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Alzheimer disease (AD) and vascular dementia (VaD) together represent the majority

of dementia cases. Since their neuropsychological profiles often overlap and white

matter lesions are observed in elderly subjects including AD, differentiating between

VaD and AD can be difficult. Characterization of these different forms of dementia would

benefit by identification of quantitative imaging biomarkers specifically sensitive to AD or

VaD. Parameters of microstructural abnormalities derived from diffusion tensor imaging

(DTI) have been reported to be helpful in differentiating between dementias, but only

few studies have used them to compare AD and VaD with a voxelwise approach.

Therefore, in this study a whole brain statistical analysis was performed on DTI data

of 93 subjects (31 AD, 27 VaD, and 35 healthy controls—HC) to identify specific white

matter patterns of alteration in patients affected by VaD and AD with respect to HC.

Parahippocampal tracts were found to be mainly affected in AD, while VaD showed

more spread white matter damages associated with thalamic radiations involvement. The

genu of the corpus callosum was predominantly affected in VaD, while the splenium was

predominantly affected in AD revealing the existence of specific patterns of alteration

useful in distinguishing between VaD and AD. Therefore, DTI parameters of these

regions could be informative to understand the pathogenesis and support the etiological

diagnosis of dementia. Further studies on larger cohorts of subjects, characterized

for brain amyloidosis, will allow to confirm and to integrate the present findings and,

furthermore, to elucidate the mechanisms of mixed dementia. These steps will be

essential to translate these advances to clinical practice.

Keywords: Alzheimer’s disease, vascular dementia, DTI, splenium of corpus callosum, genu of corpus callosum,

parahippocampal gyri, thalamic radiations
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INTRODUCTION

Dementia is one of the major causes for personal and financial
issues affecting elderly people; indeed, dementia incidence rate
is increasing because aging population is constantly rising.
Alzheimer disease (AD) and vascular dementia (VaD) together
represent the majority of dementia cases (Rizzi et al., 2014).

AD is a primary degenerative disorder associated to ß-amyloid
and tau deposition, characterized by progressive deterioration
in memory, language, perceptual skills, attention, orientation,
and problem solving. In older subjects and in the presence
of cerebral amyloid angiopathy, AD patients can also present
a certain degree of cerebrovascular lesions contributing to a
mixed type of dementia (Attems and Jellinger, 2014). VaD is
a heterogeneous disease where dementia is secondary to the
development of a cerebrovascular lesion load, which is per se
sufficient to determine dementia without primary degenerative
changes. The entity of VaD impairment is reported to be
proportional to number, location, and extent of cerebrovascular
lesions (Suri et al., 2014). The cognitive impairment is dominated
by executive/frontal and semantic memory dysfunctions but
the neuropsychological profile can overlap with that of AD
(Reed et al., 2007). Because in VaD vascular risk factors are
currently treatable, a more certain differentiation from AD in the
early stages of cognitive impairment would imply better patient
management.

MRI studies have contributed to differential diagnosis
identifying different alterations associated to the type of
dementia. In AD cortical atrophy mainly involves temporal
and parietal lobes, especially temporomesial regions and
the precuneus/posterior cingulate cortex; furthermore
microstructural abnormalities extend beyond the primarily
affected cortical regions, involving degeneration of white matter
(WM) bundles even in early stages of the disease (Villain et al.,
2010). An indirect relation between WM involvement and tau
accumulation in CSF, which is a marker of neurodegeneration
and disease progression, has also been shown (Agosta et al.,
2014). In VaD, instead, the regional pattern of cerebrovascular
lesions varies among different VaD subtypes (Jellinger, 2013;
O’Brien and Thomas, 2015). In the most common form, small
vessel disease leads to subcortical vascular dementia with
multifocal lesions observed on qualitative MRI predominantly
in deep gray matter (lacunae and gliosis in basal ganglia and
thalami), and mainly in frontal periventricular and subcortical
WM (leukoariosis and more rare lacunae) (Savoiardo and
Grisoli, 2001; Vitali et al., 2008) (Table 1). Previous studies have
tried to distinguish between neurodegenerative and vascular
dementia using diffusion-based techniques (Altamura et al.,
2016; Goujon et al., 2018) but discordant results have been
obtained. Both Goujon et al. (2018) and Altamura et al. (2016)
used a ROI approach on apparent diffusion coefficient (ADC)
maps; the former study demonstrated lower ADC in frontal and

Abbreviations: AD, Alzheimer’s disease; AxD, axial diffusivity; DTI, diffusion

tensor imaging; FA, fractional anisotropy; MD, mean diffusivity; MMSE, Mini-

Mental State Examination; RD, radial diffusivity; TBSS, tract-based spatial

statistics; VaD, vascular dementia.

TABLE 1 | Summary of the main features of Alzheimer’s disease and vascular

dementia.

Alzheimer Vascular dementia

Risk factors APOE, diabetes Hypertension, diabetes,

dyslipidemia, atheromatosis

Etiology Amyloid plaques and

neurofibrillary tangles

Vascular lesions

Clinical evolution Progressive Stepwise

Neuropsychological

profile

Memory impairment

(encoding)

Executive/frontal and

semantic dysfunction

Neuroimaging Medial temporal lobe atrophy,

amyloid PET positivity, FDG

hypometabolism in

parieto-temporal regions

White matter lesions,

lacunae, leukoaraiosis

parietal deep WM regions in AD with respect to subcortical
changes in VaD; the latter study, instead, reported correlations
between WM volume and ADC of the corpus callosum, but
no differences in regional ADCs in WM between AD and VaD
patients were found. A further study (Baykara et al., 2016)
has developed a novel imaging marker for small vessel disease
that was linked to vascular but not neurodegenerative disease.
Therefore, it is essential to continue developing quantitative
in vivo biomarkers, specific for AD or VaD to support differential
diagnosis, to investigate disease progression at single patient
level, and to monitor the effect of therapeutic interventions in
pharmacological trials.

Advances in neuroimaging over the past decades have
indicated that investigating structural and functional brain
alterations in humans in vivo is now possible. The role of
advanced MRI techniques in diagnosis has become more
prominent and inclusion of quantitative metrics has been
recommended as part of the diagnostic pipeline (McKhann et al.,
2011). In particular, diffusion tensor imaging (DTI) is a MRI
technique sensitive to water molecules diffusivity in tissues, and
DTI-derived parameters quantitatively describe such movement
and highlight microstructural WM changes in term of diffusion
properties of tissue (Acosta-Cabronero et al., 2010; Meoded et al.,
2017). Fractional anisotropy (FA) and mean diffusivity (MD)
are the most reported DTI-derived parameters to characterize
dementia. The former reflects anisotropy properties of WM
tissues, while the latter reflects the magnitude of water diffusion
(Smith et al., 2007; Chua et al., 2008). Several studies have
reported reduced FA and increased diffusivity in specific WM
regions mainly involving the limbic system and posterior-
anterior connections in AD (Acosta-Cabronero et al., 2010; Tu
et al., 2017; Goujon et al., 2018), while VaD is characterized
by spread microstructural alterations, i.e., increased MD and
decreased FA, across all WM regions except occipital areas (Kim
et al., 2015; Ostojic et al., 2015).

Further information can be gathered from the preferential
direction of water displacement and the orthogonal components,
as expressed by axial diffusivity (AxD) and radial diffusivity (RD)
(Wheeler-Kingshott and Cercignani, 2009; Acosta-Cabronero
et al., 2010; Shu et al., 2011; Bosch et al., 2012; van Bruggen
et al., 2012). Moreover, the pattern of microstructural WM
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involvement, more posterior in AD and more anterior in VaD,
has been investigated with DTI metrics using a-priori defined
regions of interest (Sugihara et al., 2004; Ostojic et al., 2015).

Several methods have been introduced aiming at improving
the objectivity and interpretability of DTI metrics, and Tract-
Based Spatial Statistics (TBSS) has been developed specifically
for whole brain voxel-wise analysis of white matter changes.
TBSS is an automated voxel-wise analysis method that gives the
opportunity to compare the whole WM in groups of subjects,
without any predefined regions of interest (Smith et al., 2006).
One of the main issues of voxel-wise analysis on subjects with
dementia lies in the presence of brain atrophy, which leads to
misalignment to a reference template. Using TBSS this problem
is minimized since from normalized FA images of each subject
only the “main WM skeleton” is extracted and analyzed (i.e., the
center of all tracts common to all subjects).

TBSS has been largely used to assess AD alterations
(Damoiseaux et al., 2009; Acosta-Cabronero et al., 2010; Shu
et al., 2011; Bosch et al., 2012) but only two studies (Zarei et al.,
2009; Kim et al., 2015) have used this method for investigating
differences in terms of FA and MD between AD, VaD and
elderly healthy controls (HC). Zarei et al. (2009) found that
the most important combination of parameters to differentiate
AD and VaD was one obtained by integrating FA value of the
forceps minor with the Fazekas score. This finding confirmed
the importance of segmenting the corpus callosum and searching
for changes in transcallosal prefrontal tracts of patients with
different types of dementia. Furthermore, Kim et al. (2015)
showed that microstructural alterations affected all WM regions
of the brain apart from few specific areas in VaD, while decreased
FA was mainly found in the fronto-parietal WM regions in AD
patients. These results support the hypothesis that VaD and AD
patients have different topography, nevertheless specific patterns
of microstructural alterations were not identified as able to
distinguish between VaD and AD.

The main goals of the present study were: (i) to identify
specific patterns of WM alterations for AD and VaD by
investigating changes of multiple DTI-derived parameters (FA,
MD, AxD, RD) with the TBSS pipeline, and (ii) to assess the
power of the identified patterns of alterations in discriminating
between AD and VaD patients.

MATERIALS AND METHODS

Subjects
A total of 93 subjects including 31 AD (age (73 ± 7) years, 12
females (F), Mini Mental State Examination (MMSE) score = 16
± 6), 27 VaD (age (77 ± 8) years, 21 F, MMSE = 18 ± 4)
and 35 HC (age (69 ± 10) years, 17 F, MMSE = 28 ± 1) were
enrolled in this study. This study was carried out in accordance
with the Declaration of Helsinki with written informed consent
from all subjects. The protocol was approved by the local
ethic committee of the IRCCS Mondino Foundation. Inclusion
criteria for patients were: clinical diagnosis of dementia on
the basis of DSM 5 criteria (American Psychiatric Association,
2013), Mini-Mental State Examination (MMSE) score (Folstein
et al., 1975) below 24 and age above 60 years. All patients
who presented with at least one of the following criteria

were excluded: epilepsy or isolated seizures; major psychiatric
disorders over the previous 12months; pharmacologically treated
delirium or hallucinations; ongoing alcoholic abuse. Exclusion
criteria were also acute ischemic or hemorrhagic stroke, known
intracranial lesions, and systemic causes of subacute cognitive
impairment (Geschwind et al., 2008). Patients with dementia
occurring after acute ischemic or hemorrhagic stroke were
excluded, while those patients presenting WM alterations due
to small vessel disease were included. Healthy controls were
enrolled on a voluntary basis among subjects attending to a
local third age university (University of Pavia, Information
Technology course) or included in a program on healthy
aging (Fondazione Golgi, Abbiategrasso, Italy). Diagnosis of AD
was made according to the criteria of the National Institute
of Neurological and Communicative Disorders and Stroke
and Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA) workgroup (McKhann et al., 2011). For
definition of vascular dementia (VaD) the diagnostic criteria of
the National Institute of Neurological Disorders and Stroke –
Association Internationale pour la Recherche et l’Enseignement
en Neurosciences (AIREN) criteria (Roman et al., 1993) were
used.

Clinical and Neuropsychological
Examination
All 93 subjects underwent clinical and neuropsychological
standardized testing for investigating the global cognitive status
(MMSE) and the following main cognitive domains: attention
(attentive matrices, trail making test A and B, Stroop test),
memory (digit span, verbal span, Corsi block-tapping test,
logical memory, Rey–Osterrieth complex figure recall, Rey 15
item test), language (phonological and semantic verbal fluency),
executive function (Raven’s matrices, Wisconsin card sorting
test, frontal assessment battery), and visuo-spatial skills (Rey–
Osterrieth complex figure) (Carlesimo et al., 1996; Giovagnoli
et al., 1996; Laiacona et al., 2000; Caffarra et al., 2002; Appollonio
et al., 2005; Amato et al., 2006; Bianchi and Dai Prà, 2008).
Age- and education-corrected scores were calculated from the
raw scores and transformed into equivalent scores, ranging
from 0 (pathological) to 4 (normal). This standard procedure
ensures that all final equivalent scores are comparable between
groups even in the presence of differences in age and years of
education. For each cognitive domain, a weighted score was
calculated as the average value of the equivalent scores of all
tests belonging to that specific cognitive domain (de Groot
et al., 2000; van Dijk et al., 2008). These scores were then used
in the statistical analysis. Clinical classification of AD or VaD
was performed according to the above mentioned criteria and
was further refined by excluding patients with mixed dementia
according to the Hachinski scale (HS) (Hachinski et al., 1975)
with pathology-validated cut-offs (Moroney et al., 1997): pure
vascular (HS ≥ 7), pure degenerative (HS ≤ 4), and mixed
dementia (HS 5 and 6). Semi-quantitative rating of vascular
abnormalities was performed on radiological bases by evaluating
WM leukoaraiosis according to the Fazekas scale (Fazekas et al.,
1987) and deep gray/white matter lesions according to the “basal
ganglia” (striatum, globus pallidus, thalamus, internal/external
capsule, and insula) subscale of the age-related white matter
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changes (ARWMC) scale (http://stroke.ahajournals.org/content/
32/6/1318, Wahlund et al., 2001).

MRI Acquisition
MRI data were acquired with a 3T Siemens Skyra scanner
(Siemens, Erlangen, Germany). A DTI twice refocused SE-EPI
sequence was acquired using the following parameters: TR= 10 s,
TE= 97ms, 70 axial slices with no gap, acquisition matrix= 122
× 122, 2mm isotropic voxel; 64 volumes with non-collinear
diffusion directions with b = 1,200 s/mm2 and 10 volumes
with no diffusion weighting (b0 = 0 s/mm2). For anatomical
reference a whole brain high-resolution 3D sagittal T1-weighted
(3DT1w) scan was acquired using the following parameters:
TR = 2,300ms, TE = 2.95ms, TI = 900ms, flip angle = 9◦,
176 sagittal slices, acquisition matrix = 256 × 256, in-plane
resolution= 1.05× 1.05mm, slice thickness= 1.2mm.

DTI Preprocessing
DTI data pre-processing was performed using FSL (FMRIB
Software Library, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). For each
subject, the 10 b0 volumes were averaged and the obtained
mean b0 image was merged with the 64 diffusion weighted
volumes. DTI data were corrected for eddy current distortions
and diffusion weighed volumes were aligned to the mean b0
image using eddy tool (FSL). A binary brain mask was obtained
from themean b0 volume using brain extraction tool (Smith et al.,
2006), while DTIFIT was used to create FA, MD and AxD maps.
RD maps were calculated implementing the RD formula with
fslmaths (Acosta-Cabronero et al., 2010).

For each subject, the 3DT1w volume was segmented intoWM
and GM by using FAST (Zhang et al., 2001). The mean b0 image
and along with the FA map was aligned to the respective 3DT1w
volume using a full-affine registration (12 degrees-of-freedom,
FLIRT) (Jenkinson et al., 2002). The mean FA value of the brain
was then obtained from all voxels extracted from the FA map
using a combined WM and GMmask.

Tract-Based Spatial Statistics (TBSS)
Tract-based spatial statistics was performed to investigate the
voxel-wise distribution of FA, MD, AxD, and RD differences
between groups. Such analysis was performed using the TBSS
tool in the FMRIB software library (FSL, https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki). For a detailed description of the complete TBSS
pipeline see Smith et al. (2006). Here a recap of the main steps is
reported.

• The most representative subject, namely the FAmap for which
the smallest amount of average warping is necessary to align
all other images to it, was identified as the target image on a
sub-cohort of 15 randomly chosen subjects (5 for each group).

• FA maps of all subjects were nonlinearly aligned to the target
image. Then all the aligned FA images were affine-transformed
to the standard MNI152 template (1× 1× 1 mm3).

• The mean FA image across all subjects and its mean WM
skeleton were created in the MNI152 space.

• The aligned subjects’ FA images were projected onto the mean
WM skeleton and the resulting maps were compared in a
cross-subject statistical analysis (see next section).

• MD, AD and RD maps were also projected onto the mean
WM skeleton using the same combination of transformations
that was adopted for the FA maps alignment in the previous
steps.

Statistical Analysis
Statistical tests were performed using SPSS software version
21 (IBM, Armonk, New York). Demographic, clinical and
neuropsychological continuous data were tested for normality
using a Shapiro-Wilk test. Age was compared between groups
using a two-tailed Kruskall-Wallis test while gender was
compared using a chi-squared test. Since the three groups
resulted to be no age- and gender-matched, clinical and
neuropsychological data were compared using a multivariate
regression model with age and gender as covariates. To
investigate whether age might produce an effect on our analysis,
distributions of the age parameter in AD, VaD, and HC and
their overlap were calculated and reported in Figure S1 in
Supplementary Material. Two-sided p < 0.05 was considered
statistically significant.

The voxel-wise statistics on the skeletonized images were
performed using randomize (Winkler et al., 2014), an FSL tool for
non-parametric permutation inference on neuroimaging data.
The mean FA skeleton (thresholded at 0.2) was used as mask, the
number of permutationwas set at 5,000. Significance of difference
between groups was corrected for multiple comparisons using
the threshold-free cluster enhancement (TFCE) method and
tested at p < 0.01. Age, gender and mean FA of the brain
were used as covariates for the voxel-wise statistics to remove
their influence on diffusion parameters and to avoid biased
results. Comparisons were performed for all parameters (FA,
MD, AxD, RD), testing differences between all groups of
subjects.

Mean FA and MD values were extracted for 10 brain
areas (or regions of interest - ROIs) that resulted as being
particularly relevant from the TBSS statistical analysis. The
areas were: bilateral parahippocampal tracts, cingulum bundles,
thalamic radiations, and genu, anterior body, posterior body, and
splenium of the corpus callosum. To identify the power of the
selected 10 brain areas in discriminating between VaD and AD, a
stepwise discriminant analysis was performed using the dementia
subgroup (VaD or AD) as the dependent variable and the ROIs
mean FA and MD values as the independent variables. Receiving
Operating Characteristics (ROC) curves and corresponding areas
under the curve were calculated to assess the sensitivity and
specificity of the best discriminative variables. Furthermore, the
relationship between the microstructural characteristics of the
best discriminating brain regions and other radiological/clinical
and neuropsychological scores was explored; this is a different
question than locating regions where these features are related
with microstructural alterations. Thus, a Pearson correlation
analysis was performed between MRI derived parameters (i.e.,
total Fazekas score, ARWMC score), neuropsychological scores
(Table 2) and the microstructural DTI-derived proprieties of the
10 selected ROIs in all patients, and in the AD and VaD groups
separately. Two-sided p < 0.01 was considered statistically
significant.
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TABLE 2 | Demographic and clinical evaluation.

HC (n = 35) AD (n = 31) VaD (n = 27) p-value

Mean (SD) Mean (SD) Mean (SD)

Age, years 69.43 (9.65) 72.52 (7.43) 76.67 (7.77)*† 0.002

Gender, % male 51.40 58.10 22.20 *† 0.015

Education, years 9.70 (3.99) 6.63 (3.30)* 5.52 (2.14)* <0.001

MMSE 28.47 (1.51) 15.83 (6.37)* 17.90 (4.15)* <0.001

Memory 2.99 (0.69) 0.88 (0.74)* 0.91 (0.53)* <0.001

Attention 3.19 (0.80) 1.30 (0.85)* 0.88 (0.64)* <0.001

Language 3.46 (0.82) 1.52 (1.30)* 1.28 (1.04)* <0.001

Executive function 2.88 (0.81) 0.83 (1.01)* 0.53 (0.81)* <0.001

Visuo-spatial skills 3.43 (1.17) 0.78 (1.48)* 0.62 (1.28)* <0.001

Hachinski score 0.00 (0.00) 3.00 (0.86)* 8.27 (1.59)*† <0.001

Fazekas score 0.00 (0.00) 2.48 (1.33)* 4.63 (1.52)*† <0.001

AWMRC score 0.00 (0.00) 0.60 (0.71)* 1.27 (0.84)*† <0.001

Demographic and clinical scores for healthy controls (HC), Alzheimer’s disease (AD), and vascular dementia (VaD) groups. Values are expressed as mean (SD). MMSE, Mini Mental State

Examination. p-values show statistically significant differences between HC, AD and VaD groups. *p < 0.05 between HC and AD or VaD;
†
p < 0.05 between AD and VaD.

TABLE 3 | Diffusion changes between HC and AD.

AD < HC AD > HC

FA CRBL - PhT - CC (body and

splenium) - ThR - occipital,

parietal and temporal lobes

Left CST

MD None WCA, except for: ThR, anterior

CB and CST

RD None WBA, except for: ThR, anterior

CB and CST

AxD None WCA, except for: ThR, anterior

CB and CST

Regions of significant alterations identified as FA reductions and as MD, RD, and AxD

increases. WBA, widespread brain alteration; WCA, widespread cerebrum alteration;

CRBL, cerebellum; ThR, thalamic radiation; PhT, parahippocampal tract; CC, corpus

callosum; CST, corticospinal tract; CB, cingulum bundle.

RESULTS

Brain areas with abnormal DTI-derived parameters in patients
with respect to HC are summarized in Tables 3–5 and are shown
in Figures 1, 2.

Patient Characteristics
Demographic, clinical, neuropsychological and radiological
characteristics are summarized in Table 2. Age and gender were
significantly different in VaD patients with respect to HC and
AD. MMSE and years of education were significantly reduced in
patients with respect to HC, but they did not differ between AD
and VaD. Clinical and radiological scores, namely Hachinski and
Fazekas, were significantly higher in VaD than in AD.

Changes in AD Compared to HC
AD patients compared with HC showed a reduction of FA
predominantly in the posterior part of occipital, parietal and

TABLE 4 | Diffusion changes between HC and VaD.

VD < HC VD > HC

FA WBA, except for: anterior

PhT, CC (splenium), CB and

CST

None

MD None WBA, except for anterior right PhT

RD None WBA, except for anterior right PhT

AxD None WBA, except for anterior right PhT

Areas of significant alterations identified as FA reductions and as MD, RD, and AxD

increases. WBA, widespread brain alteration; PhT, parahippocampal tract; CC, corpus

callosum; CST, corticospinal tract; CB, cingulum bundle.

TABLE 5 | Diffusion changes between AD and VaD.

AD < VD AD > VD

FA Anterior PhT CRBL - left ThR - SLF

MD CRBL - ThR - SLF - CC (genu) - CST Anterior Right PhT

RD CRBL - ThR - SLF - CC (genu) - CST Anterior PhT

AxD CRBL - ThR - SLF - CC (genu) - CST None

Areas of significant alterations identified as FA reductions and as MD, RD, and AxD

increases. CRBL, cerebellum; ThR, thalamic radiation; PhT, parahippocampal tract; CC,

corpus callosum; CST, corticospinal tract; SLF, superior longitudinal fasciculus.

temporal lobes, while a small portion of the left corticospinal
tract showed increased FA values. Decreased FA values were
revealed bilaterally in the cerebellum (lobules VI, VIII, IX
and Crus), parahippocampal tracts, thalamic radiations, and
body and splenium of corpus callosum (Figure 1a). Moreover,
compared with HC, AD patients showed an increase of MD,
RD, and AxD in widespread brain regions, except for bilateral
thalamic radiations (Figure 2a), anterior cingulum bundles and
corticospinal tracts. The cerebellum showed increased RD in the
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FIGURE 1 | Fractional anisotropy (FA) alterations in patients. Significance was set at p < 0.01 TFCE corrected for multiple comparisons. All results are overlaid onto

the MNI 152 template and are shown as sagittal slices. Top row: left hemisphere (x = −22mm). Middle row: medial view (x = −9mm). Bottom row: right hemisphere

(x = 23mm). FA reductions are reported in: (a) AD vs. HC, (b) VaD vs. HC, (c) AD vs. VaD.

Crus and lobules VIII and IX. No areas of decreasedMD, RD, and
AxD values were detected in AD patients with respect to HC (see
Table 3).

Changes in VaD Compared to HC
VaDpatients compared withHC showed significantly reduced FA
values widespread inmost of theWM except for bilateral anterior
parahippocampal tracts, cingulum bundles, corticospinal tracts
and splenium of corpus callosum (Figure 1b). IncreasedMD, RD,
and AxD was found in most of the WM except for the anterior
part of the right parahippocampal tract. No areas of increased FA
or decreased MD, RD, and AxD were found in VaD patients with
respect to HC subjects (see Table 4).

Direct Comparison of AD and VaD
AD patients compared with VaD patients showed FA reduction
and RD increase in bilateral anterior parahippocampal tracts
(Figure 1c), while higher MD values were found only in the right
anterior parahippocampal tracts. No areas of increased AxDwere
found in AD compared with VaD patients (see Table 5).

VaD patients compared with AD patients showed FA
reductions and diffusivity increases in the posterolateral
cerebellar area (Figure 2c), left thalamic radiation and bilateral

superior longitudinal fasciculi. MD, RD, and AxD increases were
also found in right thalamic radiation, genu of corpus callosum
(Figure 2c) and bilateral corticospinal tracts (see Table 5).

Discriminative Power of DTI Parameters
Between the VaD and AD Groups
The combination of mean FA values of five regions, including
the left parahippocampal tract, the right cingulum, the genu of
the corpus callosum, and bilateral anterior thalamic radiations
best discriminated between AD and VaD (Wilks’ lambda= 0.542,
p < 0.001). The average squared canonical correlation was
0.677, showing that these five variables, accounted for 67.7%
of the overall variance in the data set. The discriminative
function equation (composite score) was as follows: – 0.584 ∗

left parahippocampal tract – 0.619 ∗ right cingulum + 1.253 ∗

genu of the corpus callosum – 1.879 ∗ right anterior thalamic
radiation + 2.033 ∗ left anterior thalamic radiation. The ROC
curve (Figure 3A) showed a 75.9% overall correct classification
in discriminating AD and VaD, with a sensitivity of 74.2%,
specificity of 77.8%, and area under the curve of 0.861.

The discriminative power of mean MD values achieved
its maximum when combining two brain areas: the left
parahippocampal tract and the right thalamic radiation (Wilks’

Frontiers in Neuroscience | www.frontiersin.org 6 April 2018 | Volume 12 | Article 274

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Palesi et al. WM Alterations Distinguish Dementia Subtypes

FIGURE 2 | Diffusivity alterations in patients. Significance was set at p < 0.01 TFCE corrected for multiple comparisons. All results are overlaid onto the MNI 152

template. Axial slices correspond to z = 4mm while sagittal slices correspond to x = −9mm. L = left hemisphere. Increases of MD (top row), RD (middle row), and

AxD (bottom row) are reported in: (a) AD vs. HC, (b) VaD vs. HC, (c) VaD vs. AD.

lambda = 0.724, p < 0.001). The average squared canonical
correlation was 0.525, showing that these two variables,
accounted for 52.5% of the overall variance in the data set.
The discriminative function equation (composite score) was as
follows: – 0.662 ∗ left parahippocampal tract + 1.018 ∗ right
anterior thalamic radiation. The ROC curve (Figure 3B) showed
a 74.1% overall correct classification in discriminating AD and
VaD, with a sensitivity of 66.7%, specificity of 80.6%, and area
under the curve of 0.810.

Correlations
Pearson correlation verified that worse DTI derived parameters
(i.e., smaller FA and higher MD values) were related with higher
vascular impairment (i.e., higher Fazekas and ARWMC values)
(Tables 6, 7) and that total Fazekas score correlated with deficit
of the memory domain (p= 0.002) in VaD patients.

MMSE did not correlate with any of the MRI derived
measurements, while attention, language, executive functions,
and visuo-spatial skills negatively correlated with MD values
of the corpus callosum, cinguli and left parahippocampal tract
of all patients (details in Table 8). In particular, attention and
language deficits were mainly associated with VaD alterations

while executive functions and visuo-spatial skills were mainly
associated with AD impairment.

DISCUSSION

The present study is one of the few studies that directly compares
ADwith VaD patients in a global framework using a standardized
acquisition protocol and a voxelwise user-independent analysis.
Both anisotropy (FA) and diffusivity (MD, AxD, and MD)
parameters were investigated in terms of changes due to either
alterations of anisotropy or magnitude of water diffusion in
the whole brain (Shu et al., 2011). In general, it can be
argued that diffusion alterations could be mainly interpreted
as associated with tract disconnection in AD patients, while
diffusivities increases are correlated with leukoariosis and WM
lesions highly present in VaD patients, highlighting that AD
and VaD show specific patterns of alteration and are indeed
different pathologies (Alves et al., 2015; Palesi et al., 2016).
Furthermore, it is important to note that age and gender can
influence white matter measurements, hence groups matched
for age and gender would be preferred. When this condition
is not satisfied, as in the present study, it is necessary to use
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FIGURE 3 | ROC curves of dementia subgroups differentiation. (A) Results using mean FA values of five brain regions: left parahippocampal tract, right cingulum,

genu of the corpus callosum, and bilateral anterior thalamic radiations. (B) Results using mean MD values of two brain regions: left parahippocampal tract and right

anterior thalamic radiations.

TABLE 6 | Fazekas correlations with DTI derived parameters.

Patients (n = 58) AD (n = 31) VaD (n = 27)

FA CC genu <0.001 0.005 –

CC anterior body <0.001 0.006 0.007

CC posterior body 0.002 0.002 –

CC splenium 0.01 0.010 –

Thal radiation right <0.001 0.009 –

Thal radiation left <0.001 – –

Parahipp tract left – 0.005 –

MD CC genu <0.001 – –

CC anterior body <0.001 – 0.007

CC posterior body <0.001 0.002 –

CC splenium 0.001 0.01 0.005

Thal radiation right <0.001 0.001 0.007

Thal radiation left <0.001 <0.001 –

Cingulum right 0.001 0.005 –

Cingulum left <0.001 0.010 –

Pearson correlations between Fazekas score and DTI-based parameters for all patients,

Alzheimer’s disease (AD), and vascular dementia (VaD) patients. CC, corpus callosum.

Significance was set at p < 0.01.

complex statistical models with covariates, such as multivariate
regressions, to compare groups. In this context, the present study
identifies several regions that can be useful in distinguishing
between AD and VaD patients, providing information regarding
specific WM alteration processes involved in the two different
pathologies.

It was very interesting to detect specific regional changes
affecting predominantly AD or VaD, defining a pathology-
specific signature, which we summarize here before discussing
in detail each pathology in turn and the discriminative analysis.
The parahippocampal tracts resulted to be distinctive between

TABLE 7 | ARWMC basal ganglia correlations with DTI derived parameters.

Patients (n = 58) AD (n = 31) VaD (n = 27)

FA CC genu <0.001 0.009 –

CC anterior body 0.001 0.002 –

CC splenium 0.008 0.01 –

Thal radiation right <0.001 – 0.008

Thal radiation left 0.001 – –

MD CC genu 0.001 – –

CC anterior body 0.001 – –

CC posterior body 0.006 – –

CC splenium 0.001 0.010 –

Thal radiation right <0.001 0.001 0.001

Thal radiation left <0.001 0.001 –

Cingulum right 0.002 – –

Cingulum left <0.001 – <0.001

Pearson correlations between ARWMC score and DTI-based parameters for all patients,

Alzheimer’s disease (AD), and vascular dementia (VaD) patients. CC, corpus callosum.

Significance was set at p < 0.01.

AD patients and HC, confirming previous histopathological
(Detoledo-Morrell et al., 1997; Salat et al., 2010; Echávarri et al.,
2011), and DTI-based findings (Palesi et al., 2012; Acosta-
Cabronero and Nestor, 2014). Our regional results confirmed
that the anterior part of the parahippocampal tracts was the most
affected region in AD also as compared with VaD. This is not
surprising knowing the central involvement of the hippocampus
in AD (Vitali et al., 2008), nevertheless this alteration directly
between AD and VaD has not been previously reported.
Furthermore, we detected a high specificity in the involvement
of sub-regions of the corpus callosum, where different patterns
of decreased FA characterized either pathology: the splenium was
mainly affected in AD, while the genu was mainly affected in VaD
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TABLE 8 | Neuropsychological correlations with DTI derived parameters.

Patients (n = 58) AD (n = 31) VaD (n = 27)

Attention MD cingulum left – – 0.020

MD CC genu 0.017 – –

MD CC anterior body 0.026 – –

MD CC splenium 0.034 – –

Language MD Parahipp tract left 0.030 – –

MD cingulum left – – 0.048

MD CC splenium – – 0.020

Executive function MD Parahipp tract left 0.042 0.046 –

MD CC splenium 0.016 – –

Visuo-spatial skills MD cingulum right – 0.045 –

MD CC splenium 0.007 0.027 –

Pearson correlations between neuropsychological tests and DTI-based parameters for all patients, Alzheimer’s disease (AD), and vascular dementia (VaD) patients. MD, mean diffusivity;

CC, corpus callosum. Significance was set at p < 0.05.

patients. This differential involvement of the corpus callosum is
consistent with known pathogenesis of the two dementia types.
Indeed, the hippocampus/precuneus circuit, which includes the
parahippocampal tract, posterior cingulum and the splenium of
the corpus callosum, is affected quite early in AD (Villain et al.,
2010; Palesi et al., 2012), while the genu of corpus callosum
connects the two hemispheres of frontal WM that are the
main leukoaraiosis areas in VaD. DTI-parameters of thalamic
radiations also distinguish between AD and VaD: MD, RD, and
AxD increases were indeed found only in VaD (both vs.AD and
HC) but not in AD.

The discriminative power of these findings was quantitatively
confirmed with a step-wise discriminative analysis that revealed
how diffusion values of these regions were able to distinguish
subtypes of dementia with an accuracy of 75% (sensitivity of
70%, specificity of 78%). Furthermore, the Pearson correlation
analysis identified a direct relationship between vascular load,
quantified by Fazekas and ARWMC scores, and degeneration
of the thalamic radiation, callosal and parahippocampal tracts.
Therefore, diffuse microstructural abnormalities identified by
DTI are tightly related to multifocal lesions (lacunae and
leukoariosis), not only in VaD but also in AD.

AD Alterations
Parahippocampal tracts and corpus callosum mainly showed
microstructural degeneration in AD. Indeed, both FA decreases
(Figure 1a) and diffusivity increases (Figure 2a) characterized
the parahippocampal tracts when AD and HC were compared,
while only FA decreases (Figure 1c) and RD increases were found
in bilateral anterior parahippocampal tracts when AD and VaD
were compared. MD increased in the right parahippocampal
tract, while the left tract showed a less significant (p < 0.05)
MD increase. In accordance with previous studies (Palesi
et al., 2012; Acosta-Cabronero and Nestor, 2014), our DTI-
derived parameters detect microstructural abnormality in
parahippocampal tracts in early stage of AD, thus indicating
they are promising candidates as neuroimaging markers to
characterize AD patients and differentiate them from VaD.

Furthermore, the corpus callosum was characterized by an
increase in all diffusivity parameters (MD, RD, and AxD) and
a decrease in FA mainly in its posterior part (Figure 1a) when
comparing AD with HC. Pathophysiological implications of
corpus callosum alterations in AD have already been discussed
(Takahashi et al., 2002; Stricker et al., 2009; Acosta-Cabronero
et al., 2010, 2012; O’Dwyer et al., 2011). Corpus callosum
impairment would lead to a disconnection between the two
hemispheres and consequently to cognitive impairment due to a
disruption of communication between interconnected networks
(Genc et al., 2015).

Several other regions were involved in AD. Thalamic
radiations showed only decreased FA, without changes in
diffusivity parameters in AD with respect to HC. These
results have been previously explained as a consequence of an
involvement of thalamo-cortical pathways (Medina et al., 2006;
Rose et al., 2008; Salat et al., 2010; Zarei et al., 2010). The
degeneration of the posterior part of the bilateral cingulum was
revealed by increased diffusivity parameters (MD, RD, and AxD)
and, in accordance with previous studies (O’Dwyer et al., 2011;
Acosta-Cabronero et al., 2012; Bosch et al., 2012), has been
interpreted as one of the principal factors leading to the cognitive
and memory decline in AD (Gili et al., 2011; Suri et al., 2014).
Indeed, the cingulum is a crucial part of the limbic system, and
one of the major WM fasciculi connecting associative cortical
areas (Bozzali et al., 2012), implying that damage of the cingulum
would result in a diffuse “disconnection” syndrome. Cognitive
impairment was also supported by FA decrease and RD increase
in the cerebellar posterolateral regions, because these regions are
directly connected with cerebral associative areas (Stoodley and
Schmahmann, 2010; Palesi et al., 2015, 2017). Previous TBSS
works have reported cerebellar involvement in AD (Acosta-
Cabronero et al., 2010; Liu et al., 2011; Teipel et al., 2014), which
has been also shown by using different MRI modalities (Wang
et al., 2007; Castellazzi et al., 2014).

It is also worth noting that increased FA was detected in
the corticospinal tracts of AD with respect to HC group. A
possible explanation has been given by Teipel et al. (2014), who
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suggested that higher FA in the corticospinal tracts is associated
with an increase in the Mode of anisotropy, which reflects shape
characteristics of the diffusion tensor (Ennis and Kindlmann,
2006). The simultaneous increase in both FA and Mode could
mirror a loss of crossing fibers rather than an actual increment
of diffusivity along high-coherence fiber bundles. Consequently,
higher FA may be a piece of evidence of a relative sparing of
the corticospinal tract in the presence of degeneration of other
fibers crossing the pyramidal tract. Analysis of fiber orientation
dispersion indices may be helpful in disentangling the sources of
such anisotropy changes.

VaD Alterations
Although widespread areas of alterations emerged from the
analysis (see Tables 4, 5 for details), our results were also able to
identify a few regions specific to VaD patients. Such difficulty in
finding specific patterns of WM alterations in VaD has been also
encountered in previous studies that reported FA reductions in
widespread brain regions in VaD, both in comparison with AD
and HC (Sugihara et al., 2004; Mayzel-Oreg et al., 2007; Zarei
et al., 2009; Suri et al., 2014). However, to our knowledge only
one study directly compared all DTI-derived parameters between
VaD, AD and HC (Suri et al., 2014).

The genu of corpus callosum showed decrease FA in VaD
with respect to HC (Figure 1b), while diffusivity (MD, RD and
AxD) increases were found in the same region with respect to AD
(Figure 2c). These findings are in agreement with others (Zarei
et al., 2009; Fu et al., 2012; Suri et al., 2014; Wu et al., 2015) and
support the hypothesis that impairment in the genu of corpus
callosum in VaD leads to a loss of inter-hemispheric prefrontal
connections with a consequent executive dysfunction.

Furthermore, increases in MD, RD and AxD and decrease
FA were found in thalamic radiations and in posterior cerebellar
lobules of VaD patients with respect to HC and AD (Tables 4,
5, Figures 2b,c). No DTI-based studies have reported such
diffuse involvement of these white matter tracts, nevertheless
thalamic lesions are known to be associated with VaD and
to cause cognitive impairment (Cummings, 1994; Szirmai
et al., 2002), while cerebellar alterations suggest a more severe
cerebellar-mediated cognitive impairment in VaD than in AD
patients.

FA reduction and diffusivity increase were also found in
superior longitudinal fasciculi, which is the main hemispheric
tract connecting fronto-parietal regions, and corticospinal tracts
of VaD patients with respect to AD (Table 5). DTI abnormalities
in the superior longitudinal fasciculi have been previously
reported in VaD (Fu et al., 2012), while there are no reports
of differences in the corticospinal tracts that can be related to
the subtle subclinical pyramidal deficits in VaD (Foster et al.,
2014).

Differentiating Between Dementias: Direct
Comparison of AD and VaD
Our results demonstrated that only FA identified specific
alteration patterns between subtypes of dementia and healthy
control subjects. On the contrary, other DTI-parameters revealed

specific clusters of alteration, as opposed to widespread
impairment, only when AD and VaD were directly compared.

The WM regions showing alterations specific to each type
of dementia were the parahippocampal tracts and the corpus
callosum. In these tracts it was possible to identify an anterior—
posterior gradient of changes. Alterations of the anterior part
of parahippocampal tracts were specific to AD while posterior
alterations were found in both dementia groups. Indeed, VaD
showed diffusivity increases in widespread brain regions but
not in the anterior parahippocampal tracts that were spared
(Figure 1b). Similar results were also discussed by Kim et al.
(2015) who reported FA alterations mainly in the fronto-parietal
WM regions of AD patients, while only a few specific WM
structures were preserved in VaD. In our AD patients, FA
values of the left parahippocampal tract directly correlated with
the Fazekas score suggesting a vascular contribution to the
AD pathogenesis. Furthermore, FA reductions characterized the
splenium of corpus callosum in AD patients while all DTI-
parameters were altered in the genu of corpus callosum in VaD
patients (Figures 1, 2) suggesting that the corpus callosum is
more impaired in VaD than in AD. These findings confirmed
those by Zarei et al. (2009), which identified the corpus callosum
as the most important structure to differentiate different types
of dementia. Furthermore, Zarei et al. (2009) reported the
importance of integrating FA values with vascular indices, e.g.,
the Fazekas score, to characterize subtypes of dementia. In this
contest, our Pearson correlation analysis confirmed the vascular
involvement of the corpus callosum in all patients and revealed
that the anterior part of the corpus callosum was mainly involved
in VaD patients.

Furthermore, our results suggest that also the thalamic
radiations are potentially useful for distinguishing between AD
and VaD. Indeed, only VaD patients showed changes in MD,
RD and AxD of the thalamic radiations with respect to HC
(Figures 2b,c). Interestingly, such structure was shown to be
affected in VaD also when compared with AD; therefore, it could
be argued that an increase in diffusivity of the thalamic radiations
is linked to tracts disconnection and plays an important role
in distinguishing VaD from neurodegenerative dementia. This
is an innovative result, in fact none of the previous TBSS
studies has reported evidence of specific thalamic alterations
useful to differentiate these types of dementia. The importance
of microstructural changes in the thalamic radiations is further
supported by its correlation with general and deep vascular load
both in AD and VaD patients, which could highlight the key
role of the vascular contribution for developing dementia in both
groups.

When the clinical picture is uncertain, searching for an
anterior-to-posterior lesional pattern of alterations in the
parahippocampal tracts and corpus callosum, alongside with
changes in diffusivity magnitude in the thalamic radiations
would be helpful to clarify the diagnosis. We are aware that
clinical application of the present study is not immediate and
further studies are warranted to confirm these results but we are
confident that our findings would be a good starting point for
developing a machine learning approach to help the diagnostic
workup.
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Methodological Considerations
WM lesions are present in VaD, but also in AD patients. Such
lesions can indeed influence the evaluation of DTI parameters
and consequently the statistical results of comparisons between
groups. No previous TBSS study has taken into account this
aspect. VaD patients mainly show lesions randomly located
throughout the whole WM, and consequently it is difficult to
obtain a mean lesion probability map. However, most of our
results are in accordance with previous reports. In addition,
alteration patterns that were identified as the most specific
to each type of dementia were located in WM structures
known to be involved in AD and VaD pathologies. Future
studies should develop ways to incorporate lesional information
in TBSS analysis for dementia and other neurological and
neurodegenerative pathologies.

A limitation of the present study is the relatively small cohort
of subjects. Indeed, the use of a larger cohort would provide a
better clinical characterization of the patient groups and may
identify significant correlations between the neuropsychological
profile of patients and their MRI-derived parameters. This would
be useful for distinguishing subtypes of dementia from both a
structural and a clinical point of view and for supporting clinical
diagnosis.

The implications of the present findings in cases of mixed
dementia are unclear. In this study, patients withmixed dementia
were excluded in the initial phase of the enrollment, based on
the clinical and neuropsychological assessment along with the
administration of the Hachinski scale. This tool let us identify
two relatively pure etiologic groups (AD and VaD). Therefore,
the relative weight of the MRI changes observed in this study in
defining as prevalent the nature (neurodegenerative vs. vascular)
of the dementing process in these patients cannot be ascertained
according to our data. Specifically designed studies in patients
with mixed dementia should address this important issue.

CONCLUSIONS

Alteration patterns associated to disconnection of specific tracts
and useful in distinguishing between AD, VaD, and HC were
found using an advancedDTI sequence acquired on a 3T scanner.
The method presented here cannot be proposed at present
as a substitute for classical diagnostic tools, but rather could
provide a mean to map the degree of circuit disconnection of
different types of dementia and to discriminate between AD and
VaD. DTI metrics may thus be incorporated in the multimodal
staging of dementia, since these results can be combined with
other MRI data (functional MRI, spectroscopy) and other tools
[cerebrospinal fluid examination, positron emission tomography

(PET)] to obtain a further confirmation of diagnosis and
progression. The overarching aim of future studies should be
to gather microstructural information in addition to a battery
of clinical, radiological and neuropsychological tests, as well as
other quantitative imaging metrics, to develop an automatic
classification approach improving sensitivity of the diagnostic
process. The use of multiple DTI indices in addition to other
standard multimodal methods would help to differentiate the

contribution of vascular load and primary neurodegeneration to
the evolution of cognitive disturbances in AD and VaD.
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