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Improved prediction of progression to Alzheimer’s Disease (AD) among older individuals

with mild cognitive impairment (MCI) is of high clinical and societal importance.

We recently developed a polygenic hazard score (PHS) that predicted age of AD

onset above and beyond APOE. Here, we used data from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) to further explore the potential clinical utility of PHS

for predicting AD development in older adults with MCI. We examined the predictive

value of PHS alone and in combination with baseline structural magnetic resonance

imaging (MRI) data on performance on the Mini-Mental State Exam (MMSE). In survival

analyses, PHS significantly predicted time to progression from MCI to AD over 120

months (p = 1.07e-5), and PHS was significantly more predictive than APOE alone

(p = 0.015). Combining PHS with baseline brain atrophy score and/or MMSE score

significantly improved prediction compared to models without PHS (three-factor model

p = 4.28e-17). Prediction model accuracies, sensitivities and area under the curve were

also improved by including PHS in the model, compared to only using atrophy score

and MMSE. Further, using linear mixed-effect modeling, PHS improved the prediction of

change in the Clinical Dementia Rating—Sum of Boxes (CDR-SB) score and MMSE over

36 months in patients with MCI at baseline, beyond both APOE and baseline levels of

brain atrophy. These results illustrate the potential clinical utility of PHS for assessment of

risk for AD progression among individuals with MCI both alone, or in conjunction with

clinical measures of prodromal disease including measures of cognitive function and

regional brain atrophy.
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INTRODUCTION

Late onset Alzheimer’s disease (AD) is the most common
form of dementia, affecting 24–35 million people world-wide
(Querfurth and LaFerla, 2010; Alzheimer’s Association, 2015).
Novel methods to enable early AD detection based on clinically
feasible, economical, and non-invasive measures is of high

clinical and societal value. Early identification of high-risk
individuals is also of utmost importance for pre-dementia clinical
trials (Holland et al., 2012; Ritchie et al., 2016).

A large effort has been made to improve the prediction of
progression to AD among older individuals with mild cognitive
impairment (MCI), which can be a transition stage from
normal age-related cognitive decline to dementia (Roberts and
Knopman, 2013). Next to older age, inheritance of the ε4 allele
of the Apolipoprotein E (APOE) gene is the strongest individual

risk factor for late onset AD (Yu et al., 2014). However, other
genetic risk variants of smaller effect also contribute to AD risk
(Lambert et al., 2013; Ridge et al., 2013). While most studies
examining genetic risk for sporadic AD focus onAPOE genotype,
some have assessed polygenic risk scores beyond APOE based
on case-control data from large-scale genome-wide association
studies (GWAS) (Lambert et al., 2013), and found that genetic
variants associated with elevated AD risk also influence brain
structure (Sabuncu et al., 2012) and cognitive function (Marioni
et al., 2017). Given that the incidence of AD increases sharply
with age, we recently develop a polygenic hazard score (PHS) for
prediction of age-specific AD risk, based on 31 AD-susceptibility
variants, includingAPOE (Desikan et al., 2017). The PHS showed

substantial improvement over APOE in predicting age of AD
onset and was associated with biomarkers of AD, including MRI-
based hippocampal volume loss (Desikan et al., 2017), amyloid,
and tau deposition (Tan et al., 2018).

Volumetric MRI-based measures of regional brain atrophy,
particularly medial temporal volume loss are important
biomarkers for assessing risk of progression to AD in patients
with MCI (Li et al., 2016). In previous work from our lab,
we derived a composite regional “brain atrophy score” from
linear discrimination analysis trained on data from healthy
controls and AD patients, which was better at predicting 1 year
cognitive decline than atrophy in medial temporal structures
alone (McEvoy et al., 2009). The atrophy score is based on
volume of the hippocampus, and thickness of entorhinal cortex,
middle temporal gyrus, bank of the superior temporal sulcus,
isthmus cingulate (retrosplenial cortex), superior temporal
gyrus, medial and lateral orbitofrontal gyri, with weightings for
each ROI determined through a linear discrimination analysis
that best distinguished AD patients from healthy controls. In
a subsequent study, this brain atrophy score predicted 1-year
risk of progression to AD in individual patients (McEvoy et al.,
2011). Prediction of 1-year clinical decline was further improved
by adding subjects’ baseline Mini-Mental State Exam (MMSE)
scores and number of APOE ε4 alleles to the model (McEvoy
et al., 2009).

In the current study, we investigated the clinical utility of
PHS for individual assessment of risk for clinical progression
to AD over time among older individuals with MCI, a critical

question for most patients admitted to memory clinics. Whereas
prior work from our group has shown the value of PHS for
predicting AD-associated clinical and cognitive decline among
non-demented elderly individuals (Tan et al., 2017), a critical next
step in assessing the potential clinical utility of PHS is to examine
the extent to which PHS provides independent information
beyond other commonly used predictors, such as brain atrophy
levels and baseline cognitive function, and to determine whether
combinations of these measures improve prediction of clinical
decline and progression to dementia. To this end, we used
survival analyses (Klein et al., 2013) to compare single-, two-,
and three-factor models of PHS, atrophy score, and MMSE for
prediction of time to progression from MCI to AD over 120
months of follow-up. As a complementary approach, we used
linear mixed-effect modeling to examine prediction of clinical
change inMMSE and the Clinical Dementia Rating, sum of boxes
(CDR-SB), over 36 months.

METHODS

Participants
We used participants from the ADNI database, available as
of November 2011. ADNI 1 is a 5-year multi-site program
launched in 2003 as a public-private partnership including the
National Institute on Aging, Food and Drug Administration,
pharmaceutical companies, and nonprofit organizations (led by
Principal Investigator Michael W. Weiner, MD.). The main goal
of ADNI is to examine if progression from MCI to AD can be
predicted based on neuroimaging, biological biomarkers as well
as clinical and neuropsychological assessments.

The baseline data was collected in 2005, including elderly
healthy controls (n = 200), Alzheimer’s disease patients
(n = 200), and individuals with MCI (n = 400), followed by
annual follow-ups for 36 months. We included 336 participant
with a MCI diagnosis at baseline in ADNI 1 and available
genetic, MRI, and cognitive data, including mini-mental state
examination (MMSE) (Folstein et al., 1975) and Clinical
dementia rating, sum of boxes (CDR-SB) (Hughes et al., 1982).
The age range was 55–89 at baseline. Longitudinal data on CDR-
SB and MMSE was included from ADNI 1, with 36-month
follow-up. Data on progression to AD was also included from
ADNI 2 and ADNI GO, providing data on progression to AD
for up to 120 months after baseline. The ADNI study was
approved by local institutional review boards, and all participants
or participant’s guardians provided written informed consent.
Additional information about ADNI is available at http://www.
adni-info.org.

MRI Acquisition and Analyses
Details of image acquisition and analysis have been described
in our previous publications (McEvoy et al., 2009). Briefly,
we downloaded the raw baseline DICOM MRI data from the
ADNI web site (http://adni.loni.usc.edu/data-samples/mri/) and
obtained volumetric assessments on neuroanatomic regions of
interest (ROIs) using a modified version of the FreeSurfer image-
analysis software (Brewer, 2009; Brewer et al., 2009). We used
a previously validated brain atrophy score based on volume of
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the hippocampus, and thickness of entorhinal cortex, middle
temporal gyrus, bank of the superior temporal sulcus, isthmus
cingulate (retrosplenial cortex), superior temporal gyrus, medial
and lateral orbitofrontal gyri, with weightings for each ROI
determined through a linear discrimination analysis that best
distinguished AD patients from healthy controls (for additional
details, see McEvoy et al., 2009, 2011). In the current paper, we
computed an atrophy score as the sum of weighted measures
from these brain regions, averaging left, and right hemispheres.

Polygenic Hazard Score (PHS)
For each participant included in the study, we calculated their
individual PHS based on our previous publication (Desikan et al.,
2017). In brief, PHS was derived by first identifying common
variants associated with AD in the International genetics of
Alzheimer’s Project (IGAP) GWAS on AD, with a p-value
threshold of <10−5 using summary statistics. These SNPs were
examined for association with AD in the Alzheimer’s Disease
Genetic consortia (ADGC) phase 1 genetic data. A stepwise
Cox proportional hazard model was applied in which the
SNPs that improved the model most were included sequentially
until the model was no longer improved by adding more
SNPs. This resulted in a list of 31 SNPs, including the
two SNPs that constitute the APOE ε genotype, which were
used to generate the PHS. Finally, the PHS estimates from
ADGC were integrated with established AD-incidence rates
from the US population to provide quantitative estimates of
the annualized (cumulative) incidence rate. The PHS is the
vector product of a person’s genotype for the 31 SNPs and the
corresponding parameter estimates from the Cox proportional
hazard model.

Statistical Analyses
We used Cox proportional Hazard models in Matlab [version
8.5.0.197613 (R2015a)] to model time to progression from MCI
to AD with a follow up period of 120 months. Time to event
was defined as time from baseline to AD onset (with end
of study time or drop out as censoring). We used Kaplan–
Meier survival analysis to determine the time to progression
for the 10th, 50th, and 90th risk percentile. We first fitted
a baseline model containing age, age2, sex, and age∗sex as
predictors. We then added PHS to the baseline model, and
used log likelihood ratio to assess whether PHS significantly
improved the prediction. Model comparisons between PHS
and number of APOE ε4 alleles were also made (Baseline and
APOE vs. Baseline, APOE and PHS). Thereafter, we examined
the combined model of PHS and atrophy score at baseline,
and performed model comparisons with each factor alone.
Finally, we added baseline measure of MMSE to a three-factor
model, and performed model comparisons among all two-
factor models. Cross-validated prediction accuracy, sensitivity,
specificity and area under the curve (AUC) were calculated via
the receiver operator characteristics (ROC) analyses using the
perfcurve function in Matlab (MathWorks). The assumption of
proportional hazards was not violated for any of the included
covariates (p’s > 0.05, as evaluated by scaled Schoenfeld residuals
using the cox.zph function in R).

To predict cognitive decline in patients with MCI, we used
linear mixed-effects models to estimate change in MMSE or
CDR-SB over 36 months. Mixed effects models were fitted via
maximum likelihood by using the lmer function in R (version
3.2.3). Sex, age, education, and five genetic principal components
to control for population stratification were included in all
analyses as baseline variables. We included PHS, atrophy score
and the combination of PHS and atrophy score in three different
models each for prediction of change in CDR-SB andMMSE. The
models allowed for random subject-specific intercept and slope.
Model comparisons of APOE and APOE+PHS were performed,
where APOE denotes the number of APOE ε4 alleles. Likelihood
ratio test via ANOVA were used for all model comparisons.

RESULTS

Of the 336 participants with MCI at baseline, 182 developed
AD within the follow-up period of 120 months. Baseline
demographics of stable MCI (MCI-s) and MCI patients that
subsequently progressed to AD (MCI-c) are presented in Table 1.
The groups did not differ in sex distribution, age, or education. As
expected, APOE ε4 alleles, MMSE, atrophy score, and PHS were
related to subsequent progression.

Estimated survival functions for the 10th, 50th, and
90th percentile based on one-, two-, and three-factors cox
proportional hazard models modeling time to progression from
MCI to AD are shown in Figure 1 (Figure 1A, PHS, Figure 1B,
PHS and atrophy score, Figure 1C, PHS, atrophy score, and
MMSE), and model summaries are shown in Table 2. The PHS
significantly predicted progression from MCI to AD over 120
months follow-up (p = 1.07e-5), and PHS was a significantly
stronger predictor of progression than APOE ε genotype
(p = 0.0152, for model comparison of APOE vs. APOE +PHS).
When including atrophy score (McEvoy et al., 2009) in the
model, PHS remained significant and the two-factor prediction
model was significantly more predictive than either single-
factor model (p’s = 5.61e-11, and 0.0015 for comparison with

TABLE 1 | Clinical demographics.

MCIs

(n = 154)

MCIc

(n = 182)

Statistics p

Males, n (%) 99 (64%) 117 (64%) χ
2
(1)

= 0 1

Age, y (SD) 75.84

(7.4)

74.92 (6.9) t(334) = −1.18 0.24

APOE4 +,

n (% E4+)

69 (45%) 117 (64%) χ
2
(1)

= 12, 5.2e−4

Education 15.68 15.82 t(334) = 0.41 0.68

MMSE 27.37 26.87 t(333) = −2.59 0.01

Atrophy

score

2382 2207 t(330) = −4.45 1.17e−5

PHS 0.356 0.661 t(334) = 3.54 4.42e−4

Clinical and demographics data at baseline for patients with stable MCI (MCIs) and those

who converted to ADwithin the study period (MCIc). MCI, mild cognitive impairment; PHS,

Polygenic hazard score; SD, standard deviation.
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FIGURE 1 | Time to MCI to AD progression. Kaplan-Meier survival curves for

10, 50, and 90th percentiles of (A) PHS, (B) PHS and atrophy score, and

(C) PHS, atrophy score and MMSE (at baseline). Model comparisons using log

likelihood of the two-factor model (B) vs. any one-factor model, and the

three-factor model (C) vs. any combination of two-factor models; all p <

0.005. PHS, Polygenic Hazard Score; AD, Alzheimer’s Disease.

single-factor models of PHS and atrophy score, respectively).
Finally, we included cognitive functioning at baseline (MMSE)
to a three-factor prediction model, which yielded a combined
model p-value of 4.28e-17. Model comparisons showed that the
three-factor model was significantly more predictive than the
two-factor model (p < 0.005).

ROC analyses were performed to assess performance
accuracies for one-, two- and three-factor models for prediction
of progression over a 36 months follow-up period based on
combinations of atrophy score, MMSE, and PHS (Table 3). In
brief, the atrophy score had an accuracy of 74.6, sensitivity of
77.8, and a specificity of 70.8. Adding PHS to the atrophy score
increased specificity, at the cost of sensitivity; with increased
overall accuracy and AUC (although confidence intervals
overlapped). Similar results were seen for comparisons of MMSE
alone and in combination with PHS. The full three-factor model
had the highest AUC (.84), accuracy (78.9), sensitivity (79.9), and
a specificity of 77.8.

Results from the linear mixed-effect models for prediction of
change in MMSE and CDR-SB over 36 months are presented
in Table 4. Model comparisons showed that PHS significantly
improved prediction of both MMSE (χ2

= 26.7, df = 1,
p = 2.34e-07) and CDR-SB (χ2

= 21.57, df = 1, p = 3.41e-06)
compared to the baseline variables. Further, the PHS performed
significantly better than APOE ε4 status in prediction of both
MMSE (χ2

= 8.61, df = 1, p = 0.0033) and CDR-SB (χ2
= 6.12,

df = 1, p = 0.013). Again, PHS remained significant after adding
atrophy score to the model (Table 4). Compared to atrophy
score alone, the combined model of PHS and atrophy score
was significantly more predictive of change in both MMSE
(χ2

= 19.04, df = 1, p = 1.281e-05, [controlling for APOE
ε4 alleles: χ

2
= 6.97, df = 1, p = 0.008]) as well as CDR_SB

(χ2
= 13.43, df= 1, p= 0.00025 [controlling for APOE ε4 alleles:

χ
2
= 4.57, df= 1, p= 0.033]).

DISCUSSION

Using the ADNI dataset, we assessed the potential clinical utility
of the recently established age-specific AD PHS (Desikan et al.,
2017) to more accurately predict the progression to AD among
patients diagnosed with MCI. Examining both time to AD
diagnosis and decline in clinical scores (CDR-SB and MMSE),
we found that PHS significantly predicted clinical progression
to AD beyond APOE genotype. Critically, PHS remained a
significant predictor even when regional brain atrophy levels and
cognitive functioning was known, and the prediction models
were significantly improved by adding PHS to models containing
atrophy score and/or MMSE. These results show that the
predictive value of PHS is, at least partly, independent of brain
atrophy and cognitive functioning at the MCI stage. In a typical
memory clinic setting, PHS may be used to assess AD risk before
other diagnostics have been performed, and may also be valuable
for further improvement of prediction after an individual has
underwent an MRI examination.

We used two complementary approaches to assess clinical
progression among MCI patients. First, we used survival
analyses to assess time to progression from MCI to AD
over a long period of 120 months, using combinations of
PHS, MRI, and cognitive functioning (Figure 1). The PHS
was a significant predictor both alone and when controlling
for atrophy level and cognitive function at study start, and
model comparisons showed significant model improvements
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TABLE 2 | Results from Cox model analyses.

Variables Log(HR) SE t p

BASELINE VARIABLES

Age −0.229 0.192 −1.190 0.234

Age∧2 0.001 0.001 0.907 0.364

Sex −2.788 1.706 −1.634 0.102

Sex*age 0.035 0.022 1.554 0.120

SINGLE-FACTOR MODELS

PHS 0.454 0.097 4.684 2.81E-06

Atrophy score −0.002 2.45E-04 −7.276 3.44E-13

MMSE −0.205 0.044 −4.629 3.68E-06

TWO-FACTOR MODEL

PHS 0.314 0.099 3.175 0.001

Atrophy score −0.002 2.54E-04 −6.463 1.03E-10

THREE-FACTOR MODEL

PHS 0.264 0.100 2.644 0.008

Atrophy score −0.002 2.58E-04 −5.962 2.49E-09

MMSE −0.142 0.047 −3.010 0.003

Baseline variables incorporated in all subsequent models. PHS, Polygenic hazard score;

MMSE, mini-mental state examination; HR, Hazard ratio.

TABLE 3 | Prediction accuracy.

Variables Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

AUC (95% CI)

PREDICTORS

MMSE 68.4 62.8 75.1 0.73 (0.68–0.78)

Atrophy score 74.6 77.8 70.8 0.79 (0.74–0.83)

PHS and MMSE 70.0 57.2 85.1 0.79 (0.74–0.83)

PHS and

atrophy score

76.1 72.9 79.8 0.82 (0.77–0.86)

MMSE and

Atrophy score

77.2 77.08 77.3 0.82 (0.77–0.86)

Atrophy score,

PHS and MMSE

78.9 79.9 77.8 0.84 (0.79–0.88)

Prediction of progression from MCI to AD by 36 months follow up. PHS, polygenic

hazard score; MMSE, mini-mental state examination; MCI, mild cognitive impairment; AD,

Alzheimer’s Disease; AUC, area under the curve.

when adding PHS to models consisting of atrophy score and/or
MMSE. ROC analyses showed that adding PHS to atrophy
score or MMSE improved prediction accuracy, which was
primarily driven by increased specificity, but at the cost of
lower sensitivity (Table 3). These results suggest that different
combinations of biomarkers may be used in different clinical
situations where higher sensitivity or specificity is prioritized.
As expected, the best model performance was derived from
the full three- factor model with PHS, MRI, and cognitive
assessment.

Secondly, we used linear mixed-effect models to examine
the influence of PHS on change in CDR-SB and MMSE over
a shorter time period, 3 years, in the same individuals with
MCI at baseline. In line with the results from survival analyses,
PHS significantly predicted clinical decline of both CDR-SB and
MMSE among elderly diagnosed with MCI beyond APOE status,

TABLE 4 | Prediction of clinical decline.

Model Predictors Estimate SE t p

OUTCOME: MMSE

PHS PHS −0.87 0.17 −5.2(253.2) 4.06e−07

PHS+ Atrophy

score

PHS −0.72 0.17 −4.34 (251.5) 2.05e−05

Atrophy

score

2.51 0.67 3.73 (243.6) 0.000238

OUTCOME: CDR-SB

PHS PHS 0.46 0.10 4.65(259.3) 5.28e−06

PHS+ Atrophy

score

PHS 0.42 0.10 4.27 (256.1) 2.80e−05

Atrophy

score

−1.79 0.38 4.70 (249.3) 4.39e-06

Effect of predictors on change in outcome measure over 36 months. PHS, Polygenic

Hazard score; MMSE, mini mental state examination; CDR-SB, Clinical Dementia Rating

score, sub of Boxes.

both individually and when atrophy levels were included in the
model (Table 4). Taken together, these results show the utility of
the PHS to assess individual risk for clinical decline in patients
diagnosed with MCI also when their current levels of brain
atrophy and cognitive functioning is known.

Previous studies using both survival analyses and linear
mixed effect models showed improved prediction of AD
progression by combining MRI data with CSF biomarkers
(Vemuri et al., 2009; Westman et al., 2012), APOE genotype
(McEvoy et al., 2009; Dukart et al., 2015), and different cognitive
test batteries (Callahan et al., 2015; Eckerström et al., 2015;
Li et al., 2016). Investigators from our group have shown
that the combination of cognitive performance and medial
temporal atrophy substantially improves prediction of MCI to
AD progression in comparison to prediction based on individual
risk factors (Heister et al., 2011), and also that the combination
of APOE genotype and brain atrophy outperforms models
based on either variable alone (McEvoy et al., 2009). Here,
we extend previous models based on APOE to our recently
developed PHS based on whole-genome data. It is still not
fully known through which mechanisms APOE and other genes
with smaller effect impact AD risk, but brain atrophy level and
cognitive function are considered intermediate phenotypes that
maymediate genetic effects on AD risk. In our previous paper, we
found a correlation between PHS and larger volume loss in AD-
related brain areas (Desikan et al., 2017). The current findings
that PHS is predictive of AD progression when levels of brain
atrophy are included in the model, shows that MRI biomarkers
are not fully mediating the effect of PHS. Prediction based on
genetic testing has the advantages of being relatively cheap, non-
invasive, and not time-sensitive (since genetic assessment only
has to be carried out once, is valid for a whole life time and can be
used for multiple clinical purposes). In contrast to polygenic risk
scores developed in a case/control framework, PHS is focused
on predicting age of onset, which more accurately captures the
increase in population incidence with increased age, where older
age is the strongest risk factor for AD development.
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LIMITATIONS

ADNI is one of the largest longitudinal dataset for studying
progression from MCI to AD, but has limitations. First,
participants were recruited from memory clinics and
advertisements, and MCI inclusion criteria were highly
selective, thus the study group is not representative of the general
population. Further, AD diagnosis has not been confirmed
with histopathology. Also, study dropouts are biased toward
high-risk individuals, which might lead to a bias in the estimates
of progression rates. As high-risk individuals are more likely to
have a higher PHS, the predictive value of the PHS might be
underestimated in this study.

CONCLUSIONS

The present study shows that the prediction of clinical
progression to AD among MCI patients can be improved by
combining the age-sensitive PHS with structural neuroimaging
and baseline cognitive ability. Improved individual assessment
of AD risk among elderly patients presenting with subjective
memory complaints could be helpful in clinical practice to
determine treatment plans, and is also of high importance for
intervention studies where recruitment of high-risk individuals
at an early stage of the disease process is crucial for testing
effectiveness of new disease-altering interventions.
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