaminergic neurons into
DA, interestingly, a more important role for serotonergic than
dopaminergic projections has been identified for the increase
of extracellular DA, predominantly in prefrontal cortex, nucleus
accumbens, STN, hippocampus, and additional extrastriatal
regions (De Deurwaerdère et al., 2017). Briefly, 5-HT neurons
convert exogenous L-DOPA into DA and store neo-synthesized
DA into vesicles for exocytosis via vesicular monoamine
transporter 2, as was originally shown in rats (Arai et al.,
1995). Since the distribution of 5-HT terminals in the brain is
very different from dopaminergic innervation, the magnitude
of effect in extrastriatal regions is tremendous compared to
physiological conditions, especially at low L-DOPA doses, so
that 5-HT in fact controls the dopaminergic output in a state
and region-dependent manner (Navailles and De Deurwaerdère,
2012).
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Latter phenomenon has even led to the assumption that
future envisaged pharmacotherapeutic strategies to treat LID
should specifically aim at controlling L-DOPA-stimulated DA
release from extrastriatal 5-HT neurons (Miguelez et al., 2014; De
Deurwaerdère et al., 2017). Recently, the use of 5-HTP (Tronci
et al., 2013) or 5-HT1A/B receptor agonists (e.g., eltoprazine or
buspirone; Svenningsson et al., 2015; De Deurwaerdère et al.,
2017)—influencing DA release indirectly via action on the
overall 5-HT tone—has been proposed. As for exacerbation of
psychosis by L-DOPA treatment—attributed to excessive DA
release in the mesolimbic areas rather than the motor striatum,
mediated by hypersensitive 5-HT signaling—a favorable role
for 5-HT2A receptor inverse agonists (e.g., pimavanserin) or 5-
HT2A antagonists (e.g., low doses of clozapine) has likewise been
demonstrated (Cummings et al., 2013). These findings suggest
that the serotonergic system may even adapt to the lack of DA
by adopting anatomical and functional transformations in PD.

ALTERATIONS IN OTHER MONOAMINE
NEUROTRANSMITTER SYSTEMS

NA levels have been previously reported to be significantly
increased in the cervical, thoracic and lumbar spinal cord of
ALS patients compared to controls (Bertel et al., 1991), with
highest concentrations measured in ventral and intermediate
gray matter. In CSF, a similar increase has been noted (Ziegler
et al., 1980). Independently of 5-HT, NA increases the excitability
of motor neurons to glutamate (White and Neuman, 1980).
Bertel et al. (1991) further discussed that in all probability,
it is unlikely that the noradrenergic changes were due to the
effect of tissue shrinkage—since concentrations were expressed
in ng/g wet weighed tissue—but rather a consequence of
denser noradrenergic (neosympathetic) innervation, such as
from sprouting of noradrenergic fibers into affected areas. In
PD, the noradrenergic dysfunction has been investigated in
more detail. In summary, α-synuclein depositions in the locus
coeruleus (stage 2), the brain’s main source of NA, have been
evidenced to precede that of the SN (stage 3) (Braak et al., 2003).
Consequently, neuronal loss in this noradrenergic nucleus and
the accompanying noradrenergic deficiency both on the central
and peripheral level have been related to various motor and
non-motor (cognitive) symptoms, including the progression to
(prodromal) dementia (Vermeiren and De Deyn, 2017).

A potential dopaminergic deficit in ALS has only been scarcely
investigated, with significantly reduced striatal DA transporter
expression in patients with bulbar- or limb-onset compared
to controls ([I-123]-IPT-SPECT) (Borasio et al., 1998), while
in drug-naïve, sporadic ALS patients, decreased striatal D2-
receptor binding could be partially reversed by riluzole (Vogels
et al., 1999). On the contrary, no differences in spinal DA
concentrations were found between ALS and control subjects
(Bertel et al., 1991). No research has been performed yet with
regard to 5-HT-DA interactions in mesencephalic brain areas or
BG nuclei, but a study by Xu et al. (2017) observed an abnormal
cortical-BG network in ALS after applying resting state fMRI and
voxel-wise network analysis.

THE NON-MOTOR OUTCOMES OF
SEROTONERGIC DYSFUNCTION IN ALS
AND PD

New findings point at an important link between non-linear
progressive degeneration of serotonergic terminals and non-
motor disturbances in PD, such as depression, fatigue, weight
loss, and anxiety (Politis and Niccolini, 2015; Huot et al., 2017).
Similarly, cognitive impairment and dementia are major issues in
PD, and might be ascribed to serotonergic dysfunction too (Huot
et al., 2017). In this respect, a phase 2 trial is currently evaluating
the safety, tolerability and efficacy of SYN120, a dual 5-HT6/5-
HT2A antagonist, in 80 PD dementia patients over a 16-week
period [SYNAPSE; NCT02258152 (clinicaltrials.gov)]. As for
ALS, fatigue and abnormal peripheral glucose metabolism have
been suggested (Reyes et al., 1984). Major depressive disorder,
in which an ∼12% reduction of cortical 5-HT1A binding is seen
in non-ALS cases (Sargent et al., 2000), is relatively rare in
ALS patients, even in later stages (Goldstein et al., 2006). More
recently, Vercruysse et al. (2016) indicated that serotonergic
axonal loss in the arcuate nucleus of the hypothalamus
in combination with decreased hypothalamic 5-HT levels
primarily caused a melanocortin deficit in mutant SOD1 (G86R)
mice, which contributed to dysregulated food intake/weight
loss.

Furthermore, self-referential thinking (i.e., reflecting one’s
mental self) is a key cognitive process which seems to be
regulated by 5-HT1A receptors within the default mode network,
which comprises the precuneus, posterior cingulate cortex,
medial prefrontal cortex, and, the temporoparietal junction
(Hahn et al., 2012). In this regard, Fomina et al. (2017)
observed electroencephalography correlates (bandpower) of self-
referential thinking in the medial prefrontal cortex of healthy
individuals, but not ALS patients. The authors concluded
that these cognitive abnormalities, such as anosognosia, may
well be in compliance with the proposed serotonergic theory
in ALS.

(DIS)SIMILARITIES: 5-HT AS A CRUCIAL
DISEASE MODIFIER

The process of normal, healthy aging has complex effects on
central and peripheral serotonergic transmission. Accumulating
(pre)clinical evidence suggests a linear and gradual decline
of 5-HT connections from the RN, as well as altered SERT
and 5-HT1A/2A receptor expressions in multiple brain regions
(Rodríguez et al., 2012). However, in ALS and PD, RN neuronal
loss and/or loss of serotonergic projections due to marked and
early TDP-43 and α-synuclein depositions in target areas might
cause major imbalance in monoaminergic neurotransmission
across the brain (Turner et al., 2005; Dentel et al., 2013; Politis
and Niccolini, 2015), accounting for numerous motor, behavioral
and cognitive dysfunctions.

The neurochemical similarity between ALS and PD, is that
in both conditions, the supervising but damaged serotonergic
system has lost pre- and postsynaptic regulatory functions on
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neighboring systems, leading to loss of inhibitory control of
glutamate release and loss of facilitatory effects of glutamatergic
motor neuron excitation in ALS, whereas in PD, this results
in alterations of the complex serotonergic modulation of
mesencephalic dopaminergic systems. Maybe unexpectedly, this
largely and selectively affects upper and lower motor neurons
in ALS brain and spinal cord, causing neuromuscular disease,
while in PD, the effects rather remain central, i.e., at the
level of the SNc/r, BG nuclei and (extra)striatal regions.
Serotonergic alterations in ALS brain and RN have been found
before (Turner et al., 2005), but the overall outcome of the
serotonergic shortage on the corticocerebral level remains to be
elucidated. In addition, autonomic and olfactory dysfunction in
PD have been ascribed to peripheral noradrenergic alterations,
potentially resulting from LC lesioning, and, likely, far preceding
the motor deficits (Vermeiren and De Deyn, 2017). In

contrast, there is a fairly dissimilar clinical outcome for both
neurodegenerative diseases, with more 5-HT-associated non-
motor disturbances in PD vs. a very typical motor—but less
non-motor—region-dependent degenerative pattern in ALS,
causing the well-characterized limb- or bulbar-onset phenotype
(Figure 2).

Another very important peculiarity of 5-HT, which
underscores its disease-influencing potential in ALS and PD, is
its neuroprotective role through controlling energy homeostasis
via still incompletely characterized mechanisms (Tecott, 2007).
As such, new preclinical studies are emerging, which have
already shown that 5-HT1A/2B receptor stimulation on astrocytes
and microglia promotes proliferation and upregulation of
antioxidative molecules, slowing down or even reversing the
disease process in ALS (El Oussini et al., 2016), and protecting
dopaminergic neurons in PD (Miyazaki et al., 2013).

FIGURE 2 | Venn diagram—visualization of the complex interplay of neurochemical and clinical keystones in ALS and PD. This figure depicts the complex interplay

between neurochemical characteristics in ALS and PD related to their disease-specific clinical (i.e., motor and non-motor) outcome. Mutually influential and/or

synergistic interactions are indicated with arrowheads at both ends. Question marks over the arrows refer to partially-proven or suggestive mechanisms of

neurochemical features. The Venn diagram clearly shows that serotonergic dysfunction is the central overlap in the overall pathophysiology of ALS and PD, whereas

the neurochemical causes of the clinical non-motor (i.e., behavioral) disturbances, particularly in ALS, necessitate further scrutiny. Similarly, the reciprocal interaction

between the noradrenergic and serotonergic/dopaminergic disturbances in ALS and PD remains to be elucidated, even though in PD, NA dysfunction has been

previously linked with CD and dementia progression. 5-HT, serotonin (5-hydroxytryptamine); ALS, amyotrophic lateral sclerosis; CD, cognitive deterioration; DA,

dopamine; LID, levodopa-induced dyskinesia; MDD, major depressive disorder; NA, noradrenaline; OCD, obsessive-compulsive disorder; PD, Parkinson’s disease.
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WHY IT MATTERS?

So far, there is total absence of easily-accessible biological
markers in CSF or blood for ALS or PD, rendering the
diagnosis of both disease entities sometimes fairly complex,
laborious and challenging. Accordingly, the differential diagnosis
among similar syndromes, including progressive supranuclear
palsy, multiple system atrophy or corticobasal degeneration,
may be quite difficult. Future studies should, therefore, focus
on the serotonergic dysfunction in ALS and PD, and reveal
if serotonergic markers alone or in combination with other
biological factors, such as the LDL/HDL ratio, plasma ApoE,
or various neuroinflammatory compounds (Dupuis et al., 2010),
could be useful for routine diagnostic work-up of patients in
clinics.

Additionally, serotonergic approaches in ALS and PD may
alleviate disease burden on both the motor and non-motor
level, and may hold great potential to influence the disease
course, even though clinical trials with 5-HT modulating agents
are currently scarce. Hypothetically, other neurodegenerative
disorders, such as AD, dementia with Lewy bodies or PD plus

syndromes, could—at least in part—share a fundamentally-alike
monoaminergic pathophysiology, promoted by very early protein
depositions in strategic brainstem nuclei. One might, therefore,
wonder whether the universal quest for efficient symptomatic and
disease-modifying therapies might, perhaps, be narrowed down
to a monoaminergic-based derivative.
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