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Superior feature extraction, channel selection and classification methods are essential

for designing electroencephalography (EEG) classification frameworks. However, the

performance of most frameworks is limited by their improper channel selection methods

and too specifical design, leading to high computational complexity, non-convergent

procedure and narrow expansibility. In this paper, to remedy these drawbacks,

we propose a fast, open EEG classification framework centralized by EEG feature

compression, low-dimensional representation, and convergent iterative channel ranking.

First, to reduce the complexity, we use data clustering to compress the EEG features

channel-wise, packing the high-dimensional EEG signal, and endowing them with

numerical signatures. Second, to provide easy access to alternative superior methods,

we structurally represent each EEG trial in a feature vector with its corresponding

numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional

structural matrix compatible with most pattern recognition methods. Third, a series of

effective iterative feature selection approaches with theoretical convergence is introduced

to rank the EEG channels and remove redundant ones, further accelerating the EEG

classification process and ensuring its stability. Finally, a classical linear discriminant

analysis (LDA) model is employed to classify a single EEG trial with selected channels.

Experimental results on two real world brain-computer interface (BCI) competition

datasets demonstrate the promising performance of the proposed framework over

state-of-the-art methods.

Keywords: EEG classification, channel selection, feature clustering, EEG low-dimensional representation, motor

imagery

1. INTRODUCTION

For a long time, the brain-computer interface (BCI) has been a prevalent communication system
for directly bridging between a brain and a computer. A typical BCI system collects brain activities
associated with mental tasks, translates these neural signals into appropriate commands, and
eventually sends them to a computer (Handiru and Prasad, 2016). As a non-invasive brain activity
measurement method, electroencephalography (EEG) has attracted increasing interest, owing to its
low risk, low cost, feasibility, and significant potential for practical applications (Yang et al., 2016).
EEG data is commonly composed of multichannel signals recorded from several electrodes placed
on the scalp to obtain the activity of various cortexes. For example, motor-imagery (MI) EEG signals
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are primarily gained from the motor-relevant cortex and could
provide users with direct control of various devices (Lafleur et al.,
2013; Meng et al., 2016), e.g., a wheelchair, quadcopter, or robotic
arm, without using any peripheral nerves or muscle movements.

The core component of an EEG-based BCI (EEG-BCI) system
is the decoding or classification of EEG signals. The basic
structure of an EEG classification framework typically consists
of four parts: signal pre-processing, feature extraction, channel
selection and classification, of which the feature extraction
and channel selection are attracting more attention. Feature
extraction is fundamental to EEG classification and many
methods have been presented to acquire the implicit essential
information from raw EEG signals, e.g., spectral power (SP)
and time-domain parameters (TDP) (Müller et al., 2004).
Channel selection attempts to remove irrelevant EEG features
in redundant channels to reduce the setup time and equipment
cost, and improve the effectiveness and efficiency of EEG-BCI
systems (Alotaiby et al., 2015). Well-known channel selection
methods are often based on evolutionary algorithms and mutual
information.

Even though multiple methods have been proposed to tackle
EEG classification tasks using different feature extraction and
channel selection methods, bottlenecks still appear when existing
EEG-BCI frameworks are applied to practical applications, as
shown in Figure 1A. (1) The computational complexity of
channel selection methods has often been neglected by previous
works (Kee et al., 2015; Zhang et al., 2016), thereby slowing the
EEG feature extraction and offline classifier training procedures,
which negatively affects the deployment efficiency of EEG
frameworks in different situations. Moreover, excessively long
setup and experiment times may negatively affect the (human)
subjects’ mental concentration and condition, heavily decreasing
the EEG signal-to-noise ratio (SNR). (2) Convergence is seldom
considered in some iterative frameworks (Yu et al., 2015),
leading to stochastic, even divergent solution searching. A
non-monotonic convergence process may postpone the EEG
classification and further degenerate the subjects’ experience.
Moreover, it is difficult to consistently obtain an optimal decision
persistently because of the unstable solution searching process.
(3) Existing frameworks are mostly designed too specifically
(Bashar et al., 2016), narrowing their expansibility. The majority
of datasets in pattern recognition approaches are expressed
in two-dimensional matrices, i.e., samples and features, which
differ from previous EEG data matrices. Thus, an overly well-
designed EEG framework is usually confined to specific methods
and offers few open accesses to the many more remaining
methods, thus, seriously affecting its application and expansion.
Additionally, considering that novel methods are continuously
emerging, inadequate support for them may limit the sustained
improvement of existing frameworks.

Intuitively, the solution to (2) is to use fast convergent
channel selection algorithms, which is also beneficial for
solving (1). Another solution to (1) is decreasing the data
scale, including feature extraction and dimension reduction.
Meanwhile, the solution to (3) is to present the EEG signals
in two dimensional data matrices, which are commonly used
in other signal processing areas, without removing the latent

spatial information carried by multi-channel EEG signals. In the
meantime, representing EEG data in two dimensional matrices
is conducive to building bridges between EEG feature extraction
and previous feature selection methods.

In light of this, as shown in Figure 1A, we propose a fast,
open EEG classification framework characterized by feature
compression, low-dimensional representation, and convergent
iterative channel ranking. Firstly, to alleviate the computational
burden, we use fast data clustering to give EEG feature vectors
numerical signatures according to their channel-wise similarity.
Thus, it is possible to reduce the feature dimension in EEG
signals. Secondly, instead of simply flattening three dimensional
(trial-channel-feature) EEG signals into two dimensional (trial-
channel*feature) ones, we compress the EEG features and
contract the feature vectors into their numerical signatures.
Thus, we can represent the EEG signal using a two dimensional
matrix and retain its spatial information in the meantime. In this
manner, EEG signals are mapped into a normal data matrix with
rows and columns indicating trials and channels, respectively,
which is consistent with most pattern recognition studies.
Thirdly, to obtain fast and stable decisions, we use a few iterative
feature selection approaches with theoretical convergence to
rank and select informative EEG channels, thereby shortening
the procedure and improving the decision performance of the
EEG-BCI systems.

Our main aims and contributions are highlighted in the
following:

• We leverage the data clustering between feature extraction and
channel selection in the traditional EEG-BCI to channel-wise
compress the features to reduce the data scale.
• We provide an EEG classification framework applicable

to most common EEG processing and pattern recognition
methods to provide an entrance for increasing the EEG-BCI
performance through technology integration.
• We introduce feature selection approaches with theoretical

convergence to rank and select channels to further improve
the performance of the EEG-BCI.

2. RELATED WORK

In past decades, great efforts have been made to address the EEG
classification problem, mainly including feature extraction and
channel selection.

One of the most widely used EEG feature extraction methods
is common spatial patterns (CSP). CSP utilizes covariance
analysis to amplify the class disparity in the spatial domain,
to combine signals from different channels (Blankertz et al.,
2007; Li et al., 2013). Improved CSPs, e.g., common spatio-
spectral patterns (CSSP) (Lemm et al., 2005), iterative spatio-
spectral pattern learning (ISSPL) (Wu et al., 2008), and filter
bank common spatial patterns (FBCSP) (Kai et al., 2012),
mainly optimize the combination of multi-channel signals by
developing a spectral weight coefficient evaluation. Obviously,
these spatial feature extraction methods are good at selecting the
pivotal spatial information included in EEG signals. However,
signal combination cannot be practically used to reduce
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FIGURE 1 | (A) The motivations, solutions and contributions, (B) the flowchart of the proposed framework.

the channel number and data scale. Apart from the spatial
domain, extracting features in the temporal and frequency
domains is also prevalent in many works. Multivariate empirical
mode decomposition (MEMD) generates multiple dimensional
envelopes by projecting signals in all directions of various
spaces (Rehman and Mandic, 2010; Islam et al., 2012). The
autoregressive (AR) model assumes that EEG signals can be
approximated in the AR process, in which the features could be
gained as parameters of the approximated AR models (Zabidi
et al., 2013). TDP was introduced as a set of broadband features
based on the variance of different EEG signals in various orders
(Vidaurre et al., 2009). A wavelet transform (WT) simultaneously
provides ample frequency and time information about EEG
signals at the low and high frequencies, respectively (Jahankhani
et al., 2006). We utilize SP based on AR and TDP as two feature
extraction examples in this paper.

EEG channel selection has been extensively studied. For
instance, multi-objective genetic algorithms (GA) (Kee et al.,
2015) and Rayleigh coefficient maximization based GA (He
et al., 2013) were introduced to simultaneously optimize the
number of selected channels and improve the system accuracy
by embedding classifiers into the GA process. Recursive
feature elimination (Guyon and Elisseeff, 2003) and zero-norm
optimization (Weston et al., 2003) based on the training of
support vector machines (SVMs) were used to reduce the
number of channels without decreasing the motor imagery
EEG classification accuracy (Lal et al., 2004). Sequential floating
forward selection (SFFS) (Pudil et al., 1994) and successive

improved SFFS (ISFFS) (Zhaoyang et al., 2016) took an iterative
channel selection strategy that selected the most significant
feature from the remaining features and dynamically deleted
the least meaningful feature from the selected feature subset.
A Gaussian conjugate group-sparse prior was incorporated into
the classical empirical Bayesian linear model to gain a group-
sparse Bayesian linear discriminant analysis (gsBLDA) method
for simultaneous channel selection and EEG classification (Yu
et al., 2015). Mean ReliefF channel selection (MRCS) adopted an
iterative strategy to adjust the ReliefF-based weights of channels
according to their contribution to the SVM classification
accuracy (Zhang et al., 2016). The Fisher criterion, based
on Fisher’s discriminant analysis was utilized to evaluate the
discrimination of TDP features, extracted from all channels
in different time segments via channel selection, using time
information (CSTI) methods (Yang et al., 2016). GA and pattern
classification using multi-layer perceptrons (MLP) and rule-
extraction based on mathematical programming were combined
to create a generic neural mathematical method (GNMM) to
select EEG channels (Yang et al., 2012). However, a visible
limitation is that the convergence of most of these methods is
unstable, e.g., gsBLDA, leading to an uncertain channel selection
procedure and selected subset.

Therefore, it is natural to select EEG channels by taking
advantage of feature selection methods in other areas, e.g.,
robust feature selection (RFS) (Nie et al., 2010), joint embedding
learning and sparse regression (JELSR) (Hou et al., 2011),
nonnegative discriminative feature selection (NDFS) (Li et al.,
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2012), selecting feature subset with sparsity and low redundancy
(FSLR) (Han et al., 2015b), robust unsupervised feature selection
(RUFS) (Qian and Zhai, 2013), joint Laplacian feature weights
learning (JLFWL) (Yan and Yang, 2014), a general augmented
Lagrangian multiplier (FS_ALM) (Cai et al., 2013) and structural
sparse least square regression based on the l0-norm (SSLSR) (Han
et al., 2015a). RFS, JELSR, and NDFS focused on the l2,1-norm
minimization regularization to develop an accurate and compact
representation of the original data. RUFS tried to solve the
combined object of robust clustering and robust feature selection
using a limited-memory BFGS based iterative solution. JLFWL
selected important features based on l2-norm regularization, and
determined the optimal size of the feature subset according
to the number of positive feature weights. FSLR could retain
the preserving power, while implementing high sparsity and
low redundancy in a unified manner. FS_ALM and SSLSR
attempted to handle the least square regression based on l0-norm
regularization by introducing a Lagrange multiplier and a direct
greedy algorithm, respectively. Further, prevalent deep learning
was also utilized in this area. A point-wise gated convolutional
deep network was developed to dynamically select key features
using a gating mechanism (Zhong et al., 2016). Multi-modal deep
Boltzmann machines were employed to select important genes
(biomarkers) in gene expression data (Syafiandini et al., 2016). A
deep sparse multi-task architecture was exploited to recursively
discard uninformative features for Alzheimer’s disease diagnosis
(Suk et al., 2016). In this paper, we employ three performance-
verified feature selection methods with theoretical convergence,
i.e., RFS, RUFS, and SSLSR, to rank and select channels.

3. MATERIALS AND METHODS

In this section, we describe the datasets, introduce some
notations used throughout this paper, and present the proposed
frameworks.

3.1. Datasets and Pre-processing
In our experiments, we selected two public real world datasets on
motor imagery (MI) paradigms as examples. A brief description
of these two datasets is offered below and their basic statistics are
summarized in Table 1. EEG datasets of other paradigms, e.g.,
P300, are also suitable for this framework.

3.1.1. DS1
Dataset IVa from BCI Competition III is a public EEG dataset
provided by the Berlin BCI group Fraunhofer FIRST (Intelligent
Data Analysis Group) and Campus Benjamin Franklin of the
Charité University (Neurophysics Group). This public dataset is
recorded from five healthy subjects (aa,al,av,aw,ay) during right
hand and right foot motor imageries. The EEG recordings consist
of 118 channels at positions of the extended international 10/20-
system. We choose a version of the data that is down-sampled
at 100 Hz for analysis. In the experiments, subjects performed
three motor imageries for 3.5 s after visual cues for left hand,
right hand, or right foot. After the duration of motor imagery,
a resting interval with random length of 1.75–2.25 s was inserted
for relaxation. The dataset provides only EEG trials for right hand

TABLE 1 | Statistics of the two datasets.

Datasets DS1 DS2

Number of channels 118 59

Sampled frequency (Hz) 100 100

Number of subjects 5 4

Subjects’ name aa,al,av,aw,ay a,b,f,g

Number of trials per class 140 100

and right foot imagery. For each subject, the dataset consists of
signals of 140 trials per class.

In our experiment, the signals in the time interval of [0.5, 3.0]
s are analyzed for each trial. A visual cue is presented to mark the
start time (0 s). A bandpass finite impulse response (FIR) filter
using the window method, with a band of 0.1–40 Hz and order
33, is applied to DS1.

3.1.2. DS2
Dataset I fromBCI Competition IV is another public EEG dataset
provided by the Berlin BCI group Fraunhofer FIRST (Intelligent
Data Analysis Group) and Campus Benjamin Franklin of the
Charité University (Neurophysics Group). This public dataset is
recorded from four healthy subjects (a,b,f,g) during two classes
of motor imagery selected from three classes: left hand, right
hand, and foot (side chosen by the subject; optionally also both
feet). In the experiments, the data was continuous signals of
59 EEG channels and visual cues pointing left, right or down
were presented for a period of 4.0 s during which the subject
was instructed to perform the cued motor imagery task. These
periods were interleaved with 2.0 s of blank screen and 2.0 s with
a fixation cross displayed in the center of the screen. The dataset
provides only EEG trials for left hand and foot imagery. For each
subject, the dataset consists of signals of 100 trials per class.

In our experiment, the signals in the time interval of [0.0, 4.0]
s are analyzed for each trial. A visual cue is presented to mark the
start time (0 s). A bandpass FIR filter using the window method,
with a band of 0.1 to 40 Hz and order 33, is also applied to DS2.

3.2. Notations
In this document, scalars, matrices, vectors, sets, and functions
are denoted as small, boldface capital, boldface lowercase,
blackboard capital, and script capital letters, respectively. xT , XT ,
xi, Xi, Xij, X(i,:), X(:,j), and trace(X)indicate the transpose of
vector x, the transpose of matrix X, the i-th element of x, the i-th
sample of the variable X, the element of X occurring in the i-th
row and j-th column, the i-th row of X, the j-th column of X and
the trace of X respectively. Moreover, ||x||1 is the l1-norm of x,
||X||1 and ||X||2 are them1-norm andm2-norm of matrix X. For
any vector x ∈ R

n×1 and any matrix X ∈ R
n×m, the definitions

of lp-norm,mr-norm andmr,s-norm are given in the Appendix.
Furthermore, assume that we have recorded EEG signals of N

trials, and let X = {Xi}
N
i=1be the set of EEG signal corresponding

to all N trials. Specifically, we represent each trial of EEG signals,
i.e., Xi(i = 1, 2, ...,N), as matrix XM×C, where M and C are
the number of sampled time points and channels in a trial
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respectively. The class indicator vector can be denoted as y ∈
{0, 1, ..., L− 1}N , where L is the number of classes.

3.3. Proposed Methods
We first depict the flowchart of the framework, called feature
compressing and channel ranking (FCCR). Afterward, we
provide the details for its three core components. Lastly, its
pseudo codes are given.

3.3.1. Flowchart of the Framework
Our framework starts with EEG signal pre-processing and single-
channel SP or TDP feature extraction. Next, after dividing all
of the trials into the training and testing sets, we gather all
the features from the different channels for the training trials
and assign them cluster signatures through k-means. Then,
EEG signals are mapped from the three dimensional (trial-
channel-feature) to the two dimensional (trial-channel)matrix by
compressing all feature vectors into their cluster signatures. With
this data representation (two-dimensional matrix) commonly
used in most pattern recognition areas, we employ RFS, RUFS, or
SSLSR to rank and select the channels. Lastly, a traditional LDA is
used to classify the testing trials, with the features corresponding
to the selected channels. The procedure of our proposed FCCR
is summarized in Figure 1B. Notably, FCCRs are subject-specific
since the procedures from feature clustering to channel ranking
in Figure 1B are dependent of the subject.

3.3.2. Feature Extraction
We take SP based on AR model and TDP as two examples to
extract EEG features. In fact, other methods, including WT and
MEMD, can also be used to replace them.

Each EEG signal of a single channel is treated as a time-varying
variable, denoted as x(t), in this section.

3.3.2.1. SP features
A power spectrum is an energy density distribution over
frequencies. The AR Filter actually computes a time series of such
spectra, representing a flow of energy through each single point
in the frequency domain. In this way, the SP based on AR model
can be treated as the energy per frequency per time.

AR model is a representation of a type of random process
(Zabidi et al., 2013), which specifies that the output variable
depends linearly on its own previous values. Hence, the predicted
value x̂(t) of an AR process is defined by,

x̂(t) = −

p
∑

k=1

ap(k)x(t − k), (1)

where ap(k) is the coefficient of the p-th order AR process.
Then, the estimated power spectrum directly corresponds to

the filter’s transfer function whose coefficients are actually AR
coefficients. To obtain spectral power for finite-sized frequency
bins, that power spectrum is multiplied by total signal power, and
integrated over the frequency ranges corresponding to individual
bins. We select frequency bins from 0 to 30 Hz with step 3 Hz,
resulting 11 values per channel for each trial.

3.3.2.2. TDP features
TDPs are a set of broadband features with physical meanings,
whose definition is as (Vidaurre et al., 2009).

TDP(p) = log

(

var
(dpx(t)

dtp

)

)

, p = 0, 1, 2, ..., (2)

in which we apply logarithm to regulate the TDPs’ distribution
to Gaussian approximately (Vidaurre et al., 2009) to fit the LDA
classifier (Müller et al., 2004).

Three TDPs are used in this paper to extract EEG features
in both temporal and frequency domain, that is, fTDP =

[TDP(0),TDP(1),TDP(2)]. Typically, TDP(0) depicts the EEG
character in terms of amplitude, TDP(1) can be interpreted as a
kind of EEG pattern in terms of high frequency (mainly the beta
band), and TDP(2) carries the essential information of the change
in frequency (Vidaurre et al., 2009).

3.3.3. Feature Compressing and Data Representation
With SP or TDP features extracted from all channels of all trials,
we collect all features of training trials (with N trials) as a feature

pool ({fi}
N×C×11
i=1 for SP features or {fi}

N×C×3
i=1 for TDP features),

abandoning its trial and channel information. Then, the classical
k-means is used as an example to cluster the above EEG features.
Likewise, almost all of data clustering approaches, such as spectral
clustering and AP clustering, are acceptable to replace it.

In this paper, we utilize k-means clustering to partitionN×C×
11 or N × C × 3 features into K(≤ N) sets C = {C1,C2, ...,CK}

in order to minimize the within-cluster sum of squares (WCSS).
Formally, the object of k-means is to find:

argmin
C

K
∑

j=1

∑

i∈Cj

||fi − µj||
2, (3)

where µj is the mean of features in Cj. This is equivalent to
minimizing the pairwise squared deviations of features in the
same cluster:

argmin
C

K
∑

j=1

1

2|Cj|

∑

i,i′∈Cj

||fi − fi′ ||
2 (4)

After dividing training features into K clusters using standard
Lloyd’s algorithm (Lloyd, 1982), we can replace feature vector fi
with its corresponding cluster signature j if i ∈ Cj. In this way,

training signals can be represented as a matrix X̃N×C.

3.3.4. Channel Ranking
After representing training trials as a normal data matrix X̃ with
its rows and columns indicating trials and channels, we take RFS,
RUFS and SSLSR as examples to rank and select EEG channels.
The main strength of these methods is that they could find the
optimal channel subset with the strict convergence in theory.
Similarly, researchers can use other appropriate feature selection
algorithms to rank channels.

In this section, Ỹ ∈ {0, 1}N×L is the class label indicator matrix
(Ỹil = 1 if the i-th sample belongs to the l-th class, otherwise,
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Ỹil = 0), and W ∈ R
C×L is the weight matrix of channels. After

obtaining W, we rank all channels according to their weights,
which are computed as ||W(i,:)||2.

3.3.4.1. Ranking based on RFS
RFS is an efficient and robust feature selection by emphasizing
l2,1-norm minimization on both the loss function and the
regularization term (Nie et al., 2010). The objective of RFS is

min
W

J(W) = ||X̃W− Ỹ||2,1 + α||W||2,1. (5)

Note that Equation (5) is equivalent to

min
W,E
||E||2,1 + ||W||2,1, s.t. X̃W+ αE = Ỹ. (6)

By setting A = [X̃ αI] ∈ R
N×(C+N) and U =

[

W

E

]

∈

R
(C+N)×L, we can reformulate the objective of RFS as

min
U
||U||2,1 + ||W||2,1, s.t. AU = Ỹ. (7)

Then, the optimal U is gained by setting the derivative of the
Lagrangian function of Equation (7) on U to zeros, that is

U = D−1AT(AD−1AT)−1Ỹ, (8)

where D is a diagonal matrix with the i-th diagonal element as
Dii =

1
2||U(i,:)||2

.

The pseudo codes of RFS is given in Algorithm 1.

Algorithm 1 Pseudo codes of RFS

Input:

EEG data matrices X̃N×C, ỸN×L and hyper-parameter α.
Output:

Channel weight matrixW.

1: Set iter = 0, A = [X̃ αI] and initializeD
(C+N)×(C+N)
0 as an

identity matrix.
2: repeat

3: Calculate Uiter+1 = D−1iterA
T(AD−1iterA

T)−1Ỹ.
4: Update Diter+1, where the i-th diagonal element as Dii =

1
2||U(i,:)||2

.

5: iter = iter + 1.
6: until Converges

The theoretical proof of the convergence of Algorithm 1 can
be found in Nie et al. (2010).

3.3.4.2. Ranking based on RUFS
RUFS utilizes l2,1-norm minimization on processes of both label
learning and feature learning to effectively handle outliers and

noise in the data, as well as reduce redundant or irrelevant
channels. The objective of RUFS is often written as

min
F,G,W
||X̃− GF||2,1 + βtrace(GTLG)

+ γ ||X̃W− G||2,1 + η||W||2,1,

s.t. G ∈ R
N×L
+ ,GTG = I,

F ∈ R
L×C
+ ,W ∈ R

C×L
+ ,

(9)

where L is the normalized graph Laplacian matrix commonly
used in unsupervised learning (Li et al., 2012).

Then, the optimal W is obtained by using a limited-memory
BFGS (Nocedal, 1980) and BMLVM (Benson and Moré, 2001)
based alternating iterative algorithm, which can be summarized
in Algorithm 2.

Algorithm 2 Pseudo codes of RUFS

Input:

EEG data matrix X̃N×C and hyper-parameters β ,γ ,η.
Output:

Channel weight matrixW.
1: Set iter = 0 and initialize G0, F0← [(GTG)−1GTX̃]+,W0.
2: repeat

3: Fixing Giter , compute Witer+1 from L-BFGS algorithm
given Giter ,Witer , β and γ .

4: Fixing Fiter and Witer+1, compute Giter+1 from BMLVM
algorithm given Giter , Fiter , β and η.

5: Fixing Giter+1, compute Fiter+1 from BMLVM algorithm
given Giter+1, Fiter .

6: iter = iter + 1.
7: until Converges

The theoretical proof of the convergence of Algorithm 2 is
referenced in Qian and Zhai (2013) and Bezdek and Hathaway
(2003).

3.3.4.3. Ranking based on SSLSR
SSLSR is an effective greedy algorithm to directly handle
the challenging l2,0-norm based structural sparse least square
regression, which has the objective

min
W

L(W) : min
W

1

N
||X̃W− Ỹ||22, s.t. ||W||r,0 ≤ C, (10)

where C is the number of selected channels.
Start withW0 = 0, SSLSR develops an alternating forward and

backward strategy to pick and eliminate (if possible) a channel in
each iteration.

Suppose at the beginning of the iter-th iteration, the selected
channel set is F

iter . Then ∀i ∈ F
iter ,Witer

(i,:)
6= 0. In the forward

step, we need to find the channel which reduces the loss most,
i.e., find i /∈ F

iter and θ ∈ R
L×1 such that

min
i/∈Fiter

min
θ

L(Witer + eiθ
T), (11)
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where ei ∈ R
C×1 is the vector of zeros, except for the i-

component which is one. θ is the optimal weight vector for one
channel.

Since L(Witer + eiθ
T) is convex in terms of θT , the optimal θ

for i /∈ F
iter can be gained by setting ∂L(Witer + eiθ

T)/∂θ = 0,
that is,

θ = (Ỹ− X̃Witer)TX̃(:,i)/||X̃(:,i)||
2
2. (12)

Thus, we have

[iiter , θ iter] = argmin
i/∈Fiter

argmin
θ

L(Witer + eiθ
T). (13)

Before beginning the backward step, F and W are updated as
F
iter+1 = F

iter ∪ {iiter} and Witer+1 = Witer + eiiterθ
iter T

respectively.
In the backward step, the channel with the least contribution

to reducing the loss is selected and we need to determine whether
to remove it according to a specific criterion. That is to say, we
need firstly to find

jiter = argmin
j∈Fiter

L(Witer − ejW
iter
(j,:))− L(Witer), (14)

which is equivalent to finding j ∈ F
iter such that

min
j∈Fiter

L(Witer − ejW
iter
(j,:)). (15)

The eliminating criterion relies on the decrease and increase of
the loss in forward and backward steps. Specifically, if and only if

1iter
+ < ν1iter

− , (16)

the jiter-th channel can be removed from F, where ν ∈ (0, 1) is
a hyper-parameter, 1iter

− = L(Witer) − L(Witer+1) and 1iter
+ =

L(Witer − ejiterW
iter
(jiter ,:)

)− L(Witer).

The pseudo codes of SSLSR are as given in Algorithm 3 and
Algorithm 4.

The theoretical proof of the convergence of Algorithm 3 can
be found in Han et al. (2015a).

3.3.5. Pseudo Codes of the Framework
The flowchart and pseudo codes of the proposed framework are
summarized in Figure 1 and Algorithm 5.

4. RESULTS

We refer to our methods based on RFS, RUFS, and SSLSR as
FCCR1, FCCR2, and FCCR3, respectively, and compare them
with some baselines. In this section, we present the experimental
setup, followed by the classification results.

4.1. Experimental Setup
In this section, the baselines, metrics and other experimental
settings are given in sequence.

Algorithm 3 Pseudo codes of SSLSR

Input:

EEG data matrix X̃N×C and class label indicator matrix
ỸN×L, number of selected channels C and number of
maximum iterationMI.

Output:

Selected feature index set F.
1: Initialize F

0 = [ ] W0 = 0C×L, iter = 0.
2: repeat

3: % forward
4: Find [iiter , θ iter] = argmin

i/∈Fiter

argmin
θ

L(Witer + eiθ
T)by

Algorithm 4.
5: Update F

iter+1 = F
iter ∪ {iiter}.

6: LetWiter+1 =Witer + eiiterθ
iter T .

7: Compute 1− = L(Witer)− L(Witer+1).
8: if 1− ≤ ǫ then

9: break

10: end if

11: Set iter = iter + 1.
12: % backward
13: Find jiter = argmin

j∈Fiter

L(Witer − ejW
iter
(j,:)

).

14: Compute 1+ = L(Witer − ejiterW
iter
(jiter ,:)

)− L(Witer).

15: if 1+ ≥ ν1− then

16: continue.

17: end if

18: Set iter = iter − 1
19: Update F

iter = F
iter+1 − {jiter+1}

20: LetWiter =Witer+1 − ejiter+1W
iter
(jiter+1,:)

21: until |F| = N or iter = MI

Algorithm 4 Pseudo codes of the forward step of SSLSR

Input:

EEG data matrices X̃N×C and class label indicator matrix
ỸN×L, selected channel set F

iter and channel weight matrix
Witer .

Output:

iiter and θ iter .
1: Initialize Lmin = +∞ and T = Y − Fiter = Y −
∑

i∈Fiter X̃(:,i)W
iter
(i,:)

2: for all i /∈ F
iter do

3: Calculate θ = 1
||X̃(:,i)||

2
2

TTX̃(:,i)

4: if (L(Witer + eiθ
T) < Lmin) then

5: Update Lmin = L(Witer + eiθ
T)

6: Set iiter = i and θ iter = θ

7: end if

8: end for

4.1.1. Baselines
To validate the effectiveness of FCCRs, we compare themwith the
following baselines, including three kinds of static channel subset
and three kinds of channel selection with training algorithms.
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Algorithm 5 Pseudo codes of the proposed FCCR

Input:

N EEG data matrices XM×C
1 , XM×C

2 ,..., and XM×C
N , hyper-

parameter α, β , γ , η, ν.
Output:

N-dimensional predicted label vector ỹ.
1: EEG data pre-processing.
2: EEG feature extraction channel-wise according to Section

3.3.2.
3: Partition all trials into training and testing sets.
4: Cluster features of training trials using k-means.
5: EEG data representation.
6: Channel ranking and selection by Algorithm 1, Algorithm

2, or Algorithm 3.
7: Train LDA classifier using training trials with selected

channels.
8: Predict the label vector of testing trails using trained LDA.

1. All channels: Signals of all available channels are used for EEG
classification;

2. 3C channel s: Signals of C3, Cz, and C4 are used for EEG
classification;

3. MEMD+STFT (Bashar et al., 2016): Features extracted based
onmultivariate empirical mode decomposition and short time
Fourier transform are used for EEG classification;

4. gsBLDA (Yu et al., 2015): Signals of channels selected based
on group sparse Bayesian linear discriminant analysis are used
for EEG classification;

5. MRCS (Zhang et al., 2016): Signals of channels selected by
combining ReliefF and SVM are used for EEG classification;

6. NSGA-II (Kee et al., 2015): Signals of channels selected by a
multi-objective genetic algorithm, i.e., NSGA-II, are used for
EEG classification.

4.1.2. Metrics
Following previous researches, we employ the classification
accuracy and F1 score to evaluate the performance of these
methods.

Accuracy discovers the one-to-one relationship between
predicted and ground truth labels. Denoting ỹi and yi as
the predicted result and the ground truth label of a trial Xi

respectively, we can compute accuracy as follows.

Accuracy =
1

n

n
∑

i=1

δ(yi, ỹi)× 100%, (17)

where n is the total number of trials and δ(x, y) is the delta
function that equals 1 if x = y and 0 otherwise. A larger accuracy
indicates a better performance.

F1 score is another widely used measure in evaluating
the performance of classification. It is the harmonic mean of
precision and recall,

F1 = 2 ·
Precision× Recall

Precision+ Recall
× 100%. (18)

Again, a larger F1 indicates a better performance.

4.1.3. Other Settings
It is universally acknowledged that the performance of most
algorithms is dependent on the hyper-parameters they contain.
Therefore, we set some parameters in advance.

In the feature extraction process, for all methods except
for MEMD+STFT, the SP features are extracted using the
BCI2000 software tools (http://www.bci2000.org), with
parameters as shown in Table 2 according to Krusienski
et al. (2006), McFarland and Wolpaw (2008). Three TDPS, i.e.,
TDP(0), TDP(1), and TDP(2) are extracted in this study. For
MEMD+STFT, the hyper-parameters we used are identical to the
original work (Bashar et al., 2016).

In the feature clustering process, for our FCCRs, the number
of clusters is determined using the "grid-search" strategy, i.e.,
from 2 to 8 with a step of 2, 10 to 90 with a step of 10, and 100
to 700 with a step of 200 on each subject, using the litekmeans
algorithm.

In the channel ranking process, for gsBLDA, the stop criterion
is whether the max iteration beyond 10 or the change of α

or β is smaller than 0.01. For MRCS, the number of nearest
neighbors k = 10, the maximum iteration number 50, ǫ =

0.01, and 10-fold cross-validation is used to evaluate the average
classification accuracy when the top-n channels are used. For
NSGA-II, the population is 300, the maximum generation is
200, and the 10-fold cross-validation accuracy is also utilized to
estimate the first objective. The only difference from Kee et al.
(2015) and Zhang et al. (2016) is that LDA, instead of the library
for support vector machines (LIBSVM), is employed inside the
channel selection procedure to maintain consistence with the
following classification process.

In the trial classification process, 5 × 5 cross-validation on
the LDA classifier is used throughout this study [except for
MEMD+STFT, in which we use k nearest neighbor (kNN)
according to Bashar et al., 2016]; i.e., five times for each dataset,
we partition all the trials into five sets and choose four of them
as the training sets, with the last set as the testing set. It should
be noted that the training and testing sets are identical for all
methods. For gsBLDA, MRCS, FCCR1, FCCR2, and FCCR3, the
numbers of selected channels range from 1 to 118 (DS1) or 59
(DS2) with an incremental step of 1, and the numbers of the
channels selected in NSGA-II are set according to the population
with the best fitness.

4.2. Experimental Results
To examine the effectiveness of the proposed framework, the
classification experimental results are given and analyzed in
this section. Because of the limited length of this paper, for
some experiments related to subjects and features, we randomly

TABLE 2 | Parameters used to extract SP features by BCI2000.

Model order First bin center Last bin center Bin width Evaluations

per bin

16 0 Hz 30 Hz 3 Hz 15
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TABLE 3 | The mean classification accuracy (%) of nine methods on DS1.

With the SP feature aa al av aw ay mean

All channels 71.43 ± 4.37 83.57 ± 5.56 65.71 ± 8.41 76.07 ± 4.11 78.57 ± 3.34 75.07

3C channels 69.29 ± 5.84 91.07 ± 2.19 58.93 ± 3.79 79.29 ± 2.99 85.36 ± 6.61 76.79

MEMD + STFT 50.36 ± 5.11 54.64 ± 2.04 50.36 ± 5.42 39.29 ± 6.06 53.93 ± 8.32 49.71

gsBLDA 71.79 (83) ± 4.26 87.86 (42) ± 3.43 65.71 (115) ± 7.08 77.86 (91) ± 5.73 80.36 (112) ± 4.55 76.71

MRCS 75.00 (94) ± 1.26 84.64 (89) ± 5.45 66.07 (115) ± 7.14 77.50 (94) ± 2.71 79.64 (86) ± 7.21 76.57

NSGA-II 75.00 (58) ± 5.50 86.43 (55) ± 5.30 68.57 (55) ± 6.87 80.36 (58) ± 3.79 81.79 (36) ± 5.56 78.43

FCCR1 75.36 (82) ± 3.79 88.21 (43) ± 5.14 70.36 (11) ± 9.57 79.64 (82) ± 1.60 86.43 (4) ± 4.48 80.00

FCCR2 80.00 (5) ± 6.39 90.71 (80) ± 1.26 69.64 (85) ± 4.07 80.36 (97) ± 4.82 88.93 (4) ± 5.14 81.93

FCCR3 76.79 (7) ± 3.79 86.79 (66) ± 2.04 68.57 (72) ± 7.10 80.00 (79) ± 3.87 86.79 (4) ± 4.11 79.79

With the TDP feature aa al av aw ay mean

All channels 60.71 ± 3.57 85.00 ± 3.70 62.86 ± 7.19 68.21 ± 6.61 73.57 ± 3.87 70.07

3C channels 66.07 ± 10.02 91.43 ± 2.65 62.86 ± 3.87 78.21 ± 4.26 88.21 ± 5.73 77.36

MEMD + STFT 50.36 ± 5.11 54.64 ± 2.04 50.36 ± 5.42 39.29 ± 6.06 53.93 ± 8.32 49.71

gsBLDA 71.07 (19) ± 5.56 94.29 (17) ± 2.93 68.57 (22) ± 5.14 80.36 (14) ± 5.21 87.86 (21) ± 6.11 80.43

MRCS 64.64 (113) ± 2.93 87.86 (38) ± 7.30 65.00 (6) ± 5.14 76.43 (20) ± 5.56 81.07 (33) ± 6.00 75.00

NSGA-II 69.29 (34) ± 6.61 94.64 (26) ± 2.53 64.29 (37) ± 4.19 84.64 (33) ± 5.14 88.57 (27) ± 4.82 80.29

FCCR1 75.00 (15) ± 5.59 93.93 (19) ± 3.91 69.64 (14) ± 5.30 84.64 (33) ± 6.36 88.57 (26) ± 3.19 82.36

FCCR2 75.71 (11) ± 7.32 95.36 (14) ± 2.71 68.21 (48) ± 4.79 80.71 (32) ± 4.89 90.00 (20) ± 3.43 82.00

FCCR3 73.57 (13) ± 7.72 94.64 (14) ± 1.79 67.86 (9) ± 7.14 85.00 (29) ± 5.59 91.79 (10) ± 4.11 82.57

The number of selected channels (listed in the bracket) and the standard deviation are also given. The best performance is highlighted in bold.

partitioned the results for all subjects into different experiments,
and show them in Figures 3–5. Thus, all nine subjects and two
features are covered, if we consider these experimental results
together.

4.2.1. Classification Performance Comparison
We summarize the classification results of different methods
using the two real world MI-EEG datasets in Tables 3–6.

From these four tables, we make the following observations.
First, the classification performance of the selected channel
subsets is superior to All channels, demonstrating the practical
significance of channel selection. For instance, as shown in
Table 3, the best mean accuracies for the selected channels on
DS1 are 81.93 and 82.57%; i.e., they are 9.14 and 17.8% better
than the 75.07 and 70.07% for All channels, respectively.

Second, channel subsets selected through training often
perform better than static channel subsets, as they verify the role
of channel selection approaches using training. Taking Table 6 as
an example, the best mean F1 scores on DS2 for training methods
are 75.13 and 78.99%, which outperform the 67.00 and 69.71% of
the static 3C channels by 12.1 and 13.3%, respectively.

Third, our proposed FCCRs usually outperform other channel
selection methods on various subjects from different datasets. In
terms of mean accuracies and F1 scores, our FCCRs consistently
obtain the best performance. Specifically, of 36 results on nine
subjects with two features in terms of two metrics, the FCCRs
gain the 31 best results, occupying 86.1%.

Finally, our FCCRs can sometimes gain the best performance
with fewer channels, indicating the effectiveness of our

framework. Especially on subject ay with SP features, all three
FCCRs obtain high accuracies and F1 scores with only four
channels. In contrast, the fewest channels selected by other
methods are 36 (NSGA-II), nine times the FCCRs’ results.

The p-values of one-way analysis of variance (ANOVA)1

statistical tests of the improvement for all methods are plotted
in Figure 2, from which we can observe that the FCCRs obtain
a significant improvement over the other methods in most
situations. The three FCCRs have 18 improvements over six
baselines for each panel; an average of 14 improvements is
significant, occupying 77.8%.

Except for the above, we plot the precision and recall (P-R)
pairs for all methods in Figure 3, from which we can obtain other
observations. First, some channel selection approaches may be
limited in the recall, e.g., MRCS and NSGA-II on subject aa with
SP features; gsBLDA, MRCS and NSGA-II on subject aw with
TDP features; and gsBLDA on subject a with TDP features.

Second, our FCCRs can obtain a relatively high precision with
acceptable recall. Specifically, on subject aw with TDP features,
FCCR2, and FCCR3 both gain the recall of 1 and the precision
larger than 0.8 at the same time, much better than the baselines.

Third, the P-R curve varies obviously with the subjects. For
subjects aa and b with SP features, the recall of all the methods
is below 0.9, and the precision is hardly beyond 0.9. Conversely,

1To completely compare the methods with channel selection, we compute the

p-values using the Acc or F1 across all 118(DS1) or 59(DS2) channels and five

validations for gsBLDA, MRCS and the FCCRs. The results in Tables 3–6 are used

to compute the p-values for other methods.
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TABLE 4 | The mean classification accuracy (%) of nine methods on DS2.

With the SP feature a b f g mean

All channels 74.50 ± 3.26 67.00 ± 4.81 62.00 ± 4.81 72.00 ± 5.97 68.88

3C channels 69.00 ± 6.02 61.00 ± 3.79 65.00 ± 5.59 77.50 ± 3.95 68.13

MEMD + STFT 54.00 ± 4.18 51.00 ± 7.42 52.00 ± 5.70 49.00 ± 8.40 51.50

gsBLDA 74.50 (59) ± 3.26 67.00 (57) ± 6.22 70.50 (2) ± 6.94 75.50 (24) ± 3.26 71.88

MRCS 74.50 (59) ± 3.26 67.00 (59) ± 4.81 63.00 (58) ± 4.11 76.00 (36) ± 2.85 70.13

NSGA-II 74.50 (25) ± 7.79 62.00 (23) ± 2.74 68.00 (9) ± 3.26 73.00 (23) ± 3.26 69.38

FCCR1 76.50 (7) ± 5.86 69.50 (47) ± 3.06 72.00 (5) ± 7.79 77.50 (5) ± 5.76 73.87

FCCR2 77.00 (5) ± 5.76 71.00 (21) ± 8.18 76.50 (6) ± 9.62 77.00 (25) ± 6.85 75.38

FCCR3 76.50 (42) ± 8.40 69.00 (51) ± 7.20 70.00 (7) ± 3.95 77.00 (33) ± 6.47 73.13

With the TDP feature a b f g mean

All channels 62.50 ± 10.90 60.00 ± 7.91 55.00 ± 9.84 60.50 ± 11.51 59.50

3C channels 71.00 ± 8.02 63.50 ± 5.76 68.00 ± 6.71 80.00 ± 1.77 70.63

MEMD + STFT 54.00 ± 4.18 51.00 ± 7.42 52.00 ± 5.70 49.00 ± 8.40 51.50

gsBLDA 80.50 (16) ± 2.74 65.00 (14) ± 14.47 74.00 (11) ± 8.22 77.50 (17) ± 6.37 74.25

MRCS 76.50 (25) ± 8.22 66.50 (15) ± 9.29 72.50 (8) ± 7.07 73.00 (26) ± 6.22 72.13

NSGA-II 78.50 (12) ± 5.76 69.00 (24) ± 7.62 78.00 (11) ± 5.70 79.50 (10) ± 8.37 76.25

FCCR1 83.50 (14) ± 2.85 69.50 (8) ± 12.94 78.50 (22) ± 3.79 83.50 (18) ± 4.87 78.75

FCCR2 81.00 (29) ± 4.68 72.50 (9) ± 3.26 81.00 (9) ± 4.81 82.50 (8) ± 7.20 79.25

FCCR3 81.00 (16) ± 5.18 71.00 (18) ± 6.98 80.50 (21) ± 4.47 82.00 (18) ± 5.42 78.63

The number of selected channels (listed in the bracket) and the standard deviation are also given. The best performance is highlighted in bold.

TABLE 5 | The mean F1-score (%) of nine methods on DS1.

With the SP feature aa al av aw ay mean

All channels 72.41 ± 4.15 84.25 ± 5.36 65.64 ± 8.71 75.74 ± 4.36 78.91 ± 3.90 75.39

3C channels 68.32 ± 5.69 90.71 ± 2.25 58.42 ± 3.17 77.36 ± 3.91 84.30 ± 7.87 75.82

MEMD + STFT 44.89 ± 8.77 52.84 ± 5.08 52.31 ± 3.87 36.65 ± 8.26 48.04 ± 8.95 46.94

gsBLDA 73.18 (95) ± 3.14 88.27 (39) ± 2.53 65.91 (115) ± 7.16 78.45 (91) ± 5.25 80.79 (112) ± 5.20 77.32

MRCS 75.43 (94) ± 2.31 85.49 (87) ± 6.29 65.83 (117) ± 8.22 77.30 (94) ± 3.61 80.53 (86) ± 6.62 76.92

NSGA-II 75.17 (47) ± 7.88 86.97 (55) ± 4.97 70.06 (55) ± 6.54 80.73 (58) ± 4.12 81.50 (36) ± 5.79 78.89

FCCR1 76.16 (113) ± 4.69 88.61 (43) ± 4.56 69.93 (11) ± 8.90 79.86 (82) ± 2.97 87.16 (4) ± 7.20 80.34

FCCR2 80.99 (5) ± 5.68 91.18 (80) ± 1.03 69.66 (60) ± 5.35 80.51 (97) ± 4.85 89.53 (4) ± 3.59 82.37

FCCR3 78.44 (7) ± 3.06 87.55 (66) ± 1.82 68.61 (55) ± 4.04 79.65 (79) ± 4.34 87.11 (4) ± 4.00 80.27

With the TDP feature aa al av aw ay mean

All channels 58.52 ± 3.89 85.09 ± 3.75 62.61 ± 6.21 68.59 ± 7.62 73.29 ± 5.53 69.62

3C channels 66.94 ± 8.42 91.70 ± 2.42 63.49 ± 4.82 77.82 ± 6.03 88.76 ± 4.84 77.74

MEMD + STFT 44.89 ± 8.77 52.84 ± 5.08 52.31 ± 3.87 36.65 ± 8.26 48.04 ± 8.95 46.94

gsBLDA 71.89 (13) ± 4.91 94.49 (17) ± 2.66 68.51 (22) ± 5.54 79.75 (54) ± 6.53 87.92 (21) ± 6.28 80.51

MRCS 64.09 (113) ± 4.34 88.46 (38) ± 6.40 67.62 (6) ± 6.83 76.05 (20) ± 5.81 81.49 (33) ± 5.64 75.54

NSGA-II 69.36 (34) ± 6.10 94.68 (26) ± 2.48 65.21 (28) ± 10.91 84.91 (33) ± 4.65 88.73 (27) ± 4.59 80.58

FCCR1 75.86 (15) ± 4.86 94.09 (33) ± 3.74 69.86 (14) ± 3.96 84.67 (33) ± 4.88 88.68 (26) ± 1.48 82.63

FCCR2 76.42 (11) ± 6.31 95.55 (18) ± 4.98 69.60 (48) ± 7.48 80.71 (35) ± 4.62 90.00 (20) ± 5.27 82.45

FCCR3 73.30 (13) ± 8.48 94.85 (32) ± 3.42 68.45 (7) ± 3.79 84.57 (29) ± 5.79 91.77 (10) ± 3.99 82.59

The number of selected channels (listed in the bracket) and the standard deviation are also given. The best performance is highlighted in bold.
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TABLE 6 | The mean F1-score (%) of nine methods on DS2.

With the SP feature a b f g mean

All channels 74.09 ± 2.60 67.95 ± 4.34 60.77 ± 8.73 71.51 ± 7.26 68.58

3C channels 66.70 ± 5.44 62.08 ± 3.37 62.65 ± 8.19 76.57 ± 4.63 67.00

MEMD + STFT 51.11 ± 2.99 40.23 ± 7.26 50.25 ± 9.65 47.93 ± 7.15 47.38

gsBLDA 74.09 (59) ± 2.60 68.27 (57) ± 5.93 69.10 (2) ± 8.51 75.05 (24) ± 5.18 71.63

MRCS 74.09 (59) ± 2.60 68.24 (58) ± 3.75 63.38 (11) ± 5.77 75.56 (36) ± 4.12 70.32

NSGA-II 74.15 (25) ± 7.81 63.61 (23) ± 3.66 66.14 (9) ± 4.13 71.33 (23) ± 2.53 68.81

FCCR1 75.49 (7) ± 4.80 70.88 (47) ± 5.29 72.59 (5) ± 9.90 75.79 (57) ± 7.91 73.69

FCCR2 75.85 (5) ± 6.38 72.44 (21) ± 9.74 76.12 (6) ± 10.31 76.11 (25) ± 5.34 75.13

FCCR3 76.17 (46) ± 6.13 70.35 (51) ± 5.71 70.59 (7) ± 3.22 76.05 (24) ± 6.48 73.29

With the TDP feature a b f g mean

All channels 63.18 ± 9.86 58.52 ± 8.57 50.94 ± 16.99 61.42 ± 11.54 58.51

3C channels 68.87 ± 8.28 63.29 ± 5.21 67.31 ± 8.44 79.38 ± 1.24 69.71

MEMD + STFT 51.11 ± 2.99 40.23 ± 7.26 50.25 ± 9.65 47.93 ± 7.15 47.38

gsBLDA 78.99 (16) ± 1.43 65.29 (4) ± 5.16 74.77 (11) ± 7.40 78.11 (18) ± 3.32 74.29

MRCS 75.58 (25) ± 10.68 65.94 (15) ± 10.66 71.94 (8) ± 8.50 70.81 (23) ± 5.18 71.07

NSGA-II 78.29 (12) ± 5.98 69.75 (24) ± 7.83 78.47 (11) ± 6.10 78.52 (13) ± 7.37 76.26

FCCR1 83.59 (14) ± 3.41 69.30 (8) ± 14.41 78.17 (22) ± 4.01 82.88 (18) ± 5.21 78.48

FCCR2 80.09 (34) ± 3.90 72.81 (9) ± 3.12 80.90 (9) ± 4.37 82.14 (8) ± 5.37 78.99

FCCR3 79.87 (16) ± 5.93 71.46 (18) ± 6.76 80.35 (21) ± 5.57 81.76 (16) ± 4.49 78.36

The number of selected channels (listed in the bracket) and the standard deviation are also given. The best performance is highlighted in bold.

FIGURE 2 | p-value for the improvements of nine methods on two datasets with SP or TDP features. The white diamonds at the center of each square denote a

statistically significant improvement. Red rectangles mark the p-values of the proposed FCCRs relative to the baselines.

many markers are distributed in the area beyond 0.9 in terms of
both precision and recall for subjects aw and a with TDP features.

4.2.2. Selected Channels Comparison
To visually compare the performance of the different channel
selection approaches, we plot the classification accuracies of

nine methods with different numbers of selected channels on
four subjects in Figure 4. The observations are as follows. First,
almost all channel selection methods are effective, including 3C
channels, gsBLDA, MRCS, NSGA-II and three FCCRs, since
their accuracies with fewer selected channels can outperform
the ones with all channels. Second, few channel selection results
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FIGURE 3 | Precision-recall curves for nine methods on four subjects with SP or TDP features.

are superior to the ones with 3C channels. In fact, on subject g
with TDP features, only the FCCRs outperform the 3C channels.
Third, the proposed FCCRs can obtain the best performance
compared with the other methods in most situations. For these
four results, the best performance is always acquired by FCCRs.
Fourth, our FCCRs are able to gain the highest accuracies with
few channels, which is consistent with the above results.

Additionally, in Figure 5, we display the selected channel
subset on the subject’s scalp with the top classification accuracies
for subject ay, in which the channels ranked from top to
bottom are indicated by the red to blue areas. It is clear that
significant and informative channels relevant to the MI-EEG,
i.e., channels in the motor-sensory cortex, are selected first by
the proposed FCCRs. gsBLDA, MRCS and NSGA-II usually

select some irrelevant or redundant channels, possibly having
an adverse effect on their classification performance, which is
consistent with the results in section 4.2.1 and Figure 4.

4.2.3. Computational Complexity Comparison
In this subsection, we experimentally analyze the computational
complexity of nine methods by comparing their average running
time (ART) for nine subjects with two datasets, on a PC with a
4.0GHz Intel i-7 6700K CPU with 32 GB of memory.

From Figure 6 and Table 7, we can observe that the ARTs of
the FCCRs are longer than some approaches without training,
including All channels and 3C channels. In addition, the fact that
the FCCRs run faster than MRCS, NSGA-II, and MEMD+STFT
demonstrates their efficiency. It is interesting that MEMD+STFT
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FIGURE 4 | Average classification accuracy and F1 scores of nine algorithms with numbers of selected channels varying from one to all available in the step of one on

subjects with different features.

is unexpectedly slow, even though it has no channel selection.
It is also clear that the ARTs of FCCRs are <10 s on nine
subjects, which is comparable with motor imagery paradigms,
demonstrating their practical worth in real applications.

4.2.4. Parameter Sensitivity
The insensitivity of our proposed framework to cluster numbers
is demonstrated in Figure 7, in which we notice that cluster
numbers exert a limited influence on classification accuracies in
quite a large range, from 2 to 300.

4.2.5. Comprehensive Comparison
In addition to the above experiments, we comprehensively
compare nine methods comprehensively in terms of six metrics,
i.e., mean accuracy (MA), mean F1 score (MF), mean precision
(MP), mean recall (MR), average running speed (ARS, number

of trials divided by ART), and average channel reduction ratio
(ACRR, ratio of number of removed channels to all channels),
and show the results in Figure 8. In this figure, the inner hexagon
indicates 0 for MA, MF, MP, and MR, the smallest ARS, and 0%
for ACRR. The outer hexagon indicates 1 for MA, MF, MP, and
MR, the largest ARS, and 100% for ACRR. Thus, for all results,
more outside markers mean better performance.

It appears from Figure 8 that, for all data sets with SP or
TDP features, the FCCRs are superior to other state-of-the-art
methods in terms of almost all metrics, except for ARS.

5. DISCUSSION

From the experimental results shown above, we find that
our methods are conducive to EEG classification through
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FIGURE 5 | Topographical map of multichannel MI-EEG recordings for subject ay with the SP feature. Six rows indicate six methods, i.e., gsBLDA, MRCS, NSGA-II

and our three proposed methods. Five columns indicate the five cross-validation. We only retain the channels included in the optimal channel subset. Red and blue

represent the top and bottom rankings.

feature compression, low-dimensional data representation, and
convergent channel ranking. The primary reasons for the
promising classification performance of our FCCRs include the

following: (1) motor-sensory cortex signals are much more
relevant to MI-EEG than signals of other cortexes; signals from
redundant channels corresponding to unrelated cortexes may
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FIGURE 6 | Average running time (s) of nine methods on nine subjects with the configurations with the best accuracies.

TABLE 7 | Average running time (ART) measured in s of nine methods on two datasets.

Method DS1 DS2 Mean

With the SP feature With the TDP feature With the SP feature With the TDP feature

All channels 1.086 0.253 0.685 0.153 0.544

3C channels 1.031 0.242 0.637 0.149 0.515

MEMD + STFT 13,949 13,949 10,752 10,752 12,351

gsBLDA 1.670 0.354 0.818 0.196 0.760

MRCS 43.31 17.78 71.42 37.76 42.57

NSGA-II 8,832 3,316 5,368 2,790 5,077

Proposed1 6.828 2.149 1.764 1.105 2.962

Proposed2 6.645 6.394 1.811 0.858 3.927

Proposed3 8.100 1.961 1.187 1.580 3.207

The shortest ARTs are highlighted in bold.

negatively influence the EEG classification performance; (2)
informative channels often vary between subjects and the optimal
channel subsets need to be found empirically; the intrinsic
physiological and mental condition divergence among subjects
during the experimental process is fairly large; (3) our FCCRs can
probably select more pivotal channels and rank them in the top
position, by virtue of their channel selection methods with high
capability and strict convergence.

With regard to the selected channel comparison results, the
primary explanations follow: (1) signals from irrelevant and
redundant channels have a negative effect on classifying MI-EEG
trials, as they introduce confusing information; (2) 3C channels,
i.e., Cz, C3, and C4, are closely related to the motor-sensory
cortex and pivotal for classifying motor imagery EEG signals;
they are infrequently selected by some methods.

The computational complexity comparison results could
be intuitively foreseen by comparing their flowcharts and
procedures. The detailed explanation mainly includes the
following: (1) the process of evaluating the channels’ weights
is unnecessary in methods without training, e.g., All channels
and 3C channels; thus, their ARTs are small; (2) the FCCRs

compress the feature vectors and exploit strictly convergent
channel selection approaches to reduce the data scale and
the period of evaluating the channels’ weights; they thereby
accelerate the EEG classification procedure and decrease the
FCCRs’ ARTs; (3) methods with embedded classifiers, e.g., MRCS
and NSGA-II, need to estimate the channel subset and update
the channel’s weights in each iteration, leading to large ARTs.
Additionally, MEMD+STFT has large ARTs because extracting
the MEMD features is time consuming, especially when the
total number of signal projections is beyond 200 in the MEMD
algorithm.

For the parameter sensitivity results, the cluster numbers have
limited influence on estimating the similarity among features
and clustering-based representative signals. Therefore, changing
the number of clusters does not significantly affect the following
channel selection and classification.

From the comprehensive comparison results, we find that the
FCCRs have some exciting advantages, including a small data
scale, a strictly convergent procedure, short running time, and
high classification accuracy. All of these visibly promote their
comprehensive performance, which is helpful for implementing
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FIGURE 7 | Average classification accuracies(%) of our three methods when the numbers of selected channels are 10, 30, 50, 70, and 90 for DS1 and 10, 20, 30, 40,

and 50 for DS2, and the numbers of clusters are 2, 6, 20, 60, and 300. The three rows correspond to FCCR1, FCCR2 and FCCR3, respectively.

them with field programmable gate arrays (FPGAs) or digital
signal processors (DSPs) in practical applications.

As shown in Figure 1, the main differences between the
FCCRs and previous studies are feature compression and
convergent channel ranking. On one hand, in current EEG
feature extraction methods, spatial features, or features in
the time and frequency domain, are always directly used to
select channels, and even classify trials (Blankertz et al., 2007;
Zhaoyang et al., 2016). From the perspective of classical pattern
recognition, the essential role of the features depends on their
similarities or differences, rather than the explicit numerical
values themselves. Therefore, compressing features by clustering
them and endowing them with signatures not only preserves the
intrinsic similarities involved in the features, but also reduces
the data scale. On the other hand, most existing channel
selection methods carefully evaluate the channels’ weights by
directly classifying the signals that compose them (Kee et al.,
2015; Zhang et al., 2016). Thus, their performance is classifier-
dependent, lacking adaptability and support for unfamiliar
situations. In most practical applications, classifiers are not fixed
and should be flexibly chosen according to practical conditions.
Moreover, ignoring the convergence of the selection methods

may lead to unsatisfactory results, since the process of adding
or removing channels is not controllable. Thus, it is better
to leverage classifier-independent and performance-verified
selection approaches with proven strict convergence to guarantee
both the process and the result of the channel weights evaluation.
Philosophically, some solutions have tortuous exteriors but are
very rapid in many researching areas. By introducing feature
compression and convergent channel selection, we propose the
FCCRs as such a promising opportunity to classify multiple EEG
signal types.

Inevitably, FCCRs still have some potential limitations to be
overcome, which may bring a forth series of innovations and
applications by integrating plenty of current and forthcoming
signal processing and pattern recognition approaches in the
future. Firstly, we will focus on the feature extraction and
clustering methods for seizing the key information from the
original EEG signals with low SNRs. Moreover, considering the
ever-developing feature selection approaches, dynamic weighting
techniques for evaluating channels are also among our directions
for future research. In addition, deciding the optimal number of
channels is still an open problem, for which we will attempt to
propose a criterion in the near future.
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FIGURE 8 | Mean accuracy, mean F1 score, mean precision, mean recall, average running speed and average channel reduction ratio for nine algorithms. Except for

the average running speed, whose range varies according to the practical minimum and maximum values of the nine methods, the range of the other metrics is [0,1]

([0%,100%] for ACRR).

6. CONCLUSION

In this paper, we present a novel EEG classification framework
named FCCR, which introduces feature compression and
normal signal representation between the traditional feature
extraction and channel selection procedures. In addition,
some strict convergent algorithms with theoretical proofs are
leveraged to rank and select informative channels, thereby
showing that our proposed framework is capable of classifying
EEG signals with acceptable accuracy and speed. Extensive
experimental results on two real world motor imagery

EEG datasets validate the effectiveness and efficiency of
the proposed framework, as compared with state-of-the-art
methods.
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APPENDIX

For any vector x ∈ R
n×1, the lp-norm is defined as

||x||p =
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where xi is the i-th element of x. For any matrix X ∈ R
n×m, the
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|Xij|
r





1
r

, (A2)

||X||r,s =







n
∑

i=1





m
∑

j=1

|Xij|
r





s
r







1
s

. (A3)
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