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Action observation (AO) generates event-related desynchronization (ERD) suppressions

in the human brain by activating partial regions of the human mirror neuron system

(hMNS). The activation of the hMNS response to AO remains controversial for several

reasons. Therefore, this study investigated the activation of the hMNS response to

a speed factor of AO by controlling the movement speed modes of a humanoid

robot’s arm movements. Since hMNS activation is reflected by ERD suppressions,

electroencephalography (EEG) with BCI analysis methods for ERD suppressions were

used as the recording and analysis modalities. Six healthy individuals were asked to

participate in experiments comprising five different conditions. Four incremental-speed

AO tasks and a motor imagery (MI) task involving imaging of the same movement

were presented to the individuals. Occipital and sensorimotor regions were selected

for BCI analyses. The experimental results showed that hMNS activation was higher

in the occipital region but more robust in the sensorimotor region. Since the attended

information impacts the activations of the hMNS during AO, the pattern of hMNS

activations first rises and subsequently falls to a stable level during incremental-speed

modes of AO. The discipline curves suggested that a moderate speed within a

decent inter-stimulus interval (ISI) range produced the highest hMNS activations. Since

a brain computer/machine interface (BCI) builds a path-way between human and

computer/mahcine, the discipline curves will help to construct BCIs made by patterns of

action observation (AO-BCI). Furthermore, a new method for constructing non-invasive

brain machine brain interfaces (BMBIs) with moderate AO-BCI and motor imagery BCI

(MI-BCI) was inspired by this paper.

Keywords: action observation, different speed modes, hMNS activations, ERD suppressions, BCI

1. INTRODUCTION

Human mirror neuron system (hMNS) components activate the sensorimotor, parietal, and
occipital cortices when a human performs, observes, or imitates an action (Rizzolatti, 2005; Tanji
et al., 2015). Initial studies of the hMNS focused on motor imitation and learning, as well as action
understanding and observation (Rizzolatti and Sinigaglia, 2010; Pineda et al., 2013). Furthermore,
the hMNS has gradually come to be regarded as crucial for social skills such as understanding the
intensions and emotional states of others (Blakemore andDecety, 2001; Schulte-Rüther et al., 2007).
Action observation (AO) was considered one of the primary ways of inducing hMNS activations in
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early studies (Caspers et al., 2010;Mukamel et al., 2010; Rozzi and
Fogassi, 2017). Themodulation of hMNS recruitments by AO has
positive effects on cognitive psychology and sport rehabilitation
for creating scientific recovery strategies (Franceschini et al.,
2012). hMNS activations by AO also provide another way
to construct a brain computer/machine interface (BCI) for
mechanical control and medical auxiliary purposes (Neuper
et al., 2009). A BCI constructs an alternative method for
communicating between human and computers/machines. In
BCIs, the motor related BCI was constructed by the variation
patterns in mu (8–12 Hz) and beta (18–25 Hz) bands power
extracted by electroencephalography (EEG) when a human
image, observer, or execute limb/leg movements. Variations
in band power in the two rhythms are referred to as event-
related desynchronization (ERD) suppression. Hence, the ERD
suppression will be caused by motor imagery (MI) and AO.
In fact, the definitions of AO tasks influence the degree of
ERD suppression. However, the relationships between action
definitions for AO and hMNS activations are still unknown from
a scientific view.

In general, in the movements designing of an AO therapy
for stroke patients or a BCI system, the parameters and
affecting factors will influence the performance of therapy or BCI
accuracy. In fact, the affecting factors will be controlled if we
explore the disciplines of the relationships between movements
for AO and the hMNS activations. Hence, the the research
of the affecting factors of movements for action observation
will do favor for designing a AO therapy scheme or an
AO-BCI system. Most prior studies offer different hypotheses
regarding the relationships between movements for AO and the
hMNS activations (Iacoboni et al., 2005; Filimon et al., 2007;
Newman-Norlund et al., 2007). Since many AO studies are
based in cognitive psychology and sports psychology, while few
are based in rehabilitation and BCI research, the distribution
and degree of hMNS activations remain controversial with
respect to several features of AO (Perry et al., 2010; Vogt
et al., 2013). The mode of AO movements is the main factor
that limits hMNS and motor system activation. Several neuro-
physiological studies indicate that ongoing movement plays an
important role in triggering hMNS responses when activations
are induced by AO (Maranesi et al., 2013). Aside from the
condition of ongoing movements, other studies hypothesize
that the manifestations of actions in AO tasks influence hMNS
activations. In a study of action meaning (Agnew et al., 2012),
compared with meaningless movements, meaningful movements
caused higher hMNS activations. For example, lipreading of
speech is one of the meaningful movements. Researches on
lipreading showed lipreading will enhance speech perception
and speech recognition (Summerfield, 1992; Silsbee and Bovik,
1996). Lipreading enhancement in young deaf children will
help auditory speech perception (Geers, 1994). Lipreading and
audiovisual speech integration are used in therapy of autism
(Smith and Bennetto, 2007). Hence, the researches on action
meaning will be useful for the therapy, rehabilitation, and
neuroscience. In addition, the degree of movement complexity
in an mode of AO movement has also been found to affecting
hMNS activations (Biagi et al., 2010; Gatti et al., 2017). Moreover,
additional variables that modulate hMNS activation and ERD

suppression, such as experience and familiarity, have also been
studied (Calvo-Merino et al., 2006; Bello et al., 2014).

Although the factors affecting the relationships between
movements for AO and hMNS activation have been explored
by the above studies, hMNS specificity and its full significance
remain uncertain. The definitions of AO tasks clearly influence
the degree of ERD suppression (Orgs et al., 2008). Furthermore,
the manifestations of AO tasks and their stimuli affect attentional
resources and hMNS activation (Oberman et al., 2007). Since
the majority of affecting factors are related to the modes
of AO movements, explorations of the relationships between
movements for AO and hMNS activation are translated into
the relationships between movement modes and the degree
of ERD suppressions. Speed, complexity, magnitude, and
individual proficiency are well-characterized factors known to
affect movement modes, and have been explored in previous
studies (Abdi and Williams, 2010; Biagi et al., 2010; Agnew
et al., 2012; Maranesi et al., 2013; Bello et al., 2014). However,
to the best of our knowledge, the present study is the first
to investigate the effect of speed during AO. If the speed
affecting factor is well-explored for AO among individuals,
the designing for therapy scheme and AO-BCI will be more
accurate for individuals. In addition, since the parameters and
affecting factors will be well controlled in designing AO-BCI,
but not in designing MI-BCI, the performance of AO-BCI will
be better than MI-BCI. Furthermore, based on BCI system, the
brain computer/machine brain interfaces (BMBIs) are capable
of bidirectional communication with the brain. The interfaces
consist of efferent and afferent modules. The efferent modules
decode motor intentions by the variation patterns in mu and
beta bands power, like conventional BCIs. The afferent modules
encode feedback about the interactions of the machine through
patterns of intracortical microstimulation. In general, the efferent
modules are always designed by patterns of motor imagery.
Meanwhile, the afferent modules can’t be designed by patterns of
MI. However, the afferent modules will be designed by patterns
of action observation. When the efferent modules by MI drive
a machine performing movements, the feedback by observation
to activate hMNS will cause ERD suppression to design afferent
modules. Today’s BMBIs are constructed without considering
the affecting factors of movements, so the performance is bad.
However, if the speed and other affecting factors are considered
for designing BMBIs, the performance will be better.

EEG (Lei et al., 2015; Abbott, 2016) has been widely used
to construct BCI systems for exploring hMNS activations due
to its high temporal resolution. In our study, the experimental
movements were made by a humanoid robot at four different
speed modes for AO tasks. A humanoid robot platform provides
identical appearance, background and complexity to eliminate
other effects. All four speed modes, slow (0.25 Hz), moderate
(1.25 Hz), fast (2.75 Hz), and finalistic (4 Hz), were defined
by questionnaires administered to 26 participants. Another six
subjects were asked to attend AO experiments and an MI
experiment for comparison. All eight stimuli (left movement and
right movement at four speed modes) were randomly presented
to all subjects in AO experiments, and another two stimuli were
randomly presented to the same subjects in MI experiments.
Both experiments are designed by a BCI form to validate
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the relationships between speed mode of AO and the hMNS
activations. Due to the high temporal resolution, quantitative
EEG (Lei et al., 2015; Abbott, 2016) is used as a convenient
and cheap method to explore hMNS activations by measuring
ERD suppressions (Oberman et al., 2007; Orgs et al., 2008). The
ERD suppressions in EEG data are analyzed using a series of
BCI methods and spatio-spectral-temporal characteristics. The
following three main points are analyzed and discussed in this
study:

(1) The brain regions involved in AO, such as the sensorimotor
and occipital regions, are compared since studies on
activation regions for AO have paradoxical conclusions
(Perry et al., 2010; Frenkel-Toledo et al., 2013).

(2) The patterns of the relationships between AO speed modes
and hMNS activations. If the patterns are clearly explored by
experiments, individual rehabilitation strategies with specific
optimal speeds will be precisely designed for individuals.

(3) Application to brain machine brain interface (BMBI).
The average pattern of all individuals will show optimal
speed ranges that are best suited to constructing AO-BCIs.
Moreover, a well-established non-invasive AO-BCI with a
high rate of accuracy and information transfer rate (ITR) will
help to build BMBIs.

2. MATERIALS AND METHODS

2.1. Ethics Statement
This study was carried out in accordance with the
recommendations of the guideline of EEG experiment, Xiamen
University ethics committee with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the Xiamen University ethics committee.

2.2. Participants
Six right-handed healthy human subjects (five male and one
female, mean age: 24.6 years, SD = 1.46) were invited to
participate in AO and MI experiments with payment. All

subjects had no history of neurological disease and either
normal or corrected-to-normal vision. Subjects also did not have
any professional experience with AO or MI experiments. In
accordance with the principles of the Helsinki Declaration, all
subjects provided written informed consent approved by the
Xiamen University.

2.3. Stimuli Design
As shown in Figure 1, stimuli for AO in different speed modes
were performed by a humanoid robot. AO stimuli were presented
to all subjects in 12 sessions as experiment 1. Afterwards, an
MI comparison experiment in which two guidance arrows were
presented to the same subjects in three sessions was performed as
experiment 2.

2.3.1. Experiment 1:AO Experiments in Different

Speed Modes
In previous studies, AO experimental paradigms were designed
with sequential video clips of human arm, hand, or finger
movements presented to subjects (Frenkel-Toledo et al., 2014;
Gatti et al., 2017). However, our experiments were designed to
explore speed factor during AO. Because human movements
feature unconstant speed, angle, and magnitude across repetitive
experiments, the inconsistency of the variables will introduce
confounding factors that disturb the analyses of hMNS
activations. To eliminate such confounding factors, a fine-tuning
parameter-setting paradigm must be incorporated into the
design. Based on the anthropomorphic and relevant AO studies
(Press, 2011), the hMNS is strongly activated by observations
of both human and non-human agents (e.g., humanoid robots).
Human or non-human agents do not differ significantly in their
ability to activate the hMNS in AO studies involving humans and
humanoid robots. Since the robot platform features an operating
system for controlling all movement parameters, a humanoid
robot platform was used in the design of our AO experimental
paradigms.

Based on the “NAO Choregraphe 1.14 platform” (Pot et al.,
2009), periodic-swinging movements of the robot’s left/right arm

FIGURE 1 | Stimuli design of AO in different speed modes. The Step 1 contains one loop of periodic-swinging arm movement includes 100 frames over four seconds

because the platform has a fixed frame rate of 25 fps. The Step 2 summarizes the results of the correct maximum loop number counted by each participant. The Step

3 defines the role of speed modes in the pattern of relationships between AO tasks and hMNS activations. As well as for simplicity and convenience, four different

loops with a constant interval were constructed. Step 1: One loop for AO at standard speed. Step 2: Twenty-six participants count loops at higher speed modes to

determine the max (16 loops). Step 3: Select four speed modes for experiments by equi-partition.
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were utilized as AO tasks in experiment 1. As shown in Figure 1

(Step 1), one loop of periodic-swinging arm movement includes
100 frames over 4 s because the platform has a fixed frame rate of
25 fps. Five key frames for both the left and right arms show the
same procedure of the periodic movements. The robot stretches
its arm at the beginning of the loop and waves its arm up to the
head during half of the loop. The remainder of the loop consists
of the same procedure in the opposite direction. The platform
ensures that the robot’s left/right-arm movements maintain a
constant speed, angle, and magnitude. The entity body of the
robot was presented to subjects in order to distinguish left-arm or
right-arm movements during AO using EEG-based BCI analysis
methods (Bauer and Gharabaghi, 2015). The robot’s arms are
dynamic, while the other parts of the robot remain static to keep
the speed variable clear and unique.

Theoretically, more speed modes will be better for the
results. However, due to the limitation of participants and
the experimental platform, we only explore the rough pattern
of the factor affections for simplicity and convenience. Four
different loops with a constant interval were constructed as
shown in Figure 1 (Step 3). For simplicity, the four incremental
speed movements are defined as “slow movement,” “moderate
movement,” “fast movement,” and “finalistic movement.” In
Figure 1 (Step 1), one loop of 100 frames over 4 s is defined
as “slow movement.” Due to time duration in AO experiments
(4 s per trial), we obtain higher movement speed modes by
adding number of loops, and compressing multi-loops within
4 s. To identify a robust and suitable number of multi-loops for
“finalistic movement,” 26 participants were invited to watch 10
different looped (11–20) video clips that were compressed into
4 s. Participants were asked to count the number of loop in each
video clip. The results from all participants were then compared
with ground truth to identify the maximum loop number for
each participant. Figure 1 (Step 2) summarizes the results of the
correct maximum loop number counted by each participant. The
results show that 16 loops was the maximum loop number for all
of the participants. Therefore, “finalistic movement” was defined
as 16 loops compressed into 4 s. “Moderate movement” was set
to six loops, and “fast movement” was set to 11 loops, by the
principle of equipartition. In all, experiment 1 gives four different
speed modes of AO to explore the role of speed. All four speed
modes were presented to subjects during AO in experiment 1.

2.3.2. Experiment 2: Relevant MI Experiment
After experiment 1, all six healthy human subjects were asked
to attend experiment 2. The MI experiment was compared
with the AO experiment. Following the design criteria of MI
experimental paradigms (Tangermann et al., 2012), two guidance
arrows were defined in experiment 2 to guide the imagined
movement direction. In experiment 2, the subjects were asked
to imagine his/her-self as performing the same movement as the
humanoid robot in experiment 1. Both MI guidance arrows used
in experiment 2 were presented to all subjects after experiment 1.

2.4. Experimental Procedures
As shown in Figure 2, the experimental procedures for AO
in different speed modes and MI were divided into trials

and sessions. EEG recordings were set for both AO and MI
experiments.

2.4.1. Trial Procedures
Influenced by conventional AO/MI experimental trial setups
(Calvo-Merino et al., 2004; Wang et al., 2012), the presentation
of a trial is shown in Figure 2A. In each trial, initial instructions
guided subjects to simply observe the robot’s movements
(experiment 1) or guidance arrows (experiment 2) on the screen
and a manually respond as rapidly as possible whenever the
catch trial static robot (experiment 1) or blank (experiment 2) is
presented. Subjects were also asked to minimize eye movements
and keep their eyes fixed on the monitor when observing the
stimuli. Manual responses to the catch trial were input by
pressing the “SPACE” button. Each trial started with a fixation
cross presented in the middle of a gray screen. The duration of
the fixation cross was 2,000 ms. After presentation of the fixation
cross, stimuli were presented in the middle of the gray screen for
4,000 ms to investigate participants’ ERD suppressions via EEG
recordings and were followed by a 2,000-ms pause as a break.
If the presentation was an AO stimulus (experiment 1), subjects
were asked to focus on the moving arm of the robot; otherwise,
when the presentation was an MI stimulus (experiment 2),
subjects were asked to imagine him/her-self moving like the robot
by following the guidance arrows. Subsequent trials followed the
same procedure for both experiment 1 and experiment 2.

2.4.2. Session Procedures
In experiment 1, each subject completed 12 AO sessions within
6 days, whereas in experiment 2, each subject completed three
MI sessions within 2 days. Data recordings for one session
occurred in the morning, with another session taking place later
in the afternoon the same day. As shown in Figure 2D, each
session comprised two tasks, and each task was divided into 40
trials. A relaxation time to prevent fatigue was determined by
subjects between the two tasks. Experiment 1 comprised eight
AO stimuli and one catch trial stimulus, which are described
in Figure 2B. Each of the eight AO stimuli (left and right in
four speed modes) was randomly presented four times, and the
catch trial stimulus was randomly presented eight times within
one session (See Figure 2D). Experiment 2 comprised two MI
stimulus arrows and one blank catch trial stimulus, which are
described in Figure 2C. Each of the two MI stimuli (left and
right) was randomly presented four times, and the catch trial
stimulus was randomly presented eight times within one session
(See Figure 2D). Response times to the catch trial stimulus were
recorded for both experiments 1 and 2 because the response times
help confirm attentional states during AO and MI experiments.

2.4.3. EEG Recordings
Each subject was seated individually in a comfortable arm chair
in front of a computer monitor in a dimly lit, sound-attenuated
room and asked to read the instructions carefully on the screen.
AO stimuli (experiment 1) and MI stimuli (experiment 2) were
displayed on a DELL P2314H LCDmonitor with a refresh rate of
60 frames/s. Displays were controlled by the psychology software
tool “E-Prime 2.0.” The distances between monitor and the
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subjects were set at 100 cm by following the BCI experimental
criterion to prevent other confounding factors in the hMNS
activation (Onishi et al., 2017). During the entire run of both
experiments, a spatially homogeneous gray background with a
luminance of 38 cd/m2 was enabled. EEG recordings for all
subjects were performed on a “NeuroScan SynAmps2” device
with a “Neuroscan QuikCap international 10–20 system.” EEG
signals were referenced to the nose, grounded at the frontal
position (Fpz), and sampled at 250 Hz. After data acquisition,
the preprocessing operations on the signals for notch filtering
and bandpass filtering were 48–52 and 0.1–100 Hz, respectively.

All 64 electrode impedances in QuikCap were kept below 5kω
during the experiment. Moreover, the horizontal and vertical
EOG signals were recorded. The EOG signals were used to correct
for the influence of blinking and eyeball movements.

2.5. Analysis Methods
As shown in Figure 3, three main EEG data analyses procedures
were utilized in this study. Figure 3 (Step 1) illustrates the
preprocessing procedure. Raw EEGs from six subjects were first
corrected for EOG artifacts via blind component separation.
Then, a band filter ranging from 0.15 to 30 Hz was adopted

FIGURE 2 | Experimental procedures. In each trial, initial instructions guided subjects to simply observe the robot’s movements (experiment 1) or guidance arrows

(experiment 2) on the screen and a manually respond as rapidly as possible whenever the catch trial static robot (experiment 1) or blank (experiment 2) is presented.

Each trial started with a fixation cross presented in the middle of a gray screen. The duration of the fixation cross was 2,000 ms. After presentation of the fixation

cross, stimuli were presented in the middle of the gray screen for 4,000 ms to investigate participants’ ERD suppressions via EEG recordings and were followed by a

2,000-ms pause as a break. Each of the eight AO stimuli (left and right in four speed modes) was randomly presented four times, and the catch trial stimulus was

randomly presented eight times within one session in Experiment 1. Each of the two MI stimuli (left and right) was randomly presented four times, and the catch trial

stimulus was randomly presented eight times within one session in Experiment 2. (A) Example trial sequence for experiment 1 and experiment 2. (B) Task descriptions

for experiment 1. (C) Task descriptions for experiment 2. (D) Example session sequence for experiment 1 and experiment 2.

FIGURE 3 | EEG data analysis procedures. Step 1: Pre-processing. Step 2: BCI analyses. Step 3: Extracting spatio-spectral-temporal characteristics.

Frontiers in Neuroscience | www.frontiersin.org 5 April 2018 | Volume 12 | Article 219

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Luo et al. Speed Effect During Action Observation

for EEG data, since the effective parts are above 0.15 Hz
and under 30 Hz. By using AO (experiment 1) and MI
(experiment 2) labels recorded in “NeuroScan,” fragments of
each experimental condition were extracted for all subjects. After
fragment extraction, a baseline calibration method to prevent
deviation and a manual removal method to reducing artifacts
were performed on all fragments.

Recent studies first found that hMNS activations initially
occurs in the sensorimotor region of the brain during AO (Perry
et al., 2010). The ERD suppressions in the sensorimotor region
then extend to attentional resources, which cause more intense
hMNS activations in the occipital region (Frenkel-Toledo et al.,
2013). Likewise, ERD suppressions caused by MI are first found
in the sensorimotor region and then extend to global cerebral
activity. To explore the affected regions of the brain during
AO, the patterns of relationships between AO speed modes
and hMNS activations, as well as to compare AO and MI to
construct a BMBI, the sensorimotor, occipital and “sensorimotor
+ occipital” regions were adopted for BCI analyses of both AO
and MI experiments. Potentials covering central-parietal regions
C3, C1, Cz, C2, C4, P3, P1, Pz, P2, and P4 were chosen for the
sensorimotor region, while potentials covering parietal-occipital
regions PO5, PO3, POz, PO4, PO6, O1, Oz, and O2 were chosen
for the occipital region. The “sensorimotor + occipital” region
included both sets of potentials.

As illustrated in Figure 3 (Step 2), the procedure for BCI
analyses comprised four steps. First, left fragments and right
fragments were grouped by identical AO speed (experiment 1).
Second, all groups of fragments were presented to extract filter
bank common spatial pattern (FB-CSP) features (Ang et al.,
2012). Since ERD suppressions are modulated by the power
variations of the left and right cerebral hemispheres, an FB-CSP
algorithm was adopted to extract power variations using a bank
of filters and an optimization method. The optimal CSP eigen-
vectors were set to S= 4 based on experience. Third, the principal
component analysis (PCA) algorithm of a linear dimensionality
reduction technique was adopted to reduce feature dimensions
(Abdi and Williams, 2010). Because of the high sampling rate
in EEG recordings, FB-CSP features have a high number of
dimensions that are hard to classify by machine-learning models.
The PCA algorithm looks for the highest variability in FB-CSP
features by projecting original features to lower dimensions. The
optimal PCA was set to M = 10 for the regulation of “99%” of
the variability. Finally, the dimension-reduced FB-CSP features
were incorporated into the support vector machine (SVM)
classifier for BCI classification (Sardouie and Shamsollahi, 2012).
The SVM classifier is a common BCI classifier with excellent
generalizability by searching for the largest margin of a decision
hyperplane that will strictly classify the unseen test data. The
reductive features were incorporated into SVM classifiers with a
polynomial kernel. A 6*6 cross-validation strategy was applied
to train the SVM classifiers for all five groups. Since each group
has 392 trials of effective EEG fragments with a random order for
left and right, 320 trials were provided as training data, and the
remaining 64 trials as evaluation data in one loop of evaluation.

Figure 3 (Step 3) displays the procedure for extracting spatio-
spectral-temporal characteristics. Subject 4, who had the best BCI

accuracies, was chosen for the analyses of these characteristics.
The temporal characteristics were first extracted by calculating
mean voltages of EEG fragments among four different speed
AO modes (both for left and right). Then, a power spectral
density (PSD) (Demandt et al., 2012) algorithm with parameters
of specific rhythm ranges was used for each average fragment to
obtain spectral characteristics. The spectral characteristics were
drawn by the “eeglab 14.1.1” tool as “ERD images” (Delorme and
Makeig, 2004). Brain electrical activity maps (BEAMs) (Duffy
et al., 1979) were imported to obtain the positions of the
potentials, and the spatio-spectral characteristics were drawn by
the “eeglab 14.1.1” tool.

In addition, the response times of catch trial stimuli as
feedback behavioral data were analyzed by statistical analyses.
Mean time values for all 15 sessions (Sessions 1–12 for
experiment 1 and sessions 13–15 for experiment 2) were
calculated for all subjects to obtain the attentional conditions of
all sessions by calculating mean values and standard deviations
among all sessions.

3. RESULTS

3.1. Feedback Behavioral Data
Catch trial stimuli appear 16 times in each session, and we have
recorded the response times for all catch trial stimuli in each
session. Tables 1, 2 illustrate the mean response times within
one session for experiment 1 and experiment 2, respectively. The
mean time and standard deviations among all sessions in both
experiments are also presented.

As shown in Table 1, the average response times among
all sessions of experiment 1 were within 2,000 ms, and
the corresponding standard deviations were within 100–
200 ms. These results demonstrate that all subjects exhibited
focused attention during AO experiments and EEG recordings.
Therefore, EEG recordings in experiment 1 were free from
attention artifacts. The standard deviations of all subjects were
within a similar range, indicating that the responses to stimuli
were stable. The response times of Subjects 2 and 3 had lower
averages and standard deviations, which may be related to their
younger age, as this tends to be related to faster response times.
Since our behavioral data conform to experimental principles,
the EEG data of experiment 1 were considered objective and
appropriate for analyses. Similarly, as illustrated in Table 2,
the average response time among all sessions of experiment 2
were within 300 ms, and the corresponding standard deviations
were within 10 and 20 ms. These results conform with the
response times of MI experiments, indicating that the EEG
recordings in experiment 2 were objective and appropriate for
analyses. Compared with Tables 1, 2, the blank catch trial stimuli
was easier to recognize than a static robot, and the individual
differences in the response times of younger subjects has less
influence on the MI experiments.

3.2. BCI Analyses of AO and MI
Experiments
After preprocessing, the EEG fragments (left and right) of four
speed AO modes and MI modes were used for BCI analyses. In
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FB-CSP feature extraction, the bank of bank filters following a
previous study are shown in Table 3. Table 3 illustrates the BCI
analysis results for three regions in four AO speed modes and
MI mode. The average accuracies and standard deviations of BCI
classification and ITR were calculated. To display the comparison
of the results, Figure 4 shows the average accuracies of all modes
in all regions.

From the BCI analysis results in Table 4 and Figure 4, we see
four findings:

(1) For the accuracies in the occipital region, the results were
AO-0.25 Hz (71.44%), AO-1.5 Hz (74.78%), AO-2.75 Hz
(58.42%), and AO-4 Hz (59.29%). However, the results were
AO-0.25 Hz (61.76%), AO-1.5 Hz (69.27%), AO-2.75 Hz

TABLE 1 | Statistical analyses of response times for Experiment 1 (ms).

Sessions Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Session 1 1760.53 868.97 868.97 1521.47 1716.25 1007.38

Session 2 1087.91 912.84 696.41 1411.47 1254.91 1706.56

Session 3 1201.75 993.75 621.06 1031.94 1695.63 1436.28

Session 4 1141.13 890.38 642.44 1102.09 1783.66 1093.78

Session 5 1243.38 943.69 518.03 1052.81 1644.91 1306.13

Session 6 1175.63 1047.78 749.00 1625.84 1701.25 1577.13

Session 7 1115.03 853.84 829.81 1306.88 1304.25 1420.00

Session 8 1417.50 818.72 777.56 1367.94 1562.38 1513.63

Session 9 1417.50 699.81 763.16 1655.03 1301.03 1268.88

Session 10 1392.31 660.88 759.81 1509.13 1284.75 1204.16

Session 11 1339.03 557.09 828.41 1509.13 1450.06 1181.03

Session 12 1582.00 656.63 790.31 1348.56 1526.16 1181.09

Average 1310.30 825.37 727.84 1370.19 1518.77 1324.67

Standard 201.81 150.67 92.55 213.45 194.04 208.90

The average accuracies and standard deviations of response times were calculated for

experiment 1.

TABLE 2 | Statistical analyses of response times for Experiment 2 (ms).

Sessions Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Session 13 234.44 238.09 183.81 298.13 286.75 193.63

Session 14 284.31 282.72 219.16 307.94 317.06 221.09

Session 15 258.03 262.84 204.41 287.88 262.31 237.88

Average 258.93 261.22 202.46 297.98 288.71 217.53

Standard 24.95 22.36 17.76 10.03 27.43 22.34

The average accuracies and standard deviations of response times were calculated for

experiment 2.

(56.29%), and AO-4 Hz (55.99%) in the sensorimotor region.
Similarity, the accuracies of the “sensorimotor+occipital”
were AO-0.25 Hz (62.07%), AO-1.5 Hz (68.92%), AO-2.75
Hz (56.81%), and AO-4 Hz (56.33%). Considering the results
across all regions, the BCI accuracies from increasing speed
modes of AO presented a pattern of initially increasing and
then decreasing to a stable level.

(2) Comparing AO-BCI accuracies between occipital and
sensorimotor regions, the results were 71.44 and 61.76%
at AO-0.25 Hz, 74.78 and 69.27% at AO-1.5 Hz, 58.42
and 56.29% at AO-2.75 Hz, and 59.29 and 55.99% at AO-
4 Hz. AO in any speed mode had a more significant BCI
accuracy in the occipital region than in the sensorimotor
region. However, the accuracies of MI-BCI were 57.72%
in the occipital region and 61.35% in the sensorimotor
region. MI mode had a more significant BCI accuracy in the
sensorimotor region than in the occipital region.

(3) The BCI accuracies in the “sensorimotor+occipital” region
were at a similar level to those in the sensorimotor region.
The results were 62.07 and 61.76% at AO-0.25 Hz, 68.92 and
69.27% at AO-1.5 Hz, 56.81 and 56.29% at AO-2.75 Hz, and
56.33 and 55.99% at AO-4 Hz. However, a large difference
was detected between the “sensorimotor+occipital” and
occipital regions. The results were 62.07 and 71.44% at
AO-0.25 Hz, 68.92 and 74.78% at AO-1.5 Hz, 56.81 and
58.42% at AO-2.75 Hz, and 56.33 and 55.99% at AO-4 Hz.
These results suggested the BCI accuracy was more robust
in the sensorimotor region and was resistant the influence
of other regions. Moreover, the higher BCI accuracies in
the occipital region may be influenced by factors other than
hMNS activations.

(4) Because the standard deviations of all experimental modes
in all regions were within the range of [0, 10], AO in
different speed modes andMI mode have similar robustness.
The average standard deviations in all regions between AO
modes showed that AO-0.25 Hz (5.69) and AO-1.5 Hz (5.80)
have lower robustness than AO-2.75 Hz (2.98) and AO-4 Hz
(2.13). Since ITR presents the efficiency of BCI, the average
results of ITR in all regions showed that AO-1.5 Hz (2.01)
had a significantly higher efficiency than AO-0.25 Hz (1.10),
AO-2.75 Hz (0.23), AO-4 Hz (0.24), and MI (0.43). AO in
moderate-speed mode was more suitable for the design of
BCIs.

(5) The average accuracies have the same pattern of initially
increasing and then decreasing to a stable level. In the results
between subjects, subjects “S1, S3, S4” correspond to the
average pattern, but subjects “S2 and S5” not correspond to
the average pattern from AO-0.25 Hz to AO-4 Hz. However,
subjects “S2 and S5” have approximate accuracies in AO-0.25

TABLE 3 | The subbands of band-pass filters in FB-CSP feature extraction.

Subbands fb1 fb2 fb3 fb4 fb5 fb6 fb7 fb8 fb9 fb10

Frequency(Hz) [0, 4] [4, 8] [8, 12] [12, 16] [16, 20] [20, 24] [24, 28] [28, 32] [32, 36] [36, 40]

A bank of 10 band-pass filters from 0 to 40 Hz without overlaps are set.
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FIGURE 4 | The average accuracies of all modes in all regions. Potentials

covering central-parietal regions C3, C1, Cz, C2, C4, P3, P1, Pz, P2, and P4

were chosen for the sensorimotor region, while potentials covering

parietal-occipital regions PO5, PO3, POz, PO4, PO6, O1, Oz, and O2 were

chosen for the occipital region. The “sensorimotor + occipital” region included

both sets of potentials.

Hz and AO-4 Hz. This because different individuals have
different patterns of speed modes, and our study was
researched on rough speeds due to limitations of device and
platform.

These five findings will help us understand affected regions in
the brain during AO and the patterns of relationships between
AO speed modes and hMNS activations. By selecting the optimal
speed mode of AO, we also solved the problem of BMBI. These
findings and conclusions are discussed below.

3.3. Spatio-Spectral-Temporal
Characteristics of AO Experiments
To further analyse the detailed characteristics, the best-
performing data, S4, was chosen to extract the spatio-spectral-
temporal characteristics of AO modes.

3.3.1. Temporal Characteristics
The averagemicrovolt of C3 and C4 are drawn on left movements
and right movements, respectively. The difference of “C3-C4” in
left movements and “C4-C3” in right movements are drawn for
temporal characteristics in Figure 5. Two key sites, C3 and C4
from the sensorimotor region, were chosen to analyse temporal
characteristics.

Three key findings from the results in Figure 5 are as
follows:

(1) Look from the overall, the average microvolt variations of
C4 sites are higher than C3 sites on left movements, while
the average microvolt variations of C3 sites are higher than
C4 sites on rightmovements. These findings demonstrate the
brain’s hemisphere lateralization effect during AO.

TABLE 4 | The BCI analysis results for three regions for four AO modes and MI

modes.

Subjects AO-0.25 Hz AO-1.5 Hz AO-2.75 Hz AO-4.0 Hz MI

OCCIPITAL REGION

S1 69.27 79.17 54.43 59.38 60.16

S2 77.08 69.79 59.11 59.38 59.90

S3 69.01 76.30 54.95 62.24 57.03

S4 69.27 81.77 68.75 61.46 57.29

S5 67.71 65.36 56.25 54.43 58.85

S6 76.30 76.30 57.03 58.85 53.13

Average 71.44 74.78 58.42 59.29 57.72

Standard 4.12 6.10 5.33 2.73 2.60

ITR (bits/min) 2.06 2.78 0.31 0.38 0.26

SENSORIMOTOR REGION

S1 69.01 75.52 56.77 56.77 55.47

S2 72.14 68.49 57.03 57.29 57.03

S3 56.77 67.45 58.33 55.47 54.69

S4 54.69 67.19 56.51 52.60 54.69

S5 60.42 70.83 55.21 56.77 67.97

S6 57.55 66.15 53.91 57.03 78.29

Average 61.76 69.27 56.29 55.99 61.35

Standard 7.14 3.45 1.54 1.77 9.72

ITR (bits/min) 0.61 1.65 0.17 0.16 0.56

“OCCIPITAL + SENSORIMOTOR” REGION

S1 55.21 73.96 56.25 56.25 55.47

S2 71.61 69.53 60.68 58.85 55.21

S3 65.10 59.11 54.43 58.33 56.25

S4 58.33 81.25 56.77 54.17 55.47

S5 62.76 64.32 56.77 55.47 61.72

S6 59.38 65.36 55.99 54.95 78.39

Average 62.07 68.92 56.81 56.33 60.42

Standard 5.82 7.84 2.08 1.88 9.14

ITR (bits/min) 0.64 1.59 0.20 0.17 0.47

Potentials covering central-parietal regions C3, C1, Cz, C2, C4, P3, P1, Pz, P2, and

P4 were chosen for the sensorimotor region, while potentials covering parietal-occipital

regions PO5, PO3, POz, PO4, PO6, O1, Oz, and O2 were chosen for the occipital

region. The “sensorimotor + occipital” region included both sets of potentials. The average

accuracies and standard deviations of BCI classification and ITR were calculated.

(2) Look from the difference average microvolt variations
of (C3-C4) in left movements and (C4-C3) in right
movements, the differences of AO-0.25 Hz and AO-1.5 Hz
are significantly higher than AO-2.75 Hz and AO-4 Hz for
both left movements and right movements. These results
confirm that variations during AO captured a pattern of
increases with slow-speed movements and decreases with
fast-speed movements.

(3) In fact, we have calculated the average of difference variations
from 1,000 samples for both four different speed modes on
left movements and right movements. The results are 0.958
(AO-0.25 Hz), 0.974 (AO-1.5 Hz), 0.048 (AO-2.75 Hz), and
0.112 (AO-4 Hz) on left movements, and 0.907 (AO-0.25
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Hz), 0.988 (AO-1.5 Hz), 0.821 (AO-2.75 Hz), and 0.5865
(AO-4 Hz) on right movements. These results suggest some
relationships between speed and stimulus direction.

3.3.2. Spectral Characteristics
Figure 6 shows the spectral characteristics of AO in four
different speed modes. Four key potentials, C3 and C4 for the

FIGURE 5 | The temporal characteristics of AO in four different speed modes. Two key sites, C3 and C4 from the sensorimotor region, were chosen to analyse

temporal characteristics. The average microvolt of C3 and C4 are drawn on left movements and right movements, respectively. The difference of “C3–C4” in left

movements and “C4–C3” in right movements are also drawn for temporal characteristics.

FIGURE 6 | The spectral characteristics of AO in four different speed modes. Four key potentials, C3 and C4 for the sensorimotor region and O1 and O2 for the

occipital region, were chosen to analyse the spectral characteristics. The curves for all four AO modes (left movements and right movements) are drawn by “MATLAB

R2012a.” (A) Left movements of AO. (B) Right movements of AO.
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sensorimotor region andO1 andO2 for the occipital region, were
chosen to analyse the spectral characteristics.

Three important findings from Figure 6 are as follows:

(1) In all of the AO modes, the power varied significantly in
the mu range (8–12 Hz) at all C3/C4/O1/O2 potentials, but
the variation in the beta range (18–25 Hz) was lower. These
results show that the mu range is more sensitive in hMNS
during AO.

(2) Regardless of whether left or right movements were
examined, the power captured variation in the sensorimotor
region (C3/C4) with a pattern where the largest was in AO-
1.5 Hz, moderate was in AO-2.75 Hz and AO-4 Hz, and the
smallest as in AO-0.25 Hz. However, the power captured
variation in the occipital region (O1/O2) had an entirely
different pattern in which the largest was in AO-4 Hz and
the smallest was AO-1.5 Hz, AO-2.75 Hz, and AO-0.25 Hz
with no obvious differences. These results suggest that the
sensorimotor region was significantly activated at AO-1.5
Hz, whereas the occipital region was significantly activated
at AO-4 Hz.

(3) Regardless of whether left or right movements were
examined, the hemisphere effect of the power difference
was prominent in the occipital region (O1/O2) but was not
obvious in the sensorimotor region (C3/C4). These results
demonstrate that the occipital region is more activated than
the sensorimotor region.

3.3.3. Spatio-Spectral Characteristics
Figure 7 shows the spatio-spectral characteristics of AO in four
different speed modes. The key rhythms, 8, 12, 18, and 25 Hz,
were chosen to extract spatio-spectral characteristics from 64
potentials, since the ERD suppressions were induced in the mu
(8–12 Hz) and beta (18–25 Hz) ranges.

From the results in Figure 7, we find that:

(1) In all eight AO modes, the BEAMs showed that the power
in the mu range (8–12 Hz) was higher than that in the
beta range (18–25 Hz) in the occipital region. These results
demonstrate that the mu range plays a predominant role in
hMNS activations.

(2) In contrast to the ERD suppressions during the four different
AO speed modes, the ERD suppressions were stronger at
AO-0.25 Hz and AO-1.5 Hz than at AO-2.75 Hz and AO-4
Hz in the sensorimotor region. These findings demonstrate
that in the sensorimotor region, slow-speed movements
cause greater hMNS activation than fast-speed movements
during AO.

(3) Comparing left and right movements in one AO mode, the
left movements produced more obvious ERD suppressions
in the right hemisphere of the brain, whereas the right
movements produced more obvious ERD suppressions in
the left hemisphere of the brain. These results are due to the
mirror effect from the hMNS. However, the movements that
subjects observed were also mirror movements. Therefore,

FIGURE 7 | The spatio-spectral characteristics of AO in four different speed modes. The key rhythms, 8, 12, 18, and 25 Hz, were chosen to extract spatio-spectral

characteristics from 64 potentials, since the ERD suppressions were induced in the mu (8–12 Hz) and beta (18–25 Hz) ranges. The “BEAM” for all four AO modes(left

and right movements) are drawn by “eeglab 14.1.1.” (A) Left movements of AO. (B) Right movements of AO.
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the ERD suppressions occurred in the ipsilateral region of
the subject’s brain relative to the movements of the robot.

4. DISCUSSION

This study further explored the brain regions affected during
AO, the patterns of relationships between AO speed modes
and hMNS activations, and the comparison of AO and MI for
constructing BMBIs. AO experiments with different speedmodes
(experiment 1) and an MI mode (experiment) were explored at
the central nervous system level since hMNS activation caused
by AO are reflected by ERD suppressions, which are measured
via EEG recording. BCI analyses and spatio-spectral-temporal
characteristics were used to explore the variations in ERD
suppressions. Based on our results, we were able to draw three
major conclusions, which are discussed below:

(1) The occipital region exhibits higher hMNS activation than
the sensorimotor region during AO, but the sensorimotor
region shows more robust hMNS activations than the
occipital region.

(2) hMNS activations initially rise and then fall to a stable level
during incremental AO speed modes. A moderate-speed AO
produced the best hMNS activations in our results.

(3) The BCI accuracy and ITR of moderate-speed AO-BCI
produced the same level of MI-BCI as training experience,
suggesting a new method for constructing non-invasive
BMBIs in healthy individuals.

4.1. The Affected Regions of the Brain
During AO
According to a statistical study (Molenberghs et al., 2012), the
support of mirror neurons, the connections across regions,
and the strong mirror properties in the hMNS produce mirror
properties in the sensorimotor and occipital regions during AO.
In fact, the sensorimotor region is related to action imitation and
action presentation. Processing of the subjects’ action preparation
and spatial orientation for a specific action depend on the
sensorimotor region. The occipital region is part of the lateral
occipitotemporal cortex (LOTC) (Barton et al., 1996; Kable
and Chatterjee, 2006). The LOTC is a set of regions that are
thought to function in integrating information and determining
the purpose of an action. Several previous studies have found
that the LOTC region forms direct and indirect connections
with hMNS regions (Weiner and Grill-Spector, 2011; Lingnau
and Downing, 2015). Therefore, the occipital, sensorimotor, and
“sensorimotor+occipital” regions were adopted for BCI analyses
and the extraction of spatio-spectral-temporal characteristic from
EEG data during AO in this study.

The accuracies of BCI show that the occipital region exhibits
higher ERD suppressions than the sensorimotor region (see
Figure 4). Similar results were also found in the BEAMs (see
Figure 7). The differences in affected regions during AO found
in our study support a previous model of hMNS activation
affecting multiple regions (Perry et al., 2010; Frenkel-Toledo
et al., 2013). Twomain reasons may account for the differences in
hMNS activations between the two regions: First, AO paradigms

are visually evoked stimuli (Wieser et al., 2016; Park, 2017).
Therefore, the visually relevant occipital region first generates
power variations (Pegado et al., 2014). After recognition of
stimuli, hMNS activations generate power variations in the
sensorimotor region (Oberman et al., 2005, 2008). Since the
occipital region undergoes rapid and prolonged activation in
response to visual stimuli, the degree of activation in the occipital
region must be higher than that in the sensorimotor region.
Second, the arm movements of the robot turn into attended
information during the presentation of AO stimuli (Hwang et al.,
2018). Recent studies suggest that attended information increases
the activation of mu rhythms (8–12 Hz) in the occipital region
during the presentation of visually evoked stimuli (Gray et al.,
2015; Sprague et al., 2015). However, distracting information
will suppress the activation of the alpha rhythm in the occipital
region (Händel et al., 2011; Klimesch, 2012; Zumer et al.,
2014). In addition, spectral characteristics and spatio-spatial
characteristics suggest that the mu range plays a prominent role
in hMNS activations (See Figures 5, 6). Therefore, the attended
information provided by the left/right-arm movements of the
robot causemore intense power differences in the occipital region
than in the sensorimotor region.

Comparing the accuracies of BCI in the three explored
regions, the results reflect the robustness of hMNS
activation in these regions. The accuracies of BCI in the
“sensorimotor+occipital” region remained the same as
the sensorimotor region but were significantly different in
the occipital region (See Figure 4). Since the activation of the
sensorimotor region is caused by ERD suppressions, whereas
the activation of the occipital region is caused by both ERD
suppressions and attended information, ERD suppressions play
a dominant role in the activation of the “sensorimotor+occipital”
region. In fact, a large number of sessions must be presented
over several days. Therefore, the attended information will
change during all sessions. As time passes, the activation of
the mu range caused by attended information will gradually
reduce due to visual fatigue (Lambooij et al., 2009). However,
ERD suppressions remain steady during the presentation of
stimuli without influence from visual fatigue (Nam et al., 2011).
Therefore, the sensorimotor region is more robust for hMNS
activations than the occipital region during AO. The findings in
our study of hMNS activations conform to the affected regions
and formation principles during AO and support further studies
on the hMNS.

4.2. The Patterns of hMNS Activations
Affected by AO Speed Modes
We found that the patterns of hMNS activations first rise
and then fall to a stable level during incremental-speed modes
of AO (See Figure 4). Relationships between speed modes
and left/right movements were also found in spatio-spatial
characteristics (See Figure 7). The patterns were appropriate
for both the sensorimotor region and the occipital region. The
reasons why the curves reveal these patterns are as follows.
Since AO stimuli in different speed modes were presented in
a periodic way in experiment 1, the refractory period of visual
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stimuli must be considered during the presentation (Huettel
and McCarthy, 2000). Previous studies suggest that the inter-
stimulus intervals (ISIs) in the refractory period are within
360–2,000 ms for auditory and visual senses (Coch et al.,
2005; Brisson and Jolicœur, 2007). Other studies demonstrate
that the ISIs of repetitive contents are within 500 ms (Davis
et al., 1972; Johannsen and Röder, 2014). In fact, the ISIs in
our experiments were 4,000 ms (slow movement), 666.7 ms
(moderate movement), 363.6 ms (fast movement), and 250 ms
(finalistic movement). Comparing the ISIs of the four speed
modes, the fast and finalistic movements exceeded the repetitive
content limits of ISI. Therefore, a visual refractory period will
appear during the presentation of fast- and finalistic-movement
AO tasks. Since the ERD suppressions are also affected by the
visual refractory period during AO (Luck et al., 2000; Caravaglios
et al., 2015), the hemisphere effects of ERD suppressions will be
reduced by the visual refractory period. In other words, increased
speed modes of AO within the limits of ISI will promote hMNS
activations that benefit from the absence of a visual refractory
period.

The patterns suggested that different speed modes of
AO define the extent and distribution of hMNS activations.
The purpose of our study was to explore the patterns of
relationships between AO speed modes and hMNS activations,
since the AO speed modes affect action imitation and action
presentation during AO. Meanwhile, the speed modes of AO
also play important roles in action information integration and
the purpose of action in previous studies (Rizzolatti, 2005;
Hobson and Bishop, 2016). Therefore, the speed factor must
be considered in relevant studies and applications related to
action, such as cognitive psychology, rehabilitation treatment,
and BCI. The patterns in our study suggest that periodic actions
performed at a moderate speed within decent ISI ranges as visual
stimuli for observation will contribute to optimized rehabilitation
treatment setups for healthy or unhealthy individuals. AO stimuli
of moderate speed within decent ISI will also improve the
performance of AO-BCI.

Recently, neurological diseases have been remedied by AO
strategies, which are good at ameliorating motor recovery
(Buccino et al., 2011). For healthy individuals, AO strategies
are good at facilitating motor learning and increasing force
(Stefan et al., 2005). Actions performed at a suitable speed
mode for observation may enhance action motivation and
optimize the recruitment of motor function (Porro et al., 2007).
Current treatments for chronic stroke and motor impairment
patients construct action execution (AE) strategies based on
ecological values (Buccino, 2014), which are valid for improving
motor function and ameliorating autonomy, such as grasping
cups or cleaning the floor (Ertelt et al., 2007). However,
since individual patients with neurological diseases usually have
clinical impairments, these patients cannot accomplish such AE
assignments in daily treatment without help. The limits for
individual patients in AE will be remitted by an optimal AO
strategy design. Because the AO assignments are visual stimuli,
which need patients to focus their attention, AO assignments are
easier to accomplish in daily treatment than AE assignments.
In addition, regardless of whether AE or AO assignments are

used, the treatment strategies of the medical rehabilitative field
must be tailored to satisfy the individual needs of each subject.
Treatment strategies should be designed with due consideration
of environmental, social, and economic factors, as well as the
pathology and characteristics of the subject. Our study suggests
that an individually tailored speed within a decent ISI range must
be considered when constructing rehabilitation AO treatments
for individual subjects.

4.3. The Construction of BMBI Based on
AO-BCI and MI-BCI
Our study suggests a new way to construct AO-BCI on a
humanoid robot platform. Experimental paradigms are defined
by parameters such that confounding factors are eliminated
by precise settings. Compared with MI-BCI, AO-BCI offers a
number of advantages. Typically, MI-BCI is constructed on the
self-imaged spontaneous potential of ERD suppressions. Subjects
may imagine self-motion, others-motion, wrist movement, arm
movement, or hand movement without specific instruction. In
addition, the familiarity factor also affects MI-BCI performance,
since MI-BCI performance significantly increases for fully
fledged subjects (Schroeder and Chestek, 2016; Subramanian
et al., 2016). However, AO-BCI, as a visually evoked stimulus,
eliminates the uncertainties of spontaneous MI-BCI. Moreover,
familiarity in the BCI is controlled by the stimulus design.
In experiments 1 and 2, none of the subjects had previous
training experience. However, the BCI results of experiment 1
significantly outperformed those of experiment 2 for slow and
moderate movements (See Figure 4). A comparison of the results
demonstrated that fixed AO modes were less influenced by the
subjects’ experience, which is another advantage of constructing
AO-BCIs.

The performance of AO-BCI and MI-BCI are mismatched in
this study since the subjects for MI-BCI lacked MI training. With
enough training inMI-BCI, the average accuracy and ITR among
subjects can reach 75% and 1.8 bits/min for two classes of MI-
BCI (Park et al., 2013). Due to confounding factors, achieving
the same level of average accuracy and ITR in AO-BCI has thus
far proven difficult. However, by adopting fine-tuned stimuli in
AO, as in the present study, the average accuracy and ITR of
AO-BCI reached 70% and 1.65 bits/min, which are similar to
those of a well-trained MI-BCI (See Figure 4). These findings
prompted us to construct a BMBI in healthy subjects using the
stimulus paradigms of AO and well-trainedMI. In recent studies,
the majority of BMBIs were based on invasive signal processing
technology and used animal carriers (Tessadori et al., 2012).
However, BMBIs are rarely based on healthy human brains given
the requirement for non-invasive signal processing techniques.
As a system of bi-directional transmission, the BMBI must be
built on two kinds of stimulators. The accuracy of performance
and the ITR of efficiency must achieve the same level for both
transmissions. Designing BMBIs that are influenced by variables
remains a meaningful but difficult problem. The construction of
BMBIs based on AO-BCI and MI-BCI in our study was based
on EEG recordings, which will satisfy the requirement for a
non-invasive method in healthy individual subjects.
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5. CONCLUSION

Our experimental results suggest that the occipital region exhibits
higher but less robust hMNS activations than the sensorimotor
region. In addition, the patterns of hMNS activations first rise
and then fall to a stable level during incremental-speed modes
of AO. Moreover, the creation of an AO-BCI provides a novel
means of building BMBI systems in healthy individuals with well-
trained MI-BCI. However, as time passes, the subjects’ refractory
period, fatigue and pressure for waiting will lead limit the EEG
recordings. Thus, our results provide only rough patterns of the
relationships between AO speed modes and hMNS activations.
Further studies with larger experimental trials are needed to
explore the exact patterns. More modes of AO are also needed
to explore confounding factors. Only then can accurate patterns
of AO be completed to study the human brain.
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