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Better insight into white matter (WM) alterations after stroke onset could help to

understand the underlying recovery mechanisms and improve future interventions. MR

diffusion imaging enables to assess such changes. Our goal was to investigate the

relation of WM diffusion characteristics derived from diffusion models of increasing

complexity with the motor function of the upper limb. Moreover, we aimed to evaluate

the variation of such characteristics across different WM structures of chronic stroke

patients in comparison to healthy subjects. Subjects were scanned with a two b-value

diffusion-weighted MRI protocol to exploit multiple diffusion models: single tensor,

single tensor with isotropic compartment, bi-tensor model, bi-tensor with isotropic

compartment. From each model we derived the mean tract fractional anisotropy (FA),

mean (MD), radial (RD) and axial (AD) diffusivities outside the lesion site based on a WM

tracts atlas. Asymmetry of these measures was correlated with the Fugl-Meyer upper

extremity assessment (FMA) score and compared between patient and control groups.

Eighteen chronic stroke patients and eight age-matched healthy individuals participated

in the study. Significant correlation of the outcome measures with the clinical scores of

stroke recovery was found. The lowest correlation of the corticospinal tract FAasymmetry

and FMA was with the single tensor model (r = −0.3, p = 0.2) whereas the other

models reported results in the range of r = −0.79 ÷ −0.81 and p = 4E-5 ÷ 8E-5.

The corticospinal tract and superior longitudinal fasciculus showed most alterations in

our patient group relative to controls. Multiple compartment models yielded superior

correlation of the diffusion measures and FMA compared to the single tensor model.

Keywords: diffusion MRI, brain, stroke, diffusion tensor imaging/methods, rehabilitation outcomes, motor

performance, anatomic lateralization
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INTRODUCTION

Unilateral loss of motor function is a frequent consequence of
stroke. White matter changes in the corticospinal tract (CST)
and the posterior limb of the internal capsule (PLIC) are known
to correlate to motor impairment in stroke patients (Cho et al.,
2007; Schaechter et al., 2008; Jang et al., 2010; Park et al., 2013;
Song et al., 2014). Therefore, accurate measurements of white
matter changes could be an indicator of stroke severity.

A commonly used technique to assess white matter integrity
is diffusion Magnetic Resonance Imaging (dMRI). Specifically,
it measures the ability of water molecules to move freely in

the surrounding tissue. Importantly, normal white matter (WM)
shows high diffusivity along axons and low across axons, whereas
gray matter (GM) shows more isotropic diffusion patterns
(Neil, 2008). The diffusion is conventionally modeled by a
mathematical construct called a tensor, which can be visualized
by an ellipsoid. It represents the shape of the local diffusion, from
which measures are derived such as the mean diffusivity (MD)
and the fractional anisotropy (FA). FA is a measure of anisotropy
or pointedness of a diffusion ellipsoid and MD represents the
mean diffusion in a voxel.

dMRI has proven to be a versatile tool and used in a wide
range of applications. Particularly, FAasymmetry was utilized by
Byblow et al. (2015) who aimed to predict which patients will
have spontaneous recovery. In a severe patient category without
transcranial magnetic stimulation (TMS) evoked potentials,

patients with initially small FAasymmetry would still show some
recovery, in contrast to patients with a large FAasymmetry. For the
purpose of building a linear regression model, FAasymmetry was
binarized (< >0.15) and became the only significant predictor of
change in the FMA score. Therefore, FAasymmetry could be a good
predictor of the stroke severity and potential recovery.

Several studies with animal models of stroke found
that structural white matter changes in both the ipsi- and
contralesional hemispheres play an important role in motor

recovery (Dancause et al., 2005; Brus-Ramer et al., 2007).
Furthermore, many studies have employed measures of brain
asymmetry to study stroke outcome (Bhagat et al., 2008;
Lindenberg et al., 2010; Puig et al., 2010; Park et al., 2013;
Cunningham et al., 2015). For example, the asymmetry of
FA along the PLIC in the ipsi- vs. contralesional hemisphere
had higher correlation to upper limb motor functioning than
functional MRI responses of cortical motor areas in chronic
stroke patients (3–9 months post stroke) (Qiu et al., 2011).
Ratios of FA between the affected and unaffected hemispheres
were also used to study neuronal alterations immediately after
stroke in hyper-acute ischemic stroke patients (Bhagat et al.,
2008) and longitudinally from 1 week to 1 year (Yu et al.,
2009). In the hyper-acute phase, the fractional anisotropy in
the lesion relative to the healthy side was not consistent among
patients, but elevated in some of them. After the first 24 h this
FA ratio showed more consistent reductions (Bhagat et al.,
2008). Subsequently, after 3 months, changes in the anisotropy
ratio stabilized (Yu et al., 2009). Still, the exact patterns of
change in diffusion properties of WM after stroke remain
unclear.

Although white matter alterations are well-known to correlate
with motor functioning in stroke patients, the exact etiology
of these changes remains unknown. It has been observed, for
example, in Buma et al. (2013) that after stroke a general white
matter deterioration takes place. However, as described above,
most previous studies have merely focused on the CST and
PLIC. Furthermore, a single diffusion ellipsoid was classically
used to model the local diffusion of the water molecules.
This conventional model is known to be inadequate for the
characterization of diffusion in complex structures such as
crossing fibers found, for example, at the intersection of the CST
and corpus callosum. Importantly, (Jeurissen et al., 2013) showed
that crossing fibers are present in 60-90% of the diffusion data.
The benefit of more sophisticated diffusion modeling has already
been reported for other applications (Caan et al., 2010; Arkesteijn
et al., 2015; Yang et al., 2015) and in a recent work of Archer
et al. (2017), where a two-compartment model representing free
water and white matter tissue is used to study a relation between
FAasymmetry and grip strength in chronic stroke subjects.

A single-tensormodel is often applied to analyze dMRI in both
chronic and longitudinal stroke studies (Lindenberg et al., 2012;
Ma et al., 2014). A systematic review was presented by Kumar
et al. (2016).We hypothesize that more complex diffusionmodels
are better equipped to detect subtle WM changes after stroke.
This hypothesis also underlies the use of a two-compartment
model in Archer et al. (2017), which adapted an approach by
Pasternak et al. (2009) to model a tissue and a free water
compartment.

Multi-tensor models are a logical extension of the traditional
single tensor model. Certainly, other higher order models exist,
such as spherical deconvolution (SD) approaches. Instead of
assuming a specific number of fibers, these models assume a
distribution of fiber orientations. This allows to express the
diffusion weighted signal as the spherical convolution of the
fiber orientation distribution function and a response function
representing the signal of a single fiber population (Tournier
et al., 2004). However, a response function is unknown and
generally assumed to be the same for the whole brain possibly
leading to spurious results (Parker et al., 2013).

This paper aims to evaluate four diffusion models of
increasing complexity based on the strength of the relation
between the estimated WM properties and the clinical outcomes
of chronic stroke patients. One of the motivating factors for
the choice of these models is to validate their suitability for
stroke patients and the feasibility of a model comparison per
model parameter. The outcome parameters of the diffusion
models are physically meaningful and directly comparable to
each other. Moreover, the asymmetry between the healthy and
afflicted hemispheres in the patient group is compared with the
asymmetry in healthy controls in order to assess which WM
properties are most relevant for such a comparison.We start with
an application of the traditional single tensor model and build
up to a so-called bi-tensor model with isotropic compartment
in order to identify the smallest differences in diffusivities.
This bi-tensor model especially takes into account that the
diffusion may be affected by free water due to a cerebrovascular
accident. We hypothesize that there are significant differences
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in diffusivity measures in several tracts between the two
hemispheres. Furthermore, we anticipate that the application of
sophisticated models allows a more sensitive analysis than the
conventional approach.

METHODS

Cohort
Subjects were included after informed consent and with
permission of the Medical Ethics Committee of the Vrije
Universiteit Medical Center, Amsterdam. The trial protocol was
registered on 23 October 2013 at the Netherlands Trial Register
(identifier NTR4221). Inclusion criteria for the subjects suffering
from chronic stroke were: upper limb paresis, ability to sit
without support (National Institutes of Health Stroke Scale item
5a/b > 0), age > 18, first-ever ischemic hemispheric stroke, >6
months post stroke. Exclusion criteria were: previously existing
pathological neurological conditions or orthopedic limitations
of the upper limb that would affect the results, botuline-toxine
injections, or medication that may have influenced upper limb
function in the past 3 months, general MRI contra indications
(claustrophobia, pacemaker, or othermetallic implants), high risk
of epilepsy.

Patients (n = 18) were consecutively included from April
22, 2015 to February 29, 2016. Additionally, 8 controls with
matching mean age were recruited for comparison in the period
between April 9, 2015 and November 22, 2016. Post-hoc sample
size analysis for this unmatched case-control study at the two-
sided significance level of 0.05 indicated the power (chance of
detecting) of 90% assuming a proportion of 44% of controls and
an effect size of 0.5 (Kelsey et al., 1996; Charan and Biswas, 2013).
Based on this analysis we stopped inclusion as we reached the
mentioned number of patients and controls.

The patient population consisted of 18 first-ever ischemic
stroke patients (12 men); median age: 60 (IQR: 51–67); 8/18
patients had an impaired left hand; for 9/18 patients the
dominant hand was impaired; median FMA score: 57 (IQR:
24.75–61.5); median Action Research Arm Test (ARAT) score:
54 (IQR: 16.25–56.75). The control group consisted of 8 healthy
subjects (7 men); median age: 59.5 (IQR: 55.25–62.25).

MRI Protocol
Image acquisition was performed with a 3T MRI scanner
(Discovery MR750, GE Medical Systems). The diffusion-
weighted MRI (dMRI) acquisition protocol involved 40 non-
collinear gradient directions uniformly sampled over a sphere for
each of two b-values: 1,000 and 2,000 s/mm2; TE = 100 ms,
TR = 7, 200 ms, field of view FOV = 240 × 240 mm2, imaging
matrix = 96 × 64 (zero padded to 256 × 256), 52 consecutive
slices with a thickness of 2.5mm, acquisition time 12.5min.
This allowed for whole brain coverage. Data for each b-value
were acquired as separate scans together with five non-diffusion
weighted images (i.e., per b-value).

Data Processing
Figure 1 presents an overview of the analysis steps described
below.

FIGURE 1 | Overview of the analysis steps starting with the pre-processed

dMR images. A diffusion tensor model is fitted to the data (four different

diffusion models were used in this study). Masks excluding the subject-specific

lesion site are created based on the thresholded isotropic compartment of the

bi-tensor model with isotropic compartment. The results of this step are

registered to the white-matter tract atlas (https://neurovault.org/media/

images/264/JHU-ICBM-tracts-maxprob-thr25-1mm.nii.gz) and mean values

of the outcome parameters are calculated for each tract.

Pre-processing

dMRI data were preprocessed using FSL v5.0 (http://fsl.fmrib.
ox.ac.uk/fsl/; Jenkinson et al., 2012). The acquired DWIs
were corrected for motion and eddy current distortion by
affine coregistration to the reference b0-image (using FSL
eddy_correct). Gradient directions were reoriented according to
the rotation component of the affine transformation. Datasets
of the same subject with b = 1,000 and b = 2,000 s/mm2

different diffusion weighting were coregistered with each
other using FSL flirt affine registration with six degrees of
freedom.

Diffusion Models

The following four diffusion models of increasing complexity
were fitted to the diffusion data of each voxel using the so-called
maximum likelihood estimation as described, for example, in
Caan et al. (2010):

(1) Single-tensor model: A single tensor. The tensor shape is
unconstrained. Images were generated representing FA, MD,
axial diffusivity (AD), and radial diffusivity (RD). Axial
diffusivity is the principal eigenvalue of the diffusion tensor
and is often considered to represent the diffusion along
a fiber tract. Radial diffusivity equals the mean of the
secondary eigenvalues and is often taken to represent the
diffusivity perpendicular to a tract.
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(2) Single tensor with an isotropic compartment: A single
tensor compartment accompanied by an isotropic, free water
compartment. The shape of the tensor is unconstrained.
Unlike in Arkesteijn et al. (2015), not even a trace constraint
is applied. This model yielded the same parameters as the
single tensormodel derived from the fiber compartment, and
in addition a volume fraction characterizing the amount of
free water in all voxels.

(3) Bi-tensor model (Caan et al., 2010): A model consisting of
two tensor compartments with the same shape (symmetric
tensors with equal AD and RD, and thus same FA), but
variable volume fractions (i.e., relative contribution to a
voxel) and arbitrary orientations. This model represented
two white matter bundles simultaneously present in a voxel.
It yielded the same parameters as the single tensor model
due to the presumed identical shape of the two tensors. The
volume fraction was not considered for further analysis as it
is affected by (arbitrary) partial volume effects.

(4) Bi-tensor model with an isotropic compartment (Yang et al.,
2016): A model combining the representation of crossing
nerve bundles and free water diffusion in a single voxel. The
two estimated tensors are restricted to have the same shape
as in the bi-tensor model. The free-water volume fraction is
an additional parameter to the aforementioned parameters
of the bi-tensor model.

In all of the models the maximum diffusivity of the tensor
compartment is limited by the diffusivity of free water at body
temperature. For an illustration of these models see Figure 2.
Mathematical details of specific model parametrizations and
model fitting procedure are described in the Supplementary
Material.

It is important to notice that models with multiple
compartments are capable of modeling diffusion signals
produced by several fiber populations leading to lower fit errors.
However, applying these models to voxels containing a single
fiber population may result in noise fitting and thus spurious
fiber orientations’ and erroneous model parameters.

Tract Identification

The volume fraction of tissue in a stroke lesion was estimated to
be <0.1 by Latour and Warach (2002). Reflecting this decreased
parenchymal volume fraction, masks of stroke lesions were
created by conservatively thresholding the volume fraction of the
isotropic compartment estimated by model (4) at fiso = 0.9.
As such, regions with fiso larger than this value were excluded
from further analysis. The accuracy of the lesion delineation was

FIGURE 2 | Illustration of the four diffusion models. From left to right: single

tensor, single tensor with isotropic compartment, bi-tensor and bi-tensor with

an isotropic compartment models.

visually checked by a research fellow (OF). The research fellow
could adjust the threshold to obtain a more accurate delineation
in case the mask was considered suboptimal.

Separate FA images were derived for each diffusion model
and each subject. All FA images were co-registered to the MNI
space using an affine registration with 12 degrees of freedom as
implemented in FSL v5.0 (Jenkinson et al., 2012). To achieve
an accurate registration of the non-lesional brain parts, the
masked regions of the chronic stroke subjects were excluded in
the registration process. Subsequently, the same transformation
was applied to the parameter maps derived from the diffusion
models (e.g., the volume fractions). Next, the JHU white-matter
tractography atlas, which is also defined in MNI space, was
projected onto the data. This tractography atlas contains 20
labeled white matter structures. It was generated by averaging
the results of deterministic tractography on 28 normal subjects
(mean age 29, M: 17, F: 11) (Mori et al., 2005; Hua et al., 2008).
Symmetric WM tracts in this atlas are considered in our analysis.
Their functional roles are summarized in Table 1. Additionally,
the atlas contains delineations of forceps major and forceps
minor.

Registration to the atlas space is illustrated in Figure 3,
showing that no significant warping occurs. Not even for
the scans of a patient with a big lesion. For the median
and interquartile range of the considered regions of interest
computed in the atlas space after masking the lesion out (see
Table 2).

Data Analysis and Statistics
The mean parameter values of each model were calculated for
every tract and for all subjects. After that, we determined ratios
of the mean tract values between contralesional (healthy) and
ipsilesional (impaired) hemispheres, which were normalized to
the interval between−1 and 1. For example, for FA it was defined
as

(

FAhealthy − FAimpaired

)

/
(

FAhealthy + FAimpaired

)

. In this way,
WM properties that were balanced between the hemispheres
resulted in values close to zero; positive values indicate that
the contralesional side has higher FA than the ipsilesional side
and vice versa for negative values. In the same manner, the
asymmetry was calculated for MD, RD, and AD. For the healthy
controls asymmetry was defined between the dominant and non-
dominant hemispheres based on the handedness of each subject.

The asymmetries were statistically analyzed using the two-
sided Wilcoxon signed rank test. The Benjamini–Hochberg
procedure was used to control the false discovery rate at the 5%
level (Benjamini and Hochberg, 1995; Benjamini and Yekutieli,
2001), independently for each of the outcome parameters.
Comparisons for each model and each diffusivity measure were
done independently. WM asymmetries were correlated with the
upper limb Fugl-Meyer assessment (FMA) score using Pearson
correlation.

RESULTS

Pearson correlations between FA, MD, AD and RD asymmetries
estimated from the four diffusion models with Fugl-Meyer scores
are presented in Figure 4 and in the Supplementary Material.
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TABLE 1 | White matter tracts of the JHU tractography atlas obtained from deterministic tractography on 28 normal subjects (https://neurovault.org/media/images/264/

JHU-ICBM-tracts-maxprob-thr25-1mm.nii.gz, Hua et al., 2008), their approximate location and function.

Tract name Location Function

Anterior thalamic radiation (ATR) Passes from thalamus to pre-frontal cortex As a part of thalamic radiations, relays sensory and

motor data to pre- and post-central cortex

Corticospinal tract (CST) Connects cerebral motor and somatosensory cortex to

medulla and descends into contralateral spinal cord

Facilitates voluntary motor control of the limbs and trunk

Cingulum (all parts):

Cingulum 1 -cingulate gyrus (CG);

cingulum 2–cingulate hippocampus

(CH)

A collection of WM fibers connecting cingulate gyrus

(cortex) to the entorhinal cortex

Part of the limbic system of the brain, associated with

emotion, visual and spatial skills, working and general

memory

Inferior fronto-occipital fasciculus

(IFOF)

Connects the occipital lobe with the anterior part of the

temporal lobe, running medially and above the optic

fibers. It is a direct pathway connecting occipital,

posterior temporal orbitofrontal areas

Integration of auditory and visual association cortices

with prefrontal cortex. Function is still poorly understood

Inferior longitudinal fasciculus (ILF) Connects the occipital lobe with the anterior part of the

temporal lobe, running above the optic radiation fibers

Integration of auditory and speech nuclei. Function is still

poorly understood

Superior longitudinal fasciculus (all

parts):

SLF and temporal part SLF-T

Major association fiber tract connecting frontal, parietal,

and temporal lobes

As a major tract with projections to multiple lobes, it is

involved with regulating motor behavior, spatial attention,

visual and oculomotor functions, transfer of

somatosensory information as well as language

Uncinate fasciculus A hook-shaped fiber bundle linking anterior parts of the

temporal lobe with the lower surface of the frontal lobe

Part of the limbic system which takes part in memory

integration

FIGURE 3 | FA image of an affected hemisphere of a patient before (subject

space, left) and after (atlas space, right) registration to the atlas space. Lesion

mask was applied. The absence of large deformations indicates that the

presence of the lesion hardly affected the registration outcome.

The comparison of asymmetries in diffusion measures
between patient and control groups for all four diffusion models
is presented in Figure 5. After applying the Benjamini–Hochberg

false discovery rate control procedure, the comparisons were
deemed to be statistically significant at the 95% confidence level
when p ≤ 0.016 for FAasymmetry, p ≤ 0.014 for MDasymmetry, p ≤

0.003 for ADasymmetry, and p ≤ 0.012 for RDasymmetry. Patients
showed a significant difference from controls in CST asymmetries
of FA, MD, and RD for all models, but of AD only for model
(3). Similarly, a difference between groups was found in SLF
asymmetries of FA, MD, and RD for all models, and of AD
only for models (1) and (3). ADasymmetry did not identify other
WM tracts as being different between the patient and control
groups. None of the models identified statistically significant
difference in the cingulum-1, inferior fronto-occipital fasciculus
and uncinate fasciculus. For the inferior longitudinal fasciculus,
only RDasymmetry for models (2) and (4) and MDasymmetry for
model (2) differed significantly between patients and controls.

DISCUSSION

In this study, we evaluated how WM diffusion properties
estimated by four diffusion models of increasing complexity
relate to the motor outcome of chronic stroke patients.
Particularly, the influence of stroke on symmetric white matter
structures was assessed based on the interhemispheric asymmetry
of mean tract model parameters. We have not investigated the
influence of lesion size and lesion location on motor recovery,
which was presented in literature before (e.g., Lo et al., 2010), but
focused on four diffusion measures: FA, MD, AD, and RD.

Model Comparison
Diffusion MRI has been used to derive characteristics of the
corticospinal tract in chronic stroke using the single tensor
model. (Archer et al., 2017) aimed to eliminate bias of free
water contamination from the FA estimation with an approach
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TABLE 2 | Median and IQR over the study population of the considered regions of interest after masking lesions out, computed in the atlas space.

Tract name Median (IQR), px

Right hemisphere Left hemisphere

Anterior thalamic radiation 11716 (9928.5–12588) 10776 (7265.25–11320.75)

Corticospinal tract 8867 (8451.75–9057.5) 7991.5 (7302.75–8106.75)

Cingulum (all parts) 5021 (4992.75–5053.75) 3781.5 (3721.75–3792.75)

Inferior fronto-occipital fasciculus 11018 (10587.25–11097.5) 12036 (10976–12134,5)

Inferior longitudinal fasciculus 10359.5 (10314–10400) 6964 (6790.5–7004.25)

Superior longitudinal fasciculus (all parts) 14977.5 (14862.5–15017.5) 11881.5 (11186.75–11909.75)

Uncinate fasciculus 2627 (2551.5–2650.75) 1775.5 (1605–1810)

Names and order of ROIs coincides with Table 1.

by Pasternak et al. (2009) for modeling a tissue and a free
water compartment. We add to this previous work by not only
investigating the FAasymmetry, but other diffusivity measures (MD,
AD, and RD) as well. This is supported by our acquisition
protocol with two b-values, as it was discussed in Taquet et al.
(2015) that estimation of the parameters in the two-compartment
model by Pasternak et al. (2009), NODDI (Zhang et al.,
2012), CHARMED (Assaf and Basser, 2005), and DIAMOND
(Scherrer et al., 2013)1 is ineffective for a single b-value data,
unless additional regularization or assumptions are enforced on
the model fit. Two-compartment models were also previously
applied to multi-shell dMRI data by, for example, (Pierpaoli and
Jones, 2004; Pasternak et al., 2012; Hoy et al., 2014).

The WM asymmetries were assessed using four diffusion
models of increasing complexity: (1) single tensor, (2) single
tensor with isotropic compartment, (3) bi-tensor, and (4)
bi-tensor with isotropic compartment. The addition of each
compartment to the models in this study permits modeling of
an additional physical phenomenon (i.e., free water and crossing
fibers) and contributes to the interpretation of the results. It
is important to notice that the outcome parameters of the
selected diffusion models are directly comparable to each other.
For example, the frequently used ball-and-stick model (Behrens
et al., 2003) yields volume fractions of the fiber populations that
cannot be directly compared to FA. However, more complex
models do not everywhere in the brain reflect the underlying
white matter anatomy. Applying a two tensor model to the
diffusion data from a single fiber tract may lead to overfitting
and meaningless outcome parameters. This is described in Yang
et al. (2016). Therefore, it cannot be taken for granted that more
complex models are always performing better, especially in case
of pathologies.

Damage to the CST after stroke has been extensively
investigated in Stinear et al. (2007); Schaechter et al. (2008,
2009), and Cunningham et al. (2015). A linear correlation was
found between the CST integrity and increased activation of the
contralesional primary sensorimotor cortex (Schaechter et al.,

1NODDI, Neurite Orientation Dispersion and Density Imaging; CHARMED,

Composite hindered and restricted model of diffusion; DIAMOND, DIstribution

of 3-D Anisotropic MicrOstructural eNvironments in Diffusion-compartment

imaging.

2008). Qiu et al. (2011) showed a close relationship between
the FA asymmetry and clinical outcome measures. The current
study expands on this by exploring this relation for multiple WM
properties assessed by four diffusion models. We did not find a
significant Pearson correlation between the asymmetry of single
tensor diffusionmeasures and the upper-limb FMA inmost of the
tracts, not even in the CST. The other models do show significant
correlations between the CST asymmetry and the FMA score.
The highest correlation and statistical significance are for FA
and RD CST asymmetries. Except for the cingulum (tracts 3 and
4), MD, AD, and RD asymmetry derived from models (2) to
(4) showed significant correlation with the FMA for all other
tracts. However, it was less consistent among tracts for the FA
asymmetry. This may indicate that not only CST integrity, but
also the state of other white matter tracts could be indicative of
the patient’s motor abilities after stroke. A similar conclusion was
previously reached based on a voxel-wise FA analysis (Schaechter
et al., 2009).

Our findings indicate that accounting for the free water
by adding an isotropic compartment to the single tensor
model already significantly increases the sensitivity of diffusion
outcomes. Differences in the outcomes of different models
may suggest that for specific tracts and especially in the areas
hampered by partial volume effects, it can be beneficial to go
beyond the single tensor model when relating the results to the
patient motor function.

Affected White Matter Tracts
We investigated the asymmetry in FA, MD, AD, and RD and
tested whether the asymmetry was significantly different from the
same measures for the control group and whether it correlated
with the FMA score of the patients. As a higher FA may be
related to a better quality of WM tracts (Hüppi and Dubois,
2006; Teipel et al., 2010; Winston, 2012), statistically significant
correlations of FAasymmetry with themotor score are negative. The
rest of the diffusion properties have an inverse relation, e.g., lower
MD indicates higher membrane density, leading to significant
correlations of MD, AD, and RD asymmetries with FMA being
negative. Moreover, prior research predominantly focused on the
CST in general and the posterior limb of the internal capsule in
particular, because these structures are regularly associated with
stroke damage (Jang, 2011; Park et al., 2013; Song et al., 2015).
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FIGURE 4 | Correlation of the FMA score and asymmetry in (A) FA (top left), (B) MD (top right), (C) AD (bottom left), and (D) RD (bottom right) for the considered WM

tracts. Statistically significant correlations (p < 0.05) are depicted in blue, not significant correlations are shown in red. Models are denoted as follows: single

tensor—square, single tensor with isotropic compartment—diamond, bi-tensor—triangle, bi-tensor with isotropic compartment—star. Horizontal dashed lines mark

conditional boundaries of moderate (negative) linear relation (correlation of ±0.5), solid lines—strong relation (correlation of ±0.7).

Instead, we chose to pursue a more comprehensive analysis
involving diffusivity parameters in nine symmetric tracts as listed
above.

As might be expected, the WM tracts asymmetry in healthy
controls fluctuated around zero. After false discovery rate
correction, FA, MD, and RD, but not AD, asymmetries differed
between patients and controls in CST and SLF. Model (1) also

failed to identify the FAasymmetry in SLF. Asymmetry in SLF has
not been reported previously. However, the dorsal component
of SLF originates in the superior and medial parietal cortex
and terminates in the dorsal and medial cortex of the frontal
lobe and in the supplementary motor cortex. Therefore, changes
in the SLF with respect to the control group could have been
expected as all patients in this study suffered from a certain
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FIGURE 5 | Comparison of the (A) FA (top left), (B) MD (top right), (C) AD (bottom left), and (D) RD (bottom right) asymmetries in the WM tracts between patients and

controls (range indicated in black) estimated by the four diffusion models. Results for patients are color-coded with their FMA score. Models from left to right for each

tract: single tensor (square), single tensor with isotropic compartment (diamond), bi-tensor (triangle), bi-tensor with isotropic compartment (star). Filled bullets at the

top of each data series mark the tracts and models for which, after Benjamini–Hochberg correction, the asymmetry of patients is significantly different from the one of

controls.

extend of motor impairment. Overall, patients with more severe
impairment, indicated by lower FMA scores, displayed indeed
higher asymmetry of their WM properties.

Limitations
Diffusion properties of the cingulum (tracts 3 and 4) did
not correlate with FMA and showed higher asymmetries even
for the control group (Figures 4, 5). Information about the
dominant and the impaired hand of the patients may suggest
that handedness of subjects could have influenced the sign of
the WM asymmetry. A number of studies investigated the effects
of handedness on the human brain. Differences in volumes
of gray and white matter areas were detected by Herve et al.

(2006). A voxel-based statistical analysis found higher FA in the
left arcuate fasciculus in consistent right-handers (Büchel et al.,
2004). However, this was not confirmed in a similar study by
Park et al. (2004). Despite the fact that right hand preference
might be expected to result from asymmetries in the motor
cortex, it is stronger correlated with asymmetries in language-
processing structures (Toga and Thompson, 2003). A more
recent study by Powell et al. (2012) suggests a greater effect of sex
than handedness on FA asymmetry. McKay et al. (2017) found
significantly higher FA-values for left-handed individuals in all
major lobes and in the corpus callosum compared to the right-
handed subjects. As such, results regarding handedness effects on
WM have not been entirely consistent across different studies.

Frontiers in Neuroscience | www.frontiersin.org 8 April 2018 | Volume 12 | Article 247

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Filatova et al. Diffusion Models in Chronic Stroke

In our work we rely on an assumption that stroke causes a
much larger asymmetry than the handedness of a person. We
did compare the effect of stroke to the baseline asymmetries
in diffusion properties of our control group, which are quite
symmetrically distributed around zero (except for the cingulum
as mentioned above) and are in range that is at least twice smaller
than that of the patient group. Although we are aware that this
approach has drawbacks, it is frequently performed to avoid
oversegmentation of the cohort, i.e., dividing it into groups based
on handedness, (Luft et al., 2004; De Vico Fallani et al., 2013).
Practically, it enabled us to include a sufficiently large subject
group to achieve statistically valid results and conclusions. Such
an approach is similar to the underlying assumption of many
other stroke studies (Bhagat et al., 2008; Lindenberg et al., 2010;
Puig et al., 2010; Park et al., 2013; Cunningham et al., 2015;
Archer et al., 2017).

As a limitation we would also like to mention the absence
of a ground truth, as the true diffusion properties of WM in
stroke patients are unknown. This limits our ability to evaluate
the performance of the diffusion models, but this is a common
problem of in-vivo studies into brain structures, allowing only
indirect assessments. Another factor is the smaller size of the
control group compared to the patient group. We assume
that the variation in the outcome parameters (e.g., FAasymmetry,
MDasymmetry, etc.) of the controls is much smaller than those of
the patients. Accordingly, the smaller group size of the controls
should not hinder the comparison. This was confirmed in our
power analysis, which indicated that the chance of detecting a
large effect is 90%. That is why we consider our study design
to be sufficient to fulfill its aims. However, a design with equal
group size would have further enhanced the statistical power of
the study.

Outlook
Differences in the parameter outcomes of different models may
suggest that for specific tracts and especially in brain areas
contaminated by partial volume effects, it can be beneficial to go
beyond the single tensor model when relating the outcomes to
the patients’ motor function. Approaching stroke dMRI equipped
with more sophisticated models could be helpful in studying
scans at a more acute phase, when it is important to make a
prediction of recovery and adjust therapy. This could be most
beneficial for so-called non-fitters to the 70% recovery rule (see,
for example, Winters et al., 2015) and differentiating between
necrotic and still salvageable tissue. Our results suggest that
employingmulti-compartment diffusionmodels should be tested
to investigate WM changes in stroke patients longitudinally,
starting from the acute phase.

CONCLUSIONS

• FA and RD asymmetries are an indication of white matter
alterations after stroke and related with the patients’ motor
outcome.

• As for selecting a diffusion model, the bi-tensor model with
isotropic compartment should be used if permitted by the
dMRI acquisition protocol (i.e., sufficient diffusion directions

and multiple b-values). Otherwise, a single tensor model with
isotropic compartment is a good alternative.

• Not only the cortical-spinal tract, but also the superior
longitudinal fasciculus integrity values are significantly
affected by stroke as indicated by the group comparison
between patients and controls.

• Approaching dMRI in stroke patients with sophisticated
diffusion models instead of a single tensor model leads to a
higher sensitivity and should be tested in scans at a more acute
phase, when it is important to make a prediction of recovery
and adjust therapy. This could be most beneficial for so-called
non-fitters to the 70% recovery rule (see, for example, Winters
et al., 2015) and for differentiating between necrotic and still
salvageable tissue.

• Employing multi-compartment diffusion models should be
tested to detect WM changes in stroke patients longitudinally,
starting from the acute phase.
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