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Motor imagery–based brain–computer interface (BCI) using electroencephalography

(EEG) has demonstrated promising applications by directly decoding users’ movement

related mental intention. The selection of control signals, e.g., the channel configuration

and decoding algorithm, plays a vital role in the online performance and progressing

of BCI control. While several offline analyses report the effect of these factors on BCI

accuracy for a single session—performance increases asymptotically by increasing the

number of channels, saturates, and then decreases—no online study, to the best of our

knowledge, has yet been performed to compare for a single session or across training.

The purpose of the current study is to assess, in a group of forty-five subjects, the

effect of channel number and decoding method on the progression of BCI performance

across multiple training sessions and the corresponding neurophysiological changes.

The 45 subjects were divided into three groups using Laplacian Filtering (LAP/S) with nine

channels, Common Spatial Pattern (CSP/L) with 40 channels and CSP (CSP/S) with nine

channels for online decoding. At the first training session, subjects using CSP/L displayed

no significant difference compared to CSP/S but a higher average BCI performance over

those using LAP/S. Despite the average performance when using the LAP/Smethod was

initially lower, but LAP/S displayed improvement over first three sessions, whereas the

other two groups did not. Additionally, analysis of the recorded EEG during BCI control

indicates that the LAP/S produces control signals that are more strongly correlated with

the target location and a higher R-square value was shown at the fifth session. In the

present study, we found that subjects’ average online BCI performance using a large

EEGmontage does not show significantly better performance after the first session than a

smaller montage comprised of a common subset of these electrodes. The LAP/Smethod

with a small EEG montage allowed the subjects to improve their skills across sessions,

but no improvement was shown for the CSP method.
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INTRODUCTION

Brain-computer interface (BCI) has attracted considerable
attention during the past few decades and aims to construct a
direct interface between the human brain and peripheral devices
(He et al., 2013). Various signal sources such as endogenous
motor imagery-based sensorimotor rhythms (Wolpaw and
McFarland, 2004) and slow cortical potential (Birbaumer et al.,
2003), and exogenous P300 (Jin et al., 2010, 2011) and steady-
state visual evoked potentials (Chen et al., 2015) could be
used to build the BCI system. Motor imagery-based BCI
using electroencephalography (EEG) has shown promise in the
control of virtual objects, such as computer cursors and virtual
helicopters (Birbaumer et al., 2003; Wolpaw and McFarland,
2004; Royer et al., 2010), and physical devices, such as
wheelchairs, quadcopters and robotic arms (Pfurtscheller et al.,
2003; Carlson and Millan, 2013; LaFleur et al., 2013; Meng et al.,
2016). Human brains display characteristic spatial modulation
of sensorimotor rhythms when a user performs certain types
of motor imagination, e.g., imagining single or bilateral hand
movements, movement of the feet, etc. (Wolpaw et al., 2002;
Pfurtscheller et al., 2006). This modulation of sensorimotor
rhythms can be captured by computer algorithms and translated
into various control commands for output devices. Recently, the
study of non-invasive EEG-based BCI has sparked intensified
interests, spreading to the inclusion of additional complimentary
neurotechnologies such as EEG source imaging (Edelman et al.,
2016), vivid imagination strategy (Qiu et al., 2017), hybrid
modality (Kaiser et al., 2014), non-invasive neuromodulation
(Baxter et al., 2016), and functional magnetic resonance imaging
(Zich et al., 2015) to enhance the usability and performance of
these systems. Additional studies have utilized EEG-based BCIs
to explore neurophysiological foundations of BCI performance
such as predicting user performance (Hammer et al., 2012),
measuring brain plasticity through training (Pichiorri et al.,
2011), the relationship between attempted movement and motor
imagery (Blokland et al., 2015), as well as various clinical
applications such as how BCI training may aid in stroke
rehabilitation (Ramos-Murguialday et al., 2013; Pichiorri et al.,
2015) and in the use of lower limb exoskeletons (King et al.,
2015; Donati et al., 2016) and robotic arms for reach and grasp
(Meng et al., 2016). These studies aim to further improve the
performance of non-invasive BCI from various aspects in order
to bring this technology into everyday life.

There are several factors, e.g., the chosen frequency bands,
the channel configuration, the associated decoding methods,
etc., which are known to affect the performance of BCI system
(Blankertz et al., 2008b; Arvaneh et al., 2011; Ang et al., 2012;
Meng et al., 2013). The selection of channel configuration,
more often entangled with frequency/spectral optimization, and
associated computer algorithms have been studied by various
offline analyses (Lal et al., 2004; Blankertz et al., 2008b; Arvaneh
et al., 2011; Meng et al., 2013). Despite a conflicting consensus
within the field regarding the use of large numbers of EEG
channels (electrodes) on BCI performance, it has been suggested
by offline analyses that the classification accuracy of motor
imagery/BCI tasks can increase as more channels are added (Lal

et al., 2004; Sannelli et al., 2010; Arvaneh et al., 2011; Meng
et al., 2013; Shan et al., 2015; Qiu et al., 2016), but begins to
decrease after a certain number due to the redundant and/or
irrelevant information introduced into the classifier. Usually,
the optimal number of channels depends on the algorithm
used, the subject and the application. One state-of-the-art signal
processing method termed common spatial patterns (CSP) has
gained significant attention due to its efficiency to extract useful
motor imagery-related information from multiple channels
(Blankertz et al., 2008b; Arvaneh et al., 2011; Meng et al., 2013).
Several offline studies have shown that CSP works optimally
when using about 20–50 electrodes, however, the optimal number
varied among subjects and applications (Lal et al., 2004; Sannelli
et al., 2010; Arvaneh et al., 2011; Meng et al., 2013; Shan et al.,
2015; Qiu et al., 2016). Advanced signal processing techniques
utilizing large numbers of EEG channels, such as CSP, may
therefore additionally be able to boost BCI performance. Despite
few online applications (Guger et al., 2000; Blankertz et al.,
2008a), CSP has primarily been used to perform offline analysis
of prerecorded EEG and has been compared to only one or
two competing methods at a time (Guger et al., 2000; Blankertz
et al., 2008a,b; Sannelli et al., 2010; Arvaneh et al., 2011; Lotte
and Guan, 2011; Ang et al., 2012; Meng et al., 2013; Samek
et al., 2014; Shan et al., 2015; Qiu et al., 2016). Furthermore,
these studies often utilize data from one recording session and
do not consider the learning process of subjects that may arise
under longitudinal training paradigms. On the other hand, the
LAP method uses a fixed configuration and a relatively small
number of channels distributed around the sensorimotor area.
There are multiple studies demonstrating online performance
across several training sessions via the LAP method (Wolpaw
andMcFarland, 2004; Royer et al., 2010; Baxter et al., 2016; Meng
et al., 2016), however, most of these studies do not investigate or
report the learning process of subjects in part due to insufficient
number of subjects and low statistical power. Meanwhile, many
recent studies using BCI for stroke recovery, recovery of lower
limb injury or robotic arm control highlight the requirement
of online BCI learning in multiple/long-term sessions (Ramos-
Murguialday et al., 2013; King et al., 2015; Pichiorri et al., 2015;
Donati et al., 2016; Meng et al., 2016). Furthermore, the BCI
learning of subjects in long-term sessions continuously occurs
and interacts with the adaptation of the BCI system. Therefore, it
is necessary to not only evaluate various channel configurations
in an online fashion, but also to investigate how the use of these
approaches affect the learning process involved in BCI control.

It is clear from many offline studies that the modulation
of sensorimotor rhythms can be better captured by advanced
signal processing algorithms (Guger et al., 2000; Lal et al., 2004;
Blankertz et al., 2008a,b; Sannelli et al., 2010; Arvaneh et al.,
2011; Lotte and Guan, 2011; Ang et al., 2012; Meng et al., 2013;
Samek et al., 2014; Shan et al., 2015; Qiu et al., 2016) and may
facilitate the learning process of BCI control. This facilitation
might manifest in the form of higher decoding accuracies and
overall BCI performance, which would possibly encourage the
participants to maintain engagement throughout the training.
However, to the best of our knowledge, it has yet to be tested
whether or not the inclusion of large numbers of electrodes and
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advanced signal processing algorithms lead to more efficient BCI
training and increased performance in an online setting. In the
present study, we attempt to answer this question by investigating
BCI learning over multiple sessions in terms of the performance
of BCI control, a behavioral representation of the users’ ability to
modulate his/her sensorimotor rhythms.

In this study, we used two particular channel configurations,
composed of vastly different numbers of electrodes in order to
explore the learning performance of subjects. For each channel
configuration, decoding algorithms were utilized that have
been shown in literature to optimize the information collected
among the included sensors; Laplacian Filtering (LAP/S) for
the small channel configuration (Hjorth, 1975; McFarland et al.,
1997), CSP/L for the large channel configuration, and CSP/S
for the small channel configuration (Ramoser et al., 2000;
Blankertz et al., 2008b). Forty-five participants were recruited
to participate in this study. To address the question of how the
channel configuration and decoding algorithm affects initial BCI
learning, the subjects were randomly distributed into separate
experimental groups utilizing different channel configurations
and decoding algorithms. Each subject participated in multiple
sessions of BCI experiments using a 1-dimensional (1D) cursor
control paradigm. The group averaged performance across
sessions was compared among the three groups.

METHODS

Experimental Setup
Subjects and Data Acquisition
Forty-five BCI naïve subjects were recruited for this study. The
45 subjects (22 females; mean age, 23.7 ± 7.7; range 18–54;
seven of them are left handed, one ambidextrous) were randomly
assigned to one of three groups (Group one: G1, Group two:

G2, and Group three: G3). For each subject, five sessions of
1D horizontal motor imagery BCI control (Figure 1A) were
performed via either the small channel configuration (Figure 1B)
or multichannel configuration (Figure 1C) and the associated
online decoding algorithms. The average interval between any
two of the five consecutive sessions for all subjects is 7.24 ±

8.85 days and the minimum interval for each subject is 1 day.
The small channel configuration (G1, 15 subjects) employed
the AR spectrum algorithm which extracted the amplitude of
the alpha-beta rhythm (8–26Hz) from channels C3 and C4.
Before extracting the spectrum signals from those two channels,
they were spatially filtered by LAP/S Filter (McFarland et al.,
1997). Whereas, the CSP algorithm was used to adjust the weight
coefficients applied to the multichannel configuration (G2, 15
subjects). Correspondingly, band-pass filtering (8–26Hz) was
employed to themultiple channels before the CSP algorithms was
applied. As a control, the remaining 15 BCI naïve subjects (G3)
were instructed to perform five sessions of the same BCI task
via the small channel configuration and CSP decoding algorithm
(CSP/S, same band-pass filtering). All participants were informed
about the experimental protocol and written informed consent
from all participants was acquired before participating in the
study; the study protocol was approved by the Institutional
Review Board (IRB) of the University of Minnesota.

64-channel EEG was acquired using a Neuroscan EEG
acquisition system. The reference was located on the vertex
and the ground electrode was on the forehead. During EEG
recordings, subjects were seated in a comfortable chair with
their hands on the armrests and faced a computer monitor at a
distance of one meter. All electrode impedances were maintained
below 5 k�. The EEG signals were recorded at a sampling
rate of 1,000Hz and band-pass filtered from 0.5 to 200Hz by
a Neuroscan Synamps RT amplifier (Neuroscan Inc, Charlotte,
NC). A notch filter of 60Hz was applied to the raw EEG
signals.

Study Design
The 45 subjects who were naïve to BCI fell into one of the
three groups randomly. Each subject was instructed to imagine
movement of their left hand or right hand to control the left
or right cursor movement, respectively. Subjects were instructed
to perform kinesthetic motor imagination in the first person
perspective (Neuper et al., 2005). There were 10 runs per session,
each composed of 25 trials per run with left and right targets
presented in block randomized order. Thus, the left and right
targets were roughly equal in each session. In each session, there
was no feedback for the first run of 25 trials and was used as
the training data for CSP/L or CSP/S. There was no feedback
for the first trial in each run as the data from this time period
was used as training data (buffer initiation) for LAP/S. After the
first training run or trial in the respective method, the feedback
was provided to subjects. For each run, the trial started with a
black screen for 3 s during which the subjects were instructed to
relax and try their best to eliminate body movement. A yellow
bar appeared after second 3 on either the left or right side of the
screen and was maintained for 3 s, followed by the appearance
of a pink cursor at second 6 which was allowed to move based
on the subject’s brain rhythms (as shown in Figure 1A). Subjects
were given a maximum of 6 s in each trial to hit the correct target;
thus, each trial could result in a hit, miss, or abort. After a 1 s post-
feedback period a new trial repeated under the same procedure.
The movement of the cursor was presented by BCI2000 (Schalk
et al., 2004).

All of the subjects were blinded to which group they belonged
to. The first group G1 included 15 subjects using the small
channel configuration and LAP/S filtering method for online
decoding during the first three sessions (G1:LAP/S); the last
two sessions were switched to the multichannel configuration
and CSP/L for online decoding (G1:LAP/S->CSP/L). For the
second group, 15 subjects participated in three sessions of BCI
control via the multichannel configuration and CSP/L as the
online decoding method (G2:CSP/L) and then switched to the
small channel configuration and LAP/S method for their last
two sessions (G2:CSP/L->LAP/S, as shown in Figure 1D). The
15 subjects in the third group performed the same BCI task
via the small channel configuration using CSP as the decoding
method throughout the five sessions (CSP/S, G3:CSP/S). The
ability to operate a BCI for participants is expected to be
generalized from one decoding method to another if they are
to use the same underlying neurophysiological mechanism.
Changing the decoding method can act as a perturbation
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FIGURE 1 | Experimental design. (A) Trial structure for cursor movement BCI control using left- and right-hand motor imagery. (B) Small channel configuration for

large Laplacian filtering (LAP/S) method. (C) Multichannel configuration with 40 electrodes decoded by common spatial filter (CSP/L) method. (D) Switch-over design

for the first two groups where participants were randomly distributed into two groups: each group performed three sessions of the original configuration and

associated decoding method and then switched over to the other for the remaining two sessions; the channel configuration for each session is shown accordingly.

Subjects in group three performed five sessions of online decoding by CSP/S but via the small channel configuration indicated in (B).

to a particular subject’s control strategy, however, could also
potentially help make such a control strategy more robust
in the long run. The switch-over design among the first
two groups was aimed to test how changing the decoding
method would affect a subject’s control strategy by means
of behavioral performance. The experimental schedule for
each subject was balanced between each subject’s earliest next
available day and our lab’s availability; Figure 2A displays the
scheme for recruiting and scheduling subjects. The statistics
of inter-session interval for all subjects are displayed in
Figure 2B.

Multichannel (CSP/L) Online Decoding
Forty electrodes were selected and are marked green in
Figure 1C. Channels at the periphery of the cap were ignored
during online processing to avoid large, common artifacts caused
by facial muscle movements. Those 40 channels were band-
pass filtered by an 8–26Hz Butterworth filter and then spatially
filtered by three pairs of the most distinct CSP filters. The power
in a sliding time window of 2 s in each of spatially and spectrally
filtered EEG signals were used to calculate the movement of
the cursor in each time step. CSP aims to maximize one class
covariance while minimizing the other class covariance. The
equivalent optimization problem aims to maximize one specific
class covariance with the normalization constraint of two class
covariance. The solution is given by the generalized eigenvalue

decomposition (Ramoser et al., 2000; Blankertz et al., 2008b).
Linear discriminant analysis (LDA) was used as the classifier. In
the online BCI experiments in the current study, the normalized
value of LDA output was mapped to the cursor velocity in either
the positive (right) or negative (left) directions. For the first run of
each session, the cursor did notmove but the subject was required
to do the same motor imagination as subsequent runs in order to
get the training data to train the CSP and LDA classifier. After the
first run, the spatial filters and LDA classifier were retrained based
on the data of the previous two runs, 50 trials, (for the second
run, only the data of first run were used). A batch mode (Qin
et al., 2007; Meng et al., 2014) was applied to update the classifier
online after each run.

Small Channel (LAP/S) Online Decoding
The signals of channel C3 and C4 were spatially filtered by LAP
filter (Figure 1B) before they were used to calculate the power
spectrum. Spectral power of the alpha-beta rhythm estimated by
the Autoregressive (AR)method for channel C3 andC4was input
to a linear classifier and linearly mapped to the 1D left/right
cursor velocity (LaFleur et al., 2013; Meng et al., 2016). For
the first run of each session, the cursor did not move for the
first trial but the subject was instructed to do the same motor
imagination in order to calibrate a normalizer, after the first
trial the cursor began to move (feedback). The normalizer took
the output of the linear classifier as input and transformed it
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FIGURE 2 | Schematic representation of the experimental schedule. (A) Scheme of subjects’ recruitment and experimental schedule. (B) The statistics of

inter-session interval for all sessions and subjects.

into a zero mean and unit variance control signal for velocity-
based cursor control. The output of linear classifier was updated
online by the normalizer (Schalk et al., 2004; Baxter et al.,
2016).

CSP/S Online Decoding
The signals from the small channel configuration (Figure 1B)
were used for this paradigm and the same procedures of CSP
and LDA were used to extract three pairs of features and
classify the movement of the cursor. Similarly, the spatial filters
and LDA classifier were updated online in a batch mode after
each run.

Group R-Squared Evaluation in Sensor
Space
We used the coefficient of determination, R-squared (r2)value,
to measure how strongly the means of the two distributions
(left and right hand imagination) differ relative to the band
power variance. In an offline analysis, trials contaminated by
artifacts were removed to alleviate the obscurity of cortical
activity caused by any electrical sources unrelated to the task,
e.g., swallowing or head movement. Trials were rejected if the
activity satisfied one of the following criteria: first, the power
spectrum of the trial during the feedback period deviated from
the baseline by±35 dB in the 7–35Hz frequency band (Delorme
and Makeig, 2004); second, the feedback duration was < 2 s. All
of the trials including hit, miss and abort trials are used for the
calculation of R-squared value. Artifactual trials were removed
as described above in order to utilize only clean EEG signals,
which could accurately capture the intention of the subjects.
This procedure left an average of 200 ± 37 trials remaining
for each subject and each session. A large Laplacian filter was
applied to all of the recorded data (Hjorth, 1975; McFarland,
2015). Since a broad frequency band of 8–26Hz was applied
to all of the methods online, it is desirable to see the changes
of R-squared values across sessions in the same frequency band
for offline analysis. R-squared values were first calculated in
each electrode in the frequency band of 8–26Hz from all of
the non-rejected trials for each subject and each session. Then
the R-squared values were averaged over the subjects in each
session.

RESULTS

Online BCI Performance Results
First, the online BCI performance for each method was averaged
over groups of subjects for each session. The group averaged
percent valid correct (PVC) for all of subjects in different groups
across the five sessions is shown in Figure 3. The PVC is defined
as the ratio of the correct target hit trials vs. all of the valid
outcomes. Thus, invalid outcomes corresponding to those trials
when neither a correct nor an incorrect target was hit (abort)
were excluded in the calculation of PVC. The first group is
indicated by the green line, the second group the red line, and the
third group the blue line. Because of the switch-over employed
in sessions four and five for the first two groups, the line color
remains the same for original groups, however, the markers
switch. Thus, a green line with green circles represents the first
group for the first three sessions, whereas a green line with red
stars represents the same group in the final two switch-over
sessions. The same visualization method is applied to the second
group (refer to Figure 1D for details). The light-gray highlighted
region indicates when the switch-over sessions began.

A linear mixed effect model (lme) was employed to evaluate
the statistical significance of group performance over time (across
sessions) with post-hoc Tukey’s tests used to correct for multiple
comparisons. There was a significant difference (p = 0.03) in
PVC between G1 (LAP/S, PVC ± S.E.M was 61.8 ± 4.6%)
and G2 (CSP/L, 76.0 ± 2.6%) and no significant difference
between G1:LAP/S and G3 (CSP/S, 72.7 ± 3.7%), or G2:CSP/L
and G3:CSP/S in the first session. There were no significant
differences among any group pairings in the following sessions.
In the fifth session, we found a significant difference in PVC
between G2 (LAP/S, 83.8 ± 4.7%) and G1 (CSP/L, 73.8 ± 3.7%),
and between G2 (LAP/S, 83.8 ± 4.7%) and G3 (CSP/S, 73.3 ±

3.7%) before correction of multiple comparisons, however, these
effects did not survive the correction. The group averaged PVC
using the CSP decoding method and multichannel configuration
(CSP/L, marked with red stars) showed significantly higher
initial performance than the LAP/S decoding method using the
small channel configuration at the first session. However, the
performance of this group varied across the first three sessions
without a clear trend and the variation (red star) continued after
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FIGURE 3 | Online BCI performance and statistical analysis results. (A) Online group average performance in terms of Percent Valid Correct (PVC) across all five

sessions. The standard errors of the mean (S.E.M) are indicated by the error bars on each point along the three lines. The same group of participants is connected by

the same color lines and the same method is marked by red star and green circle, respectively. The “*” indicates there is a significant difference of performance

between LAP/S and CSP/L at the first session. (B) Change of BCI performance across the first three sessions relative to the first (baseline) session. A significant

difference between the group using CSP/L and the group using LAP/S is apparent in the overall improvement of PVC from the first to third BCI session. (C) Change of

BCI performance compared to the third (baseline) session after switching over methods.

switching over to the LAP/S method as well. A similar high group
average PVC by the small channel configuration (CSP/S, blue
line) was shown at the first session, but no significant difference
was shown compared to LAP/S decoding method. There was
small variation in the performance for group three using the
CSP/S method across the five sessions. The performance via the
LAP/S decoding method using the small channel configuration
(green circle) displayed a significant improvement, which is
further discussed in section Offline BCI Performance Analysis,
from the first to third sessions despite starting from a lower
initial group averaged PVC. The change of BCI performance
between session 4 and session 5 after switching over also shows
greater improvement in group G2:CSP/L->LAP/S compared to
G1:LAP/S->CSP/L (see analysis results in section Offline BCI
Performance Analysis as well). In the following subsections,
whether the randomly assigned subjects in three groups had equal
natural abilities to control a BCI and whether the three methods
produced different longitudinal effects of BCI control across the
first three sessions are evaluated.

Evaluation of BCI Performance Progress
for Different Methods
In order to see the effects of the three different methods (here
denoted as method A-LAP/S; method B-CSP/L and method

C-CSP/S) and time (different sessions), the first three sessions
and the last three sessions were analyzed separately. The
performance of the first session (baseline) was subtracted from
the second and third session to get the change of performance
from baseline for each subject after training. Similarly, the
performance of the third session was subtracted from the
fourth and fifth to obtain the change of performance from
the time point right before switching over methods for each
subject. Although the offline cross validation analysis in section
Offline BCI Performance Analysis showed that there was no
significant difference in discriminative abilities between groups
before the first online session (the offline cross validation in
section Offline BCI Performance Analysis was used to assess
subjects’ discriminative abilities between groups), the difference
in subject ability could be further compensated and evaluated
by comparing their change of performance session by session.
Thus, by baseline correcting the subjects’ performance, the
effect of initial group differences can be minimized. The change
in performance (dependent variable, DV) for three different
subgroups underwent treatment A, B, and C, respectively, for
two different time points (repeated measures). A mixed repeated
measures ANOVA was used to determine whether the three
different methods produced different BCI performance over
time. Prior to switching over methods, the statistics for the
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main effect of method is F(2, 42) = 3.23, p = 0.049, n2 = 0.1
(generalized Eta-Squared measure of effect size); main effect of
time is F(1, 42) = 1.12, p = 0.30, n2 < 0.01; interaction effect
of method and time is F(2, 42) = 0.29, p = 0.75, n2 < 0.01. The
statistics indicate there is a significant difference in the main
effect of method. Post-hoc linear mixed effect models (lme) and
Tukey’s Test were performed between each method for multiple
comparisons of means. The results are summarized in the
Figure 3B. There is a marginally significant difference (p= 0.05)
in change of BCI performance from session 1 to session 3 between
method G1:LAP/S–G2:CSP/L (PVC ± S.E.M, 11.6 ± 5.0%); no
significant difference (p = 0.81) between method G3:CSP/S–
G2:CSP/L (3.0 ± 5.0%); no significant difference (p = 0.20)
between method G3:CSP/S–G1:LAP/S (−8.6 ± 5.0%). There are
no significant differences in the change of BCI performance
from session 1 to session 2 (i.e., Session 2-1) among all of the
three methods. After switching over methods, a similar mixed
repeated measures ANOVA was used to assess the three different
methods. No significant difference in main effects was shown;
the statistics for the main effect of method is F(2, 42) = 0.98,
p = 0.39, n2 = 0.04; main effect of time is F(1, 42) = 0.17,
p = 0.68, n2 < 0.01. There was a significant interaction effect
between method and time, F(2, 42) = 5.35, p = 0.009, n2 = 0.03.
Since a significant interaction was found, we did further post-
hoc analysis on the change of BCI performance between session
4 and session 3, between session 5 and session 4 to find the
reason for such significant interaction. The results are shown in
Figure 4. A significant difference between G2: CSP/L->LAP/S
and G1:LAP/S->CSP/L was shown for the change of BCI
performance between session 4 and session 5 (see Figure 4B).

A linear mixed effect model was applied to test whether the
carry-over effect was significant via the sequence of G1 (LAPS,
session 3) (CSPL, session 4) and the sequence of G2 (CSPL,
session3) (LAPS, session 4) in order to exclude the possibility
of biasing the results for session 4 and session 5 due to the
switch over design (Lawson, 2014). The result showed that there
is no significant carry-over effect (p = 0.67) between the two
sequences.

Offline BCI Performance Analysis
Although the subjects were recruited and randomly assigned to
different groups, it is worth investigating the genuine ability of
each group to produce discriminable brain patterns and ensure
that this ability was roughly equal. Then we can exclude the
possibility that the difference of online performance between
different groups, especially at the first training session, is
caused by subjects’ natural BCI ability. The offline analysis was
performed for all of the subjects on their first session and
subsequent four sessions of BCI data. Since CSP has been used
as a benchmark method for numerous offline analyses (Blankertz
et al., 2008b; Tangermann et al., 2012), CSP/L with the large
channel configuration and a time segment of 2 s right after the
cursor appears (3 s after the target cue was presented) was used
as the method to assess the discriminability of subjects in all
three groups. A 5 × 5 fold cross-validation (CV) was used to
estimate the offline performance accuracy for each subject and
each session. The group average CV accuracy in each group and

session is shown in Figure 5A. Particularly, a one-way analysis
of variance (ANOVA) was used to test whether there were
statistically significant differences between the means of three
groups at the first session. The average CV results and SEM
for each method were G1:LAP/S (PVC ± S.E.M) 70.0 ± 3.6%,
G2:CSP/L 73.0± 2.7% and G3:CSP/S 75.0± 3.7%. The statistical
results of F(2,42) = 0.46, p = 0.63 indicate that there was no
statistically significant differences between the means of the three
groups’ offline performance at the first session. Thus, we can
conclude that the genuine ability to produce discriminable brain
patterns in different groups was roughly equal.

Group Average R-Squared Value in Sensor
Space
The R-squared value shows the difference of means of EEG mu
and beta power between collections of left and right hand motor
imagination relative to their band power variance. Thus, it could
provide information about electrophysiological changes across
training sessions. The group averaged R-squared value over all of
the participants for each decoding method was calculated and is
visualized in Figure 6. In each row, the group average R-squared
value with respect to each method is displayed, and in each
column the group averaged results with respect to each session
is shown. Note that, for the decoding method of G1:LAP/S
and G2:CSP/L, the subjects were switched-over into the other
processing and decoding scheme at the fourth session. The color
scale for each method is globally normalized to indicate the R-
squared values relative to each method. For all of the three rows,
focal distributions around channels C3 and C4 show stronger
R-squared values, which implies sensorimotor areas are actively
modulated by all of the three methods. Specifically, a mixed
repeated measures ANOVA was used to assess whether there is
a difference of R-squared values between the different methods
across sessions in channels C3 and C4. Similar to the online
performance analysis, the first three sessions and the last two
sessions were analyzed separately. There is a significant main
effect of method [F(2, 42) = 5.47, p = 0.008] and interaction
effect [F(2, 42) = 3.25, p = 0.049] for the R-squared values at
channel C3 in the ANOVA accounting for the three groups
and final two sessions. The post-hoc linear mixed effect models
(lme) and Tukey’s Test were performed between each method for
multiple comparisons of means. The results are summarized in
Figure 7. There is a significant difference in R-squared values at
channel C3 betweenmethods G2:CSP/L->LAP/S and G1:LAP/S-
>CSP/L (p = 0.0015), between methods G2:CSP/L->LAP/S and
G3:CSP/S (p = 0.0007) at the fifth session. This indicates that
EEG mu and beta waves are more consistently modulated for the
LAP/S method at the fifth training session on the group level.

Typical Spatial Patterns Derived by the
CSP/L Method
Considering the results of different online BCI performance
shown in the above analysis, feature extraction and classification
were analyzed in the current section to probe the EEG for what
factors might affect the progress of online BCI performance.
Since similar linear classifier and adaptation schemes were
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FIGURE 4 | (A) Statistical significance test of change in performance between session 3 and session 4 for all three methods. (B) Statistical significance test of change

in performance between session 4 and session 5 for all three methods.

FIGURE 5 | Offline cross-validation BCI performance and statistical analysis results. (A) Offline group average BCI performance via CSP/L method and a 5 × 5 fold

CV. (B) One way ANOVA test on the groups’ first session of offline BCI performance for three different groups. No significant difference was found.

used for all of the LAP/S, CSP/L, and CSP/S groups, there
is little chance that the classifiers cause the different online
BCI performance. We therefore focus on the feature extraction
method which is more likely to result in performance differences.
An important reason for incorporating multiple channels is the
expectation of deriving more task-related information through
advanced signal processing algorithms, like spatial filtering. The
scalp topographies of three pairs of the highest ranked spatial
patterns calculated by CSP/L for each subject and each run
during each session were explored with the above question in
mind. A typical example for a particular subject is shown in
Figure 8. In Figure 8A, spatial patterns derived by CSP/L for one
run are shown; the first and second spatial pattern in the first
row together with the second and third to last spatial patterns
in the second row display neurophysiological consistency
with the expected location of event-related (de)synchronization
(ERD/ERS) which is a typical signature of motor imagery tasks.
Contrasting with these four patterns, the third spatial pattern
and last spatial pattern might capture non-sensorimotor related
activities of the EEG, such as frontal and occipital activities
which happen to be extracted by the algorithm. The temporal
dynamics of ERD/ERS filtered by CSP/L, corresponding to

the spatial patterns in Figure 8A, are shown in Figure 8C; in
general, the temporal signals for right-hand imagination (red
line) show larger amplitude oscillations than signals for left-hand
imagination (blue line) in the first row of Figure 8C and vice
versa in the second row. Similar spatial patterns for another
run are shown in Figure 8B; a similar combination that fit with
prior neurophysiological knowledge about sensorimotor related
activities and non-sensorimotor related activities were observed.
The temporal dynamics of ERD/ERS for another two left-hand
and right-hand imagery trials are shown in the Figure 8D with
their spatial patterns of CSP/L corresponds to Figure 8B. In
general, the temporal dynamics of those sensorimotor related
activities and non-sensorimotor related activities show similar
ERD/ERS at the interested frequency band, but the spatial
distributions might vary run by run. An obvious difference
between the multichannel or small channel configuration via
CSP/L or CSP/S decoding and the small channel configuration
via LAP/S decoding was that the weighting coefficient for each
electrode (spatial filtering) via CSP/L or CSP/S was automatically
derived and adapted by the data. On the contrary, the weight
coefficients for the electrodes were fixed throughout the whole
sessions of training via LAP/S decoding. The variation of the
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FIGURE 6 | Topography of group averaged R-squared values for the three online decoding methods across five sessions. Each row shows the group results with

respect to the different methods, and each column shows the results with respect to each session. The color scale for each method and session is globally

normalized. The maximum R-squared value for each condition is marked as a black star and its value is shown rightly above each topography. The group averaged

R-squared values for the LAP/S method displayed the largest R-squared value in the focal area surrounding channels C3 and C4 at the fifth session.

FIGURE 7 | Statistical analysis of group averaged R-squared values, in channels C3 and C4, for the three online decoding methods across five sessions. Group mean

± S.E.M (standard errors of the mean) R-squared values in channels C3 and C4 were shown in the left and right panel, respectively, for the three different methods.

Statistically significant different R-squared values were found between method G2:CSP/L->LAP/S and G1:LAP/S->CSP/L, between method G2:CSP/L->LAP/S and

G3:CSP/S, in channel C3 at the fifth session.
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FIGURE 8 | Topography of spatial patterns calculated by CSP/L and corresponding temporal dynamics for a particular subject in the online BCI control. (A) Three

pairs of spatial patterns corresponding to the three pairs of the highest ranked eigenvalues were used for a particular subject in one run of a session for online BCI

control. The first and second spatial pattern in the first row together with the second and third to last spatial patterns in the second row show neurophysiological

consistency with the event-related (de)synchronization (ERD/ERS) which is a typical signature of motor imagery tasks. The third spatial pattern and last spatial pattern

might capture the non-sensorimotor related activities which happened to be featured by the algorithm. (B) Similar spatial patterns in another run of a session for online

BCI control, indicating variability in such spatial patterns used for online classification. (C) Temporal signals after the spatial filtering from two correct hit trials-left hand

imagination and right hand imagination, respectively. The spatial filters were derived from the same CSP transformation which generated the spatial patterns in (A).

(D) Similar temporal signals after spatial filtering from another two correct hit trials in the run which generate the spatial patterns in (B).

coefficient for each electrode by CSP method for a particular
subject and averaged over subjects is depicted in Figure 9 across
runs within a single session in the online BCI control. The spatial
filter for each subject was normalized in order to make the
average across subjects unbiased. There were clear variations for
each coefficient and each subject across each run in a session.
The change of coefficient optimized by CSP method caused the
change of spatial pattern on a run by run basis which might
disturb subjects’ consistent modulation of sensorimotor rhythms;
this is well reflected as an example in Figure 8 as well.

DISCUSSION

BCI Performance Progress With Respect to
Decoding Method and Number of Channels
The number of channels used in offline analyses has been widely
considered to be a critical factor that affects the performance
of separating and classifying different motor imagery tasks (Lal
et al., 2004; Blankertz et al., 2008b; Sannelli et al., 2010; Arvaneh
et al., 2011; Ang et al., 2012; Meng et al., 2013; Shan et al., 2015;
Qiu et al., 2016). However, in the current online study, changing

the number of channels from 40 electrodes (multichannel CSP/L
configuration) to nine electrodes (CSP/S), while maintaining the
same decoding method, resulted in no significant difference in
group averaged PVC across multiple sessions (refer to Figure 3).
Another observation was that there was no trend of improvement
in performance across the training sessions for the decoding
method of either CSP/L or CSP/S. However, there was a
significant improvement of performance from the first session
to the third session for the G1:LAP/S compared to G2:CSP/L
although a relatively lower initial group averaged performance
was observed at the first session. Note that G2:CSP/L showed
an overall higher average performance over the three sessions,
but there was no significant difference between G1 and G2 from
session 2 to session 3. For the last two sessions after switching-
over methods, interestingly we found that G2:CSP/L->LAP/S
showed significant improvement in change of BCI performance
between session 4 and session 5 compared to G1:LAP/S->CSP/L;
the performance of the CSP/S group without switching-over
presented plateaued performance at the first session and varied
a little bit across five sessions. No significant effects were found
among the three methods at the end of training session five.
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FIGURE 9 | Variation in weighting coefficient for each electrode by the CSP method for a particular subject in blue line and averaged over subjects ± S.E.M in red line,

across runs, in a session of online BCI control. The spatial filter for each subject was normalized and then averaged over all of the subjects in a session. A horizontal

dash line at y = 0 is shown in each panel.

The topographies of the group averaged R-squared values
of all three methods in sensor space (Figure 6) clearly show
that modulation of brain rhythms near the left C3 and right
C4 channels were induced by all methods across the multiple
training sessions. This might imply that subjects successfully
learned to modulate broad band alpha and beta rhythms from
the bilateral motor cortical areas, however, the efficiency of
modulation is different at the end of the last session (session 5).
G2:CSP/L->LAP/S has a significantly higher group averaged R-
squared value compared to the other two groups in channel C3 at
session 5. From the topographies of group averaged R-squared
values via the LAP/S, the regions of noticeable modulation
initially covered a large portion of cortical areas and showed
smaller R-squared values around C3 and C4. In later sessions,
especially at the fifth session, larger R-squared values were
induced in focal regions around the bilateral motor cortical areas.
This concept is in line with the findings of the fMRI studies
which have compared the cortical activation maps of people
deemed to be skilled and unskilled at motor imagination (Guillot
et al., 2008). This research involving both motor execution and
motor imagery has revealed that cortical activation is more
distributed in the unskilled motor imagery group than in the
skilled motor imagery group. In the current study, subjects
using the LAP/S in the first session were considered to be
less skilled than in the later sessions. This could partly explain
why the group averaged R-squared sensor space topography at
the first session was more spread, weaker compared to their
corresponding topography at the latter sessions. However, this
trend did not appear in the two CSP decoding groups using either
the multichannel configuration or small channel configuration.
Contrary to this concept, both of the two CSP decoding groups
show plateaued group performance at the first training session.
This is likely the case because the larger scalp coverage and
optimizing properties of the CSP method allows for a more

distributed brain modulation to control the BCI, increasing the
ease of control at the beginning of training (Figure 5).

This was not too surprising when considering the group
averaged PVC across multiple channels. The performance of
these two groups started at a high performance right away but
fluctuated throughout the sessions and there was no trend of
improvement on performance observed throughout the training
processes (Figure 3). This might imply that subjects could not
consolidate their skills of consistently modulating the alpha
and beta rhythms in the electrodes covering a focal region
of the sensorimotor areas. The typical spatial patterns derived
by CSP/L (Figure 7) and the variation of resulting weighting
coefficients for each electrode (Figure 8), corresponding to the
variation of spatial patterns run by run, could help to explain
this. Based on the CSP algorithm, the spatial patterns are derived
through a data-driven approach and there is no guarantee
that each spatial pattern is electrophysiologically relevant to
motor imagery modulation, which means that non-sensorimotor
related modulation could also contribute to the discrimination
of the different motor imagery tasks. By detecting various
non-sensorimotor related patterns on a run by run or session
by session basis, and when considering the non-stationary
behavior of the EEG signal itself, dramatic fluctuations of the
weighting coefficient for each electrode is a reasonable outcome
even though it is detrimental to inducing stable patterns of
modulation for the subjects. Thus, due to the dynamic montage
weights when using the CSP algorithm, subjects might not
concretely consolidate the skills necessary for controlling a BCI;
although the CSP method might provide optimal session-specific
performance, it could also lead to inconsistent modulation
of subjects’ brain rhythms. The careful scrutiny of removing
those non-sensorimotor related filters might help to alleviate
this problem and needs to be carefully examined by additional
experiments in the future investigation.

Frontiers in Neuroscience | www.frontiersin.org 11 April 2018 | Volume 12 | Article 227

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Meng et al. Electrode Numbers and Algorithm Affect BCI

Indications From Switch-Over Sessions
The ability of operating a BCI for participants is expected to
be generalized from one decoding method to another if they
are to use the same underlying neurophysiological mechanism.
A better decoding method could potentially help the user be
more robust to perturbations; the switch-over design among the
first two groups was aimed to test this. The group averaged
PVC of the first two groups in the fourth session presented
similar performance, but showed different improvement of
BCI performance in the fifth session. For the participants of
G1:LAP/S->CSP/L, an increased average PVC after switching
followed by a decreased average PVC in the subsequent session
was observed; for the participants in G2:CSP/L->LAP/S, the
average PVC showed a smaller improvement after switching and
a big improvement at the fifth session although none of these
changes is significant. This difference in trends is supported by
the mixed effect ANOVA test results; the results (section Online
BCI Performance Results) on the change of BCI performance
for the last two sessions compared to the third session before
switching methods showed a significant effect of the interaction
between method and time. Further post-hoc analysis shows that
there is a significant difference in change of BCI performance
between G1:LAP/S->CSP/L and G2:CSP/L->LAP/S at session 5
compared to session 4. Although there is a significant difference
in BCI performance between LAP/S and CSP/S at the fifth session
before correcting for multiple comparisons, it is not significant
after the correction. The analysis for the first three sessions
support the idea that LAP/S allows group one to improve on
average during the first three sessions; it seems that LAP/S
might also allow group two which starts out with CSP/L and
switches over to LAP/S for the last two sessions to increase
average BCI performance as well, but more data are needed
to support this. On the other hand, there is no clear trend
shown for either the CSP/L (group one before switching over
and group two after switching over) or CSP/S. Considering these
analyses, the trend and R-squared topography, the collective
results indicate that LAP/S might help the user be more robust
to perturbations. Nevertheless, not only does the method affect
the online BCI performance over the course of multiple sessions
but other factors such as motivation and mental status might
also play a large role (Nijber and Kübler, 2010; Ahn and Jun,
2015). Subjects might lose motivation quickly after multiple
sessions of the same paradigm, causing performance variation,
and must be considered in long-term BCI training (Kübler et al.,
2004).

Limitations of the Study and Future Work
There are many more channel configurations and associated
decoding algorithms other than LAP/S, CSP/L and CSP/S
available in the non-invasive EEG based BCI literatures
(Blankertz et al., 2006; Lotte et al., 2007). We cannot compare
all of them through online experimental validation considering
limitation of time and resources. However, the two configurations
and decoding methods selected in this study are commonly
used and consider both the ends of the spectrum in terms
of channel numbers. The small channel configuration includes
nine electrodes, the peripheral electrodes surrounding channel

C3, C4 used to filter out noise and enhance the signal-to-noise
ratio of those two channels. Similar trend to improvement of
BCI performance by using only channels C3, C4 was observed
as well in previous work (Cassady et al., 2014). For the
multichannel configuration, previous offline analyses indicate
that the performance increases from using a few channels,
saturates, and then decrease after an optimal number of channels
(Lal et al., 2004; Sannelli et al., 2010; Arvaneh et al., 2011; Meng
et al., 2013; Shan et al., 2015; Qiu et al., 2016). In this study, we
choose 40 electrodes for the large channel configuration because
most offline analysis shows that performance begins to saturate
or decrease by using more than 30–50 electrodes (Arvaneh et al.,
2011; Shan et al., 2015; Qiu et al., 2016). There are different kinds
of algorithms to extract information from signals of multiple
channels. CSP is one state-of-the-art decoding method that aims
to maximize the difference of class covariance; weight coefficients
for multiple channels are automatically optimized through
generalized eigenvalue decomposition. There are also different
ways to update the classifier for the CSPmethod. In this study, we
chose to update the CSP weight coefficients and classifier using
data collected from a buffering pool of 50 trials after each run,
where a similar approach was applied in a previous study (Yao
et al., 2014). Since the learning process was the major research
question in this study, the CSP weight coefficients and classifier
update method might not have been a major factor affecting
the learning process since the same approach was applied to
all subjects across all of sessions. Other methods adjust the
weight coefficients according to different evaluation criterions.
Those methods could induce similar problems of the frequent
weight variations due to the incorporation of non-sensorimotor
related modulation. Thus, we speculate that improving BCI
performance of motor imagination could be better induced
and consolidated by stable and electrophysiologically meaningful
patterns focusing on sensorimotor areas regardless the number
of channels.

The current design has only three sessions for G1:LAP/S and
G2:CSP/L before switching over and two sessions for G1:LAP/S-
>CSP/L and G2:CSP/L->LAP/S after switching. Since we did
not collect longitudinal data, it is difficult to conclude whether
LAP/S will ultimately outperform CSP/L even though LAP/S
provides more room for learning at the initial session It would be
desirable to have more sessions both before and after switching
over to better highlight performance trends, if there are any.
Also there are variations for inter-session intervals among the
subjects due to practical limitation, even though attempts were
made to schedule as soon as possible the next session. For human
study in a large group (45 subjects) with multiple sessions each,
it is practically impossible to optimize all parameters such as
number of sessions, inter-session intervals, etc. The motivation
for the study and schedule conflicts of subjects might have to
be kept in mind before planning longer sessions. However, the
present results provide data on important issues that may impact
BCI performance. It would also be interesting to see when the
subjects’ performance would plateau for the LAP/S method in a
group level since a significant improvement of BCI performance
was found across the first three sessions; this will be our future
investigation.
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CONCLUSION

In this study, two channel configurations representing a small
number and large number of channels, along with LAP/S
decoding and multichannel decoding algorithm—CSP—were
utilized and compared to study the online learning process
during multiple sessions. Throughout the multiple learning
sessions we found that CSP decoding method, for online BCI
control based on the either multiple channels or a small number
of channels, shows no difference for BCI online performance
but shows high group average performance at the initial sessions
than the LAP/S method. Nevertheless, the high performance
plateaued at the early training phase and may partially be caused
by non-sensorimotor relatedmodulation. Thus, no improvement
during multiple sessions was observed. On the contrary, the
LAP/S decoding method, for online BCI control via a small
numbers of channels, started at a lower group average accuracy,
but a trend of improvement and stable pattern of modulation
over multiple sessions was observed. The results of the switch-
over study imply that LAP/S might help subjects to be resistant
to perturbations to a certain degree. These results altogether
implicate that devising a successful decoding algorithm for online
application specifically requires incorporating consideration of

subjects’ engagement and learning progress in longitudinal BCI
control. With respect to long term BCI use, it appears necessary
to exclude non-sensorimotor related modulation, which could
facilitate higher performance in single individual sessions but
might not be beneficial for skill consolidation in longitudinal
sessions.
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