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In this study, we showed an abnormal resting-state quantitative electroencephalogram

(QEEG) pattern in children with central auditory processing disorder (CAPD).

Twenty-seven children (16 male, 11 female; mean age = 10.7 years) with CAPD and

no symptoms of other developmental disorders, as well as 23 age- and sex-matched,

typically developing children (TDC, 11 male, 13 female; mean age = 11.8 years)

underwent examination of central auditory processes (CAPs) and QEEG evaluation

consisting of two randomly presented blocks of “Eyes Open” (EO) or “Eyes Closed”

(EC) recordings. Significant correlations between individual frequency band powers and

CAP tests performance were found. The QEEG studies revealed that in CAPD relative to

TDC there was no effect of decreased delta absolute power (1.5–4Hz) in EO compared

to the EC condition. Furthermore, children with CAPD showed increased theta power

(4–8Hz) in the frontal area, a tendency toward elevated theta power in EO block, and

reduced low-frequency beta power (12–15Hz) in the bilateral occipital and the left

temporo-occipital regions for both EO and EC conditions. Decreased middle-frequency

beta power (15–18Hz) in children with CAPD was observed only in the EC block.

The findings of the present study suggest that QEEG could be an adequate tool to

discriminate children with CAPD from normally developing children. Correlation analysis

shows relationship between the individual EEG resting frequency bands and the CAPs.

Increased power of slow waves and decreased power of fast rhythms could indicate

abnormal functioning (hypoarousal of the cortex and/or an immaturity) of brain areas not

specialized in auditory information processing.

Keywords: central auditory processing disorder (CAPD), resting-state bioelectrical activity, quantitative
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INTRODUCTION

Central auditory processing disorder (CAPD) refers to a
dysfunction in how the central nervous system (CNS)
utilizes auditory information. CAPD is recognized when
the peripheral hearing is normal, but there are deficits in one
or more of the following central auditory processes (CAPs):
sound source localization; auditory stimuli discrimination;
recognition of acoustic patterns (temporal patterning);
temporal aspects of audition, including temporal integration,
temporal discrimination (e.g., gap detection), temporal
ordering/sequencing of rapid events and temporal masking;
auditory performance in competing acoustic signals (including
dichotic listening) or understanding of degraded speech (ASHA,
2005; American Academy of Audiology, 2010; British Society
of Audiology, 2011a). These abnormal CAPs are believed to
result from CNS lesions in the areas specialized in processing of
auditory stimuli and responsible for interhemispheric transfer
of acoustic information (Jerger et al., 2002; Moncrieff, 2006) as
well as from several factors such as premature birth, low birth
weight and chronic ear infections. The prevalence of CAPD in
school-aged children has not been firmly established. Chermak
andMusiek (1997) estimated the prevalence of CAPD to be 2–3%
with a 2:1 ratio between boys and girls, whereas Santucci (2003)
reported the prevalence of CAPD in the pediatric population to
be∼3–5%.

Various symptoms and an unrecognized brain dysfunctions
associated with CAPD entail a lack of consensus regarding the
definition of CAPD (Dillon, 2012; Moore and Hunter, 2013;
Moore et al., 2013). It has been recommended to include
in the CAPD assessment a clinical history of the patient
(Micallef, 2016), well-validated questionnaires to recognize real-
life listening difficulties (Moore et al., 2013), and standardized
verbal and non-verbal tests for measuring central auditory
processing (Micallef, 2016). However, presently there is neither
universally accepted CAP test battery nor specific cut-offs for
CAPD evaluation.

CAPD assessment becomes even more problematic when
we consider that listening difficulties often coexist with
language and/or attention disorders including the attention
deficit disorder (ADD) and/or the attention-deficit/hyperactivity
disorder (ADHD) (Keith and Engineer, 1991; Riccio et al., 1994,
1996), dyslexia (Cacace and McFarland, 2006; Zaidan and Baran,
2013), and specific language impairment (SLI) (Sharma et al.,
2009; Włodarczyk et al., 2015). For example, DiMaggio and
Geffiner (2003) demonstrated that 84% of children with CAPD
fulfilled the diagnostic criteria for the ADHD. In this study the
concomitance of ADHD and CAPD was 41% for children with
confirmed diagnosis of ADHD and 43% for children suspected of
having ADHD.

The comorbidity of ADHD and CAPD symptoms has
encouraged researchers to investigate whether there are any
auditory deficits that would delineate ADHD subtypes. The
research in this area indicates that children with the ADD with
and without hyperactivity exhibit different auditory symptoms
(Chermak et al., 2002; Øie et al., 2014; Serrallach et al., 2016).
The ADD with hyperactivity is thought to coexist with poor

performance in tasks requiring temporal ordering (Fostick, 2017)
or temporal patterning, dichotic listening and understanding
of speech in the presence of background noise (Lanzetta-
Valdo et al., 2017). In another study, children with ADD with
hyperactivity showed poor performance in melodic and rhythm
processing tasks, whereas their peers diagnosed with ADD
had no such impairments (Serrallach et al., 2016). In children
diagnosed with the predominantly inattentive ADHD subtype,
the auditory divided attention deficits and difficulty in listening
speech in the presence of background noise have been reported
by Chermak and Musiek (1992). Interestingly, in a more recent
study the predominantly hyperactive and combined (inattentive
and hyperactive) ADHD subtypes showed different abnormal
patterns in a dichotic speech listening task (Øie et al., 2014). Some
authors, however (e.g., Ghanizadeh, 2009) failed to demonstrate
that ADHD subgroups could be differentiated based on the
auditory processing deficits.

A lack of consensus about the diagnostic criteria for CAPD
has motivated researchers and clinicians to seek objective
methods for the evaluation processes. Audiological societies
(American Academy of Audiology, 2010; British Society of
Audiology, 2011a) recommend the use of auditory evoked
potentials (AEPs) such as the auditory brainstem response (ABR),
middle latency responses (MLR), and cortical auditory evoked
responses (CAEP) to evaluate CAPD more objectively. ABR,
MLR, and CAEP test information processing at subsequent
levels of the auditory pathway, from the auditory nerve to the
primary auditory cortex and higher cortical areas. It has been
shown that children with CAPD have atypical ABR and/or MLR
(Schochat et al., 2014; for a review Abdollahi et al., 2017),
whichmay indicate impaired information processing at the lower
levels of the central auditory system. Previous CAEP studies
have demonstrated the abnormal functioning of the primary
and/or secondary auditory cortex in CAPD (Sharma et al., 2014;
Tomlin and Rance, 2016; Koravand et al., 2017). Specifically,
children with listening difficulties had longer latencies and
smaller amplitudes of the early components of CAEP, P1, and
N1 (Sharma et al., 2014; Tomlin and Rance, 2016), as well as
prolonged latencies of N2 (Koravand et al., 2017) compared to
their normally developing peers. All these CAEPs are thought
to be elicited in the auditory cortices (Bruneau and Gomot,
1998; Ponton et al., 2002). Later CAEPs, such as the Mismatch
Negativity (MMN), considered to be a pre-attentive response
to a change in repetitive acoustic stimulation (Näätänen et al.,
1978), and the P300, reflecting attention and/or workingmemory
engagement in auditory information processing (Polich, 2007),
have also been extensively investigated in children and adults
with CAPD (Liasis et al., 2003; Sharma et al., 2006; Roggia and
Colares, 2008; Koravand et al., 2017). In contrast to MMN, which
is generated in the auditory cortex (Giard et al., 1990; Alho, 1995),
P300 source is located in the non-auditory areas (Baudena et al.,
1995; Halgren et al., 1995; Friedman, 2003; Van Dinteren et al.,
2018). The evidence of abnormal MMN in children with CAPD
is inconsistent: one study reported lower incidence and longer
latency of MMN in the CAPD group compared to normally
developing controls (Bauer et al., 2009) while others found no
significant abnormalities (Liasis et al., 2003; Roggia and Colares,
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2008; Koravand et al., 2017). On the other hand, P300 latencies
were found to be longer in children with CAPD than in their
counterparts without listening problems (Jirsa and Clontz, 1990).
Furthermore, both P300 latency and amplitude have been shown
to be useful tools to monitor the effectiveness of CAPD treatment
(Jirsa, 1992; Alonso and Schochat, 2009).

Unlike the ABR, the CAEP are strongly influenced by the
subject’s state (e.g., arousal level, motivation, fatigue). In addition,
abnormal changes in the parameters of some CAEP tests are not
specific for a particular dysfunction, e.g., reduced amplitude and
prolonged latency of P300 (one of the CAEP components) could
be well-observed in dementia (Polich et al., 1986), alcoholism
(Lewis et al., 2013), and different neurological (Hansch et al.,
1982) or psychiatric disorders (Blum et al., 1994). Hence, there
is still a considerable need to establish an objective method to
evaluate CAPD.

Advanced neuroimaging techniques such as functional
magnetic resonance imaging (fMRI) (Schmithorst et al., 2011;
Farah et al., 2014; Pluta et al., 2014), CAEP-fMRI (Rusiniak
et al., 2013; Milner et al., 2014), MRI/MEG (Serrallach et al.,
2016), and positron emission tomography (PET) (Kim et al.,
2009) provide insights into the brain representation of CAPs.
Application of these techniques could significantly improve the
current diagnostics of listening difficulties. Activation patterns in
normal hearing individuals during CAP tests that are modified
and adapted for fMRI may provide a good reference for the
CAPD assessment (Bartel-Friedrich et al., 2010). Neuroimaging
studies using dichotic listening paradigms have revealed the
dominance of left hemispheric areas (the upper posterior plane
of the temporal lobes, including the Heschl’s gyrus and planum
temporale) in perception of speech sounds in the normal human
brain (Hugdahl and Westerhausen, 2016 for a review). Neural
correlates of temporal processing of acoustic stimuli mainly
involved the primary and secondary auditory cortices (Mitsudo
et al., 2014). Neural representation of the temporal aspects of
audition is, however, strongly dependent on the time scale being
tested (Lewis and Miall, 2003; Szelag et al., 2009 for a review).
Specifically, with respect to the subsecond durations, activations
of the primary and secondary auditory cortices as well as the
cerebellum and basal ganglia were postulated (Lewis and Miall,
2003). One of the typical tasks used in these studies is to
detect a brief silent gap embedded in an ongoing auditory signal
(Phillips et al., 2010). Subsecond timing may also be assessed
by temporal order judgments, i.e., reporting the order of two
consecutive sounds presented in rapid succession (Szymaszek
et al., 2006, 2009; Szelag et al., 2014). This task predominantly
activates the temporo-parietal junction (TPJ) (e.g., Bernasconi
et al., 2010), which is located at the intersection of the posterior
part of superior temporal sulcus, the inferior parietal lobule,
and the lateral occipital cortex. In the suprasecond timescale,
the recruitment of not only auditory cortices but also prefrontal
and parietal areas as well as the corpus callosum was observed
(e.g., Szelag et al., 2009). The involvement of the non-auditory
brain areas in temporal processing of acoustic stimuli is thought
to reflect increased cognitive (e.g., attentional or short-term
memory) demands of these tasks.

Previous studies have shown that CAPD co-occurs with
anatomical and/or functional brain abnormalities not only in

the areas specialized in processing of acoustic information (Kim
et al., 2009; Schmithorst et al., 2011; Owen et al., 2013; Farah
et al., 2014; Pluta et al., 2014; Micallef, 2016 for a review).
Kim et al. (2009) have found that the auditory cortex atrophy
was accompanied by an increase in the metabolism of the
bilateral Heschl’s gyrus and precuneus in an adult patient with
listening difficulties. Studies using the diffusion tensor imaging
(DTI) technique showed decreased white matter integrity in the
prefrontal cortex and left anterior cingulate in children with
an abnormal left ear advantage in dichotic listening to speech
stimuli (Farah et al., 2014). Furthermore, significant changes in
the structures transmitting information between the thalamus
and auditory cortex have been found in children with atypical
hemispheric asymmetry in verbal sound processing (Farah et al.,
2014).

A promising approach to investigation of the central
auditory system is combining the objective methods of brain
anatomical evaluation with psychoacoustic tests and measures
of bioelectrical activity (Seither-Preisler et al., 2014; Serrallach
et al., 2016). For example, children with ADHD, who often
suffer from listening problems have smaller volume of bilateral
Heschl’s gyri and larger volumes of plana temporalia compared
to their musically experienced peers (Seither-Preisler et al.,
2014). Furthermore, the authors have also shown that in the
ADHD the low values of Heschl’s gyrus (primary auditory
cortex)/planum temporale (secondary auditory cortex) ratio,
calculated separately for both hemispheres, coexist with greater
bilateral P1 component asynchrony (the P1 latency difference
between the right and left auditory cortex) (Seither-Preisler et al.,
2014). This brain-based marker may be used as a clinically
relevant indicator of a higher risk of central auditory deficits in
this group. The indices of interhemispheric asynchrony of the
primary auditory-evoked P1 and N1 responses are also highly
influenced by musical training (Kühnis et al., 2014; Serrallach
et al., 2016). A combination of the primary-to-secondary
auditory cortex ratio with the interhemispheric difference in the
latency of P1 component and psychoacoustic test results can
allow objective distinguishing between different developmental
disorders with overlapping symptomatology such as ADHD,
ADD, or dyslexia (Serrallach et al., 2016). As the auditory
processing deficits often concur with other developmental
disorders, the aforementioned neuronal marker may be a
valuable tool in the assessment of listening problems.

In the present study, we examined the utility of quantitative
analysis of electroencephalogram (QEEG) for diagnosing CAPD.
QEEG converts the EEG data into frequency bands with
the use of various mathematical algorithms [e.g., fast-Fourier
transform (FFT), coherence analysis] and allows the calculation
of the proportions of different frequency bands (Kropotov,
2009). QEEG gives the opportunity to define unique, highly
valid, and reliable patterns of brain activity (Hughes and
John, 1999; Thatcher, 2010). It also allows the calculation of
coherence or co-modulation between specific EEG frequency
bands recorded from different points on a patient’s scalp, as
well as between the sources of EEG estimated by different
bioelectrical source localization algorithms [e.g., Low-Resolution
Brain Electromagnetic Tomography (LORETA); Thatcher et al.,
2007a,b; Thatcher, 2012]. QEEG is commonly used clinically
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to evaluate the outcomes of the neurofeedback training
(a therapeutic method that teaches subjects to self-control
brain functions by measuring brain waves and providing a
feedback signal). Recently, the indices of intracerebral functional
connectivity (IFC) and IFC-based neurofeedback have been
proposed as a promising method of ameliorating the auditory-
related dysfunctions (Elmer and Jäncke, 2014).

QEEG analysis has been most often applied to spontaneous
EEG signals acquired at rest, when a patient is instructed
to relax with eyes open or closed (Kaiser, 2007; Thatcher,
2011). Specific alterations in the resting-state EEG signals have
been found in various neurodevelopmental disorders, especially
ADHD (Arns et al., 2014; Roh et al., 2015; Chiarenza et al.,
2016), ADD (Thompson and Thompson, 1998), dyslexia (Arns
et al., 2007), and autism (Billeci et al., 2013). Evidence on resting-
state brain activity in CAPD is scarce. Our preliminary fMRI
study (Pluta et al., 2014) showed that children with listening
difficulties had a reduced homogeneity in the default mode
network (DMN) composed of the brain structures, showing
an increased synchronization at wakeful rest and decreased
correlation during a task (Raichle, 2015). We found inter-group
differences in the precuneus/posterior cingulate and frontal pole,
which are thought to be involved in the general attention
processes (Ramnani and Owen, 2004; Cavanna, 2006). Therefore,
based on these outcomes, we cannot conclude that there are
specific areas responsible for attention related to listening.

The aim of the present study was two-fold: (1) to define the
QEEG resting-state activity in children with CAPD and, if there
would be a unique pattern owing to the core auditory deficits in
this group, (2) to determine the relations between the individual
frequency bands in this pattern and CAPs. Extraction of the
QEEG activity specific to auditory dysfunctions will allow to
consider this technique a supplementary method of evaluation
of listening difficulties.

MATERIALS AND METHODS

Subjects
The CAPD study group consisted of 27 children (16 male, 11
female; mean age = 10.7 ± 2.1 years) with real-life listening
problems reported by their parents and/or caregivers. These
listening problems included: difficulty to follow utterances and
performing verbal commands, distractibility, disorganization,
poor concentration, and forgetting about daily activities. CAPD
children were patients of the Institute of Physiology and
Pathology of Hearing, recruited prior to their participation in a
therapeutic program to improve auditory processing. The control
group comprised 23 healthy age- and sex-matched typically
developing children (TDC) (11 male, 13 female; mean age= 11.8
± 2.3 years) whose parents and/or caregivers responded to
advertisements in the local press.

All subjects had normal hearing, normal or corrected-to-
normal vision, and no history of neuropsychiatric diseases
or head trauma. They also did not take any medications
affecting the CNS. All children attended school regularly and
had intelligence within the normal range (Raven’s progressive
matrices). None of children had a formal diagnosis of dyslexia,

SLI, autism, or ADHD and did not display any symptom of
these disorders. However, it has been estimated that the accuracy
of disease classification scales lies in the range between 47
and 79% (Tripp et al., 2006; Snyder et al., 2008). It practically
means that we cannot with absolute certainty exclude the
possibility that children with no official diagnosis of the above-
listed developmental disorders were affected by attention and/or
language deficits.

Ethics Approval
Caregivers/parents provided written informed consent for their
children to participate in this study. The project was approved
by the Ethics Committee of the Institute of Physiology and
Pathology of Hearing and conformed to the tenets of the
Declaration of Helsinki for medical research involving human
subjects.

Procedures
The study comprised audiological evaluation, administration
of CAP, and attention batteries, and QEEG data acquisition.
All procedures were performed at the Institute of Physiology
and Pathology of Hearing in Warsaw, Poland. There were 2
sessions on 2 days within a week. On the first day, each subject
participated in a medical interview and audiological examination
followed by a CAP battery administration. On the second day,
attention tests and an EEG study were performed. Each session
lasted∼2 h (with short breaks). In the present study only the CAP
battery and QEEG results were included.

Audiological Examination
The audiological examination included otoscopy, pure-
tone audiometry (PTA), and impedance audiometry (IA),
all conducted in accordance with standard procedures and
compared to the normative values provided by the British
Society of Audiology (British Society of Audiology, 2011b, 2013).
The results of the PTA were treated as abnormal when hearing
thresholds were > 20 dB HL on each frequency, in the range
of 250–8,000Hz in both ears. The IA results were considered
abnormal when the middle ear pressure was <−150mm of H2O
pressure and compliance < 0.3 cc. The ABR tests allows the
exclusion of study subjects with abnormal auditory functions of
the brainstem pathways (e.g., children with auditory neuropathy)
(Chermak andMusiek, 2007). The ABR procedure and outcomes
calculation was performed in accordance with the American
Clinical Neurophysiology Society Guideline (ACNS, 2006). The
ABRs were recorded separately for each ear. An EEG active
electrode was placed at the Fz position (10–20 standard; Jasper,
1958) and referenced/grounded to the mastoid of the same
(A1) or the opposite (A2) ear, respectively. The impedance of
recording electrodes was monitored and maintained below 5
kOhm. Clicks with alternating polarization presented at the
80-dB nHL intensity level and rate 31.1 stimuli/s via an ER3A
insert earphone were used as stimuli to evoke ABRs. A total of
1,500 click repetitions were averaged for each ear. The correct
morphology and amplitude ratio of waves I, III, and V were
the criteria of the ABR evaluation. The ABRs with the highest
amplitude of wave V, slightly lower amplitude of wave III,
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and the lowest amplitude of wave I were considered normal.
Repeatability of the ABRs recorded with the same stimulation
parameters, latency of individual waves, and the time intervals
between individual peaks were also taken into account while
evaluating the ABR accuracy. Responses with the interval
between the waves I-III longer than between the waves III-V
were considered to be correct. As the reference ranges for the
individual ABR peak intervals were applied Polish norms proper
for subjects’ age developed by Kochanek (2000). Accordingly,
the waves I with latency ≤1.9ms and the waves V with latency
≤6.2ms were considered as normal. Moreover, the I-III wave
intervals ≤2.6ms, III–V ≤2.4ms, and I–V ≤4.6ms were correct.
An inter-ear difference between intervals (I–III and III–V)
≤ 0.2ms, an inter-ear difference of waves V latency values ≤

0.4ms, and the amplitude ratio of the V and I waves ≥ 1.5ms
were taken as the correct values.

CAP Evaluation
In the present study, CAP cases were assessed by using the
computerized battery developed by a joint research project
between the Institute of Physiology and Pathology of Hearing and
the Brigham Young University Department of Communication
Disorders in the United States. The software was installed on a
HPCompaq nx7400 laptop. Auditory stimuli were generated by a
Creative SB1 100 external sound card (Creative Labs Inc., Jurong
East, Singapore) and presented to the patient using Sennheiser
HDA 200 headphones (Sennheiser, Wedemark, Germany). The
following tests were administered: frequency pattern test (FPT),
duration pattern test (DPT), gap detection test (GDT), dichotic
digit test (DDT), and adaptive speech in noise (aSpN). The order
of the tests was counterbalanced across subjects. The CAP battery
of tests was performed in a single 1.5-h session with short breaks.
Before each test, a subject was familiarized with CAP tests with a
training procedure.

The FPT (Pinheiro and Ptacek, 1971) was comprised of 40
binaurally presented at 60-dB HL triplets of 200-ms sine wave
tones (180 plateau, rise/decay time of 10ms) of either a low
(880Hz) or high (1122Hz) frequency. The task was to verbally
report the order of the tones (e.g., /high/–/low/–/high/). Each
triplet consisted of 1, 2, or 3 identical sounds (a low or a
high tone). An Inter-Tone-Interval (ITI) of 200ms was utilized.
The auditory sequences within the test were presented in a
pseudo-random order. The percentages of correct responses were
analyzed.

The DPT (Musiek et al., 1990) included 40 binaural 3-element
sequences of 1,000-Hz sine wave tones (rise/decay time of 10ms),
differing in duration. The tones were either short (250ms) or long
(500ms) and subjects were asked to repeat the order of the tones
within a sequence (e.g., /short/–/long/–/long/). An ITI of 300ms
was utilized. Stimuli were presented at 60 dB HL. Analogous to
the FPT procedure, the percentages of correct responses were
calculated.

The GDT (Keith, 2000) measured the shortest length of a
silent gap embedded in white noise required for perceiving and
reporting the silent gap. The stimulus was a 500-ms white noise
presented to both ears at 50 dB HL. An adaptive procedure
was applied to search for the length at which there was a 50%

chance of detecting the noise with a gap and a 50% chance of
detecting a noise without a gap (Leek, 2001). The task consisted
of pressing a response key when there was a gap embedded in
noise. The minimal gap duration was determined in a 2-stage
procedure. In the first stage, stimuli with varying gap durations
were presented. The initial gap duration was 10ms and either
decreased or increased by half of its length, depending on the
correctness of the subject’s responses. This part of the test was
continued until a subject failed three times to detect a gap of
the same duration. This gap duration was then applied in the
primary test and was adjusted in accordance with the individual
subject’s performance (i.e., it increased by 2ms following a false
alarm, a button pressed in the absence of a noise with a gap, or a
miss, no reaction to a gap stimulus, and decreased by 2ms after
a hit, a correct gap detection). The test was terminated after 7
reversals. A reversal was defined as a hit followed by a miss (or
a false alarm), or a miss (or false alarm) followed by a hit. The
average of the 5 most difficult reversals determined the minimum
gap duration.

During the DDT (Musiek, 1983), children were presented with
a sequence of 2 different digits in the left ear, while concurrently
given a sequence of 2 different digits in the right ear. The task
was to repeat the digits from both ears; the digits used were from
1 through 10. There were 40-digit pairs (20 pairs per ear) and
auditory stimuli were presented at 60 dB HL. The percentages of
correctly reported digits, both separately from the left and right
ears, as well as the difference in performance between the right
and the left ear in DDT [the right-ear advantage (REA)1], were
calculated.

In the aSpN test, single-syllable Polish words (Harris et al.,
2004) were successively presented against a background of 16-
talker babble speech; the task was to repeat the words presented.
The words were delivered to both ears with the use of different
signal-to-noise ratios (SNRs). An initial (maximum) SNR was
9 dB and the minimum was −15 dB. Negative SNRs indicate
that the background noise was louder than the target word
and positive values corresponded to when a target word was
louder than the background noise. In the aSpN test, an adaptive
procedure was applied in which, initially, the SNR decreased by
4 dB after each correct response. From the moment a subject did
not respond correctly for the first time, the SNR was increased
by 2 dB following each incorrect word and decreased by 2 dB
following each correctly repeated word. The aSpN test measures
the minimum SNR required to correctly recognize words 50%
of the time. The calculations were performed in accordance
with the Wilson and McArdle approach (Wilson and Burks,
2005) and were based on the 5 most difficult reversals (i.e.,
correctly repeated words followed by an incorrect one, or lack of
a response, or incorrect answers followed by a correct one). The
test was concluded after 7 reversals.

QEEG Data Acquisition and Analysis
EEG data were acquired using a Mitsar 21 channel EEG system
(Mitsar Ltd., St. Petersburg, Russia). Nineteen silver-chloride
electrodes were applied in accordance with the International

1REA=
% of correct responses in the right ear − % of correct responses in the left ear
% of correct responses in the right ear + % of correct responses in the left ear
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10–20 standard (Jasper, 1958). The ground electrode was placed
on the forehead. All electrode impedances were kept below 5
kOhm. The input signals referenced to the linked ears were
filtered between 0.5 and 50Hz and digitized at a rate of 250Hz.
For each subject, the EEG data was recorded twice: under “Eyes
Open” (EO) and “Eyes Closed” (EC) resting conditions. Both
“Eyes Open” and “Eyes Closed” blocks of registration last 3min.
If the recorded signal was contaminated with a large number of
artifacts (e.g., excessive movements and/or blinking), the session
of EEG data acquisition was extended to a maximum of 5min.
To minimalize the number of artifacts, the subjects were asked
to keep their neck and facial muscles relaxed and to refrain from
making unnecessary eye movements.

QEEG studies were performed individually in a soundproof
room. Each subject sat in a comfortable chair with a distance
of 1 meter from the screen. During the EO block, the subject
was asked to keep the eyes fixated on the black point that was
constantly displayed in the center of the screen. In the EC
block, the instruction was to relax with eyes closed and not to
think about anything special. Both the EO and EC blocks were
counterbalanced across the study subjects.

Quantitative data analysis using WinEEG 2.84 software
(Mitsar Ltd.) was conducted offline. The weighted average
reference montage prior to quantitative data processing was
applied (Lemos and Fisch, 1991). Eye-blink artifact’s were
corrected by zeroing the activation curves of individual ICA
components corresponding to eye-blinks (Vigário, 1997; Jung
et al., 2000). In addition, epochs with excessive amplitudes (>100
µV) and/or excessive high (>35 µV in the 20–35-Hz band)
and slow (>50 µV in the 0–1-Hz band) frequency activities
were automatically marked and excluded from further analyses.
Finally, EEG was manually inspected to verify if all artifacts
were properly removed. The EEG signal period analyzed in each
subject was no shorter than 1min.

Artifact-free, continuous EEG signals were divided into 4.096-
s epochs using a Hanning time window (epochs were overlapped
by 50%) and submitted to a FFT. Absolute power spectra (a
measure of the intensity of energy computed in a series of
frequency bands for a discrete time interval) (squaredmicrovolts)
(Hughes and John, 1999) for each subject, and separately for each
condition, were calculated. Spectra computed with numerous
averaged epochs less than 30 were not included in the analysis.
The power spectra were also transformed using a natural
logarithm for normalization.

The absolute power was determined separately for EEG
signals recorded from each electrode and computed for the
following frequency bands: delta (1.5–4Hz), theta (4–8Hz),
alpha (8–12Hz), low (12–15Hz), middle (15–18Hz), and high
(18–25Hz) beta. These ranges overlapped with those used in
numerous previous studies (Thatcher, 1998, 2000; Thatcher
et al., 2009; Cahn et al., 2010; Engelbregt et al., 2012) and
QEEG databases (HBI database; Kropotov, 2009), as well as the
Neuroguide database (Thatcher et al., 2003), which allows the
comparison of presented results with the outcomes obtained by
other authors. The absolute EEG power for particular frequency
bands was analyzed separately for the EO and EC states. These
conditions have been commonly used in research owing to

the simplicity and relative uniformity of the EEG recording
procedure. EO and EC recordings can also be compared across
laboratories and populations with a relatively high reliability
(Thatcher and Lubar, 2009).

Statistical Analysis
The statistical analyses were performed with SPSS 20.0 software
(SPSS Inc., Chicago, Illinois). The Shapiro–Wilk’s test was
run to check for normality of each variable distribution and
Levene’s test was used to verify whether the variances the
analyzed age groups were homogeneous. When a distribution
was significantly different from normal and/or the variances
were not homogeneous, the results were transformed to make
the variances of the different groups equal and/or to normalize
the data. When the data still did not meet the assumptions
of parametric statistics, non-parametric tests were used. As a
result, parametric independent t-tests and the non-parametric
Mann–Whitney U-test were applied for intergroup comparisons
of CAP test battery results, respectively. Only the REA index
was calculated using the Mann–Whitney U-test. Repeated-
measures analysis of variance (ANOVA) with electrode (19
levels) and eye condition (EO vs. EC) as repeated-measure
factors, and group (CAPD vs. TDC) as an intergroup factor,
were conducted separately on the delta (1.5–4Hz), theta (4–
8Hz), alpha (8–12Hz), low (12–15Hz), middle (15–18Hz), and
high (18–25Hz) beta frequency bands. The results of these
analyses were reported with the Greenhouse–Geisser correction.
Bonferroni’s tests were conducted for post-hoc comparisons. In
all performed tests, p < 0.05 were considered to be statistically
significant.

Additionally, to better explore the relations between the
CAP battery performance and the QEEG data, Pearson’s or
Spearman’s correlation coefficients (for normal or abnormal
data distribution, respectively) between the CAP test results and
the absolute power of particular frequency bands have been
calculated in all subjects (separately for the EO and EC blocks).

RESULTS

Central Auditory Processes
Table 1 shows the results of CAP tests and some reference values
for these tasks. Children with CAPD, relative to TDC, achieved
significantly less correct responses in DDT for both right and left
ears, as well as in FPT and DPT. Intergroup differences in GDT
and aSpN were not significant.

QEEG Data
Figure 1 shows the results of intergroup comparisons of the
distribution of absolute power in the scalp for particular
frequency bands, separately for the EO (Figure 1A) and EC
(Figure 1B) conditions.

Delta (1.5–4Hz)
The analysis showed a significant main effect of the condition
[F(1, 49) = 6.65, p = 0.013, eta2 = 0.12], resulting in greater
delta power during the EC (X̄ = 8.39 ± 0.51 µV) than in the
EO condition (X = 7.69± 0.42 µV), as well as a significant
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TABLE 1 | Reference values for Polish CAP tests developed for typically developing children at the age group corresponding to the age of children recruited to the

present study and descriptive statistics (mean values, standard deviations, medians and median ranges) as well as the t or z-values obtained in the t-tests or U

Mann-Whitney’s tests comparing two experimental groups.

Reference data TDC CAPD

CAP X (SD) Me X (SD) Me (min–max) X (SD) Me (min–max) z/t

DDT_R (%) 88.6 (7.39) 90.0 (72.5–100) 86.89 (12.65) 91.25 (42–100) 73.70 (11.86) 77.5 (50–90) 3.59***

DDT_L (%) 80.7 (7.48) 80.0 (70.0–95.5) 79.40 (11.37) 80.0 (57.5–97.5) 51.85 (20.93) 55.0 (7.5– 90) 5.74***

FPT (%) 79.6 (11.82)a 79.0 (50–100)a 78.94 (14.71) 81.25 (50–100) 32.69 (17.04) 32.5 (0–72.5) 10.31***

REA index 0.04 (0.04) 0.03 (−0.04–0.18) 0.04 (0.1) 0.05 (−0.31–0.19) 0.2 (0.25) 0.1 (-0.11– 0.82) 2.13*

DPT (%) 83.4 (9.35)b 85.0 (62.5–100)b 87.73 (11.31) 90.0 (52.5–100) 45.19 (19.29) 42.5 (17.5–82.5) 8.36***

GDT (ms) 2.97 (0.47) 3.0 (2.10–4.0) 4.18 (6.6) 2.65 (1.92–35) 4.28 (4.20) 2.9 (1.3–20.25) 0.55

aSpN (dB) −1.2 (1.25) −1.4 (−3.4–2.2) −0.5 (1.44) −0.5 (−3–3) −0.15 (1.79) 0 (−3– 4) 0.77

**p < 0.05, ***p < 0.001; TDC, typically developing children; DDT_R, Dichotic Digit Test for the right ear; DDT_L, Dichotic Digit Test for the left ear; REA, Right ear advantage; FPT,

Frequency Pattern Test; DPT, Duration Pattern Test; GDT, Gap Detection Test; aSpN, adaptive Speech in Noise.
aReference data from Dajos et al. (2013).
bReference data from Włodarczyk (2013).

The reference data that has been not published yet was collected from 49 healthy children (25 girls and 24 boys), aged from 10 to 11 years. These data is used in the Institute of

Physiology and Pathology of Hearing as the reference for clinical groups.

interaction: condition × group [F(1, 49) = 5.15, p = 0.028,
eta2 = 0.095]. Post-hoc comparisons revealed greater delta power
in the EC (X = 8.37 ± 0.75 µV) than in the EO condition
(X̄ = 7.02 ± 0.61 µV), but only for the TDC group (Figure 2).
The main effect of group membership and other interactions
were not significant.

Theta (4–8Hz)
There was a significant main effect of condition [F(1,49) = 47.01,
p = 0.001, eta2 = 0.49], as well as significant interactions:
condition × group [F(1,49) = 5.58, p = 0.022, eta2 = 0.10]
and group × electrode [F(1,49) = 2.03, p = 0.041, eta2 = 0.04].
Theta power was significantly greater in the EC than in the
EO condition (X = 8.63 ± 0.67 µV and X = 6.13 ± 0.39
µV, respectively). Post-hoc comparisons for condition × group
interaction revealed a tendency (p = 0.058) toward a greater
theta power (X = 6.88 ± 0.53 µV) in the CAPD group than
in the TDC group (X = 5.37 ± 0.57 µV), but only for the
EO condition. Post-hoc comparisons for the group × electrode
interaction showed higher theta power in the CAPD group than
in the TDC group at F3 (X = 6.65 ± 0.52 µV and X =

4.97 ± 0.55 µV, respectively) and Fz (X = 8.42 ± 0.77 µV
and X = 5.55 ± 0.82 µV, respectively). Other effects were not
significant.

Alpha (8–12Hz)
Repeated-measures ANOVA revealed a significant effect for
condition [F(1,49) = 110.02, p = 0.001, eta2 = 0.69], resulting in
a greater alpha power in the EC than in the EO condition (X =

15.49± 1.40µV andX = 6.15± 0.53µV, respectively). Themain
effect of “group” and any interaction effects were not significant.

Low-Frequency Beta (12–15Hz)
The low-frequency beta analyses showed two significant
interactions: condition × group [F(1,49) = 4.14, p = 0.047,
eta2 = 0.08] and electrode × group [F(1,49) = 2.77, p = 0.05,
eta2 = 0.05]. Children with CAPD demonstrated reduced

low-frequency beta power (X = 1.32 ± 0.14 µV) compared
to the TDC (X = 1.88 ± 0.15 µV), but only for the EC
condition. Furthermore, independent of condition, the CAPD
group, relative to TDC, had reduced low-frequency beta power
at T5 (X = 2.03 ± 0.03 µV vs. X = 3.30 ± 0.32 µV), O1 (X =

2.61 ± 0.34 µV vs. X = 3.75 ± 0.37 µV) and O2 (X = 2.71 ±

0.43 µV vs. X = 4.46± 0.45 µV).

Middle-Frequency Beta (15–18Hz)
The middle-frequency beta analyses revealed a significant
interaction: condition × group [F(1,49) = 8.02, p = 0.007,
eta2 = 0.14], showing decreased middle-frequency beta power
in children with CAPD (X = 0.87 ± 0.11 µV), as compared to
TDC (X = 1.38± 0.12µV), but only for the EC condition. Other
effects were not significant.

High-Frequency Beta (18–25Hz)
Repeated-measures ANOVA revealed no significant main effects
or interactions between the analyzed factors.

Correlation Analysis
Detailed results of correlation analysis are presented in Figures 3,
4 and Tables S1, S2.

Delta (1.5–4Hz)
The higher was the delta power in the EO condition at frontal
(Fz, F3, F4), central (C4), and temporo-parietal (T3, T4, T5, T6,
Pz, P3, P4) areas as well as in the EC block in the temporal region
(T3 and T4), the fewer were the correct responses in DDT for
right ear. Delta power in the EO block at almost all electrodes
(except for Fp1, Fp2, F7 and F8) and in the EC condition at Fz,
F3, F4, Cz, C3, C4, T3, T4, Pz, P3, P4, O1 electrodes correlated
negatively with the correctness level in DDT for left ear.

The higher was the delta power at Fz, F3, C3, T4, and Pz
electrodes in the EO block and at Fz, F3 during the EC block,
the fewer were the correct responses in FPT.
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FIGURE 1 | Mean absolute powers for particular frequency bands (delta, theta, alpha, and low, middle, and high beta) calculated from EEG signals recorded in the

groups of CAPD and typically developing children (TDC) in “Eyes Open” (A) and “Eyes Closed” (B) conditions and from electrodes placed on scalp according to a

10–20 standard (Jasper, 1958). The significant differences (p < 0.05) in absolute EEG powers between the CAPD and TDC groups at particular electrodes are

indicated by asterisks and black frames.
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FIGURE 2 | The mean absolute power of the delta frequency band in EEG

signals recorded from the CAPD and TDC groups in “Eyes Open” (EO) and

“Eyes Closed” (EC) blocks. The significant difference (p < 0.05) in the mean

delta power between EO and EC conditions in the TDC group is indicated by

an asterisk.

Furthermore, delta power in the EO block at the frontal (Fz,
F3, F4), central (Cz, C3, C4), temporal (T4, T5, T6), parietal
(Pz, P3, P4), and occipital (O1, O2) areas as well as in the EC
condition at Fz, F3, F4, Cz, C3, C4, T4, Pz, and P3 electrodes
correlated negatively with DPT correctness level.

In the EO block an increase of delta power at F7 electrode in
relation to increasing SNR in aSpN test was found.

No significant associations of delta power with aSpN results
in the EC block and with GDT measures in both resting-state
conditions were found.

Theta (4–8Hz)
In the EO condition, theta power at electrodes located over
the frontal (F3, F4), central (C3, C4), temporal (T3, T4, T5),
and parietal (Pz) areas correlated negatively with the percent
of correct responses in DDT for right ear. No significant
associations between theta power during the EC block and the
results in DDT for right ear were observed. Furthermore, the
higher was the theta power at almost all electrodes except for
Fp1 and F8 in the EO condition and at frontal (Fp2, Fz, F3, F4,
F7), central (Cz, C4), temporal (T3, T4), and parietal (Pz, P3)
electrodes in the EC block, the fewer were the correct responses
in DDT for left ear.

Theta power at frontal (Fz, F3), central (Cz, C3, C4), temporal
(T3, T4, T5, T6), and parietal (Pz, P3, P4) regions in the EO block
and at Fz electrode during the EC block correlated negatively with
FPT scores.

Theta power in the EO condition at almost all electrodes
except for Fp1 and F8 was negatively related to DPT correctness
level. Furthermore, the greater was the theta power in the frontal
(Fp1, Fp2, Fz, F3, F4, F7 and F8), central (Cz, C4), temporal (T3,
T4), and parietal (Pz, P3) areas in the EC block, the fewer were
the correct responses in DPT.

In the EO condition theta power at F7 electrode correlated
positively with SNR values in aSpN test, whereas no substantial
relations of theta power with aSpN measures were found during
the EC block.

Theta power also did not correlate significantly with GDT
results.

Alpha (8–12Hz)
Significant correlations between alpha power and CAP tests
performance were found only for the EO condition. Specifically,
the higher was the alpha power at Fz, F3, F4, Cz, T3, T4, T5, T6,
Pz, P3, and P4 electrodes, the fewer were the correct responses in
DDT for left ear.

Alpha power at frontal area (Fz and F3 electrodes) correlated
negatively with FPT results.

There were also negative relationships between alpha power
at Fz, F3, F4, F8, Cz, T3, and T5 electrodes and DPT correctness
level.

Alpha power had no significant association withDDT for right
ear, aSpN and GDT measures.

Low-Frequency Beta (12–15Hz)
The only significant relation here was between low beta power at
F3 and Pz electrodes during the EO block and DPT scores (i.e.,
the higher low beta power, the fewer correct responses in DPT).

Low beta power did not substantially correlate with other CAP
tests performance.

Middle-Frequency Beta (15–18Hz)
Again, the DPT correctness level decreased with increasing
middle beta power at Fp2 electrode only during the EO block.

Furthermore, middle-frequency beta power at C3 and C4
electrodes correlated negatively with GDT results. Specifically,
the higher was the beta power the shorter was a minimum gap
which could be detected in noise.

No significant correlations were found between the middle-
frequency beta power and any other CAP tests measures.

High-Frequency Beta (18–25Hz)
There are significant negative correlations between the high-
frequency beta power at F4 during the EO block and DDT scores
in right ear.

Furthermore, the greater was the high-frequency beta power
at Fp2 electrode in the EO condition, the fewer were the correct
responses in DDT for left ear, FPT and DPT. In the EO block,
high-frequency beta power at F8 electrode was negatively related
to FPT and DPT correctness level.

The greater high-frequency beta power at Cz (the EO
condition), the shorter was the detectable gap in noise. For the
EC block, beta power at Cz and C4 correlated negatively with
GDT results; this frequency band power at O1 electrode was
positively associated with the percentage of correct responses
in FPT.

DISCUSSION

To our knowledge, this is the first study demonstrating
an abnormal QEEG pattern in children with CAPD
profiles characterized by poor auditory pattern recognition
(temporal patterning) and dichotic listening (Figures 1, 2 and
Table 1).
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FIGURE 3 | Spatial distributions of correlations between the CAP tests results and mean absolute powers for the individual frequency bands. The correlations were

computed in the whole study group (CAPD + TDC), separately in the “Eyes Open” and “Eyes Closed” condition and for signals from each electrode. For better

visualization, only the frequency bands for which the absolute power on at least one electrode is significantly related to the CAP test performance are shown. The

electrodes with significant correlations are marked with larger red and smaller yellow circles corresponding to the significance level of the correlation coefficients.

CAPD Profile
According to current guidelines of the American Academy
of Audiology (American Academy of Audiology, 2010) and
the British Society of Audiology (British Society of Audiology,
2011a), CAPD is present when at least 2 CAPs are disturbed.

Additionally, such impairments should be manifested by poor
performance on both verbal and non-verbal CAP tests. Children
who participated in our study showed deficits in both non-
verbal sequencing tests (FPT and DPT) and verbal binaural
integration/separation task (DDT). This indicates that the
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FIGURE 4 | The scatter-plots showing correlations between the normalized scores of CAP tests and normalized values of absolute power of slow (A) and fast

(B) frequency bands in EEG signal recorded under the “Eyes Open” and “Eyes Closed” conditions. Only scatter-plots for electrodes with the highest significant

correlations are presented details (see Tables S1, S2).
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diagnostic criteria of having at least 2 CAP impairments, one of
which is verbal and the other is non-verbal, were fulfilled.

Children with CAPD suffer from different auditory deficits
that may form distinct subprofiles. Bellis and Ferre (1999)
distinguished three main auditory processing subtypes: Auditory
Decoding Deficit, Prosodic Deficit, and Integration Deficit,
which represent dysfunctions in the auditory cortex of the left
hemisphere, right hemisphere, and interhemispheric connections
(corpus callosum), respectively. In our study, children with
CAPD displayed impaired temporal patterning, left ear deficit
in the dichotic listening test and normal low-redundancy speech
tests. These symptoms are characteristic for the Prosodic Deficit
(Bellis, 1999, 2003). However, the auditory profile presented in
this work also included lowered scores in DDT in both ears
suggesting the presence of Auditory Decoding Deficit. Finally,
the left ear deficit was accompanied in our study by disturbed
temporal patterning in the linguistic labeling condition (i.e.,
subjects were asked to orally report the order of sounds in a
sequence), which may be indicative of the Integrative Deficit as
well. In this CAPD subtype, performance of temporal patterning
tasks would be better if subjects were asked to hum the melody
instead of repeating verbally the names of consecutive auditory
stimuli. Deficits observed in the linguistic labeling condition
may only indicate that the information transfer to the left
hemisphere is affected, while the perception of acoustic contour
is preserved (Musiek et al., 1980). Since in our study we use
only one kind of response in both applied temporal pattering
tasks (FPT and DPT), we cannot conclude the presence or
absence of symptoms characteristic for the Integration Deficit
based on these tests results (Bellis, 1999). As Bellis (2003) has
observed, these three auditory subprofiles may exist singularly or
in combination. In our study left- and right-hemisphere-based
CAPD co-occurred with the interhemispheric-based deficit. That
could as well indicate a severe auditory problem or a global
cognitive (attention and/or short-termmemory) impairment not
limited to the central auditory system.

The vast majority of children with CAPD included in
our study displayed a configuration of CAP tests results
corresponding to the Prosodic or Integration Deficit. Only a
few children showed, besides an impaired auditory pattern
recognition and dichotic listening tasks, also an elevated gap
detection threshold (the minimum gap duration that a listener
can detect) in GDT and increased signal-to-noise ratio in aSpN
test. The performance of these few children did not significantly
affect the outcomes of the whole CAPD group.

An important temporal aspect of audition, which is often
tested as a part of a CAPD diagnosis, is temporal resolution (i.e.,
an ability of the auditory system to respond to rapid changes
in sounds). In the present work, both children with CAPD
and without auditory processing deficits obtained a minimum
gap duration of about 4ms, which is a comparable value with
those reported by other authors in healthy controls (Musiek
et al., 2005; Shinn et al., 2009; Amaral and Colella-Santos, 2010;
Perez and Pereira, 2010; Zaidan and Baran, 2013). However, the
exact comparison of our GDT results with previous findings is
not possible owing to different experimental procedures and/or
methods of establishing the threshold value that have been used

in other studies. Temporal resolution is an important aspect
of speech perception and it has been well-documented that
the minimum gap duration is higher in language-disordered
populations, such as those with dyslexia or SLI (Sharma et al.,
2009; Zaidan and Baran, 2013). In our study, children with CAPD
did not exhibit any concomitant reading or writing problems;
therefore, abnormal temporal resolution was not necessarily
expected in this study population.

Children with listening difficulties showed deficits in FPT and
DPT, which required an ability to reproduce 3-tone sequences
(Table 1). Normal gap detection ability, combined with impaired
auditory pattern recognition, in children with CAPD may
indicate attention and/or short-term memory problems rather
that temporal processing deficits. Since temporal sequencing is
crucial for the perception of speech, music, and prosody (i.e.,
rhymes, accent or intonation, or the emotional state of a speaker)
(Musiek et al., 1980; Musiek and Chermak, 1995; Bellis, 2003),
children who experience difficulties in performing FPT and DPT
may suffer from more general perceptual deficits.

In FPTs and DPTs, a child is asked to focus on an auditory
pattern, retain the pattern in short-termmemory, and then repeat
the sequence. Therefore, one cannot exclude the situation of
when a child fails to perform the task owing to increased fatigue
and/or distractibility. Other authors had similar conclusions and
even proposed to include cognitive tests into CAPD assessments
to clarify the extent of attention and short-termmemory affecting
CAP test performance (Sharma et al., 2006, 2009; Ahmmed et al.,
2014). Assessing children with reading disabilities demonstrated
that auditory attention and memory accounted for more than
20% of the variance in FPT scores. To summarize, poor
performance on FPTs andDPTsmay arise from a temporal deficit
and a more general deficit in attention/short-term memory.

Tonal pattern recognition typically involves both hemispheres
(specifically the temporal lobe) as well as interhemispheric
connections. In the central auditory system both ipsi- and contra-
lateral processing pathways are much more symmetric than
for other sensory modalities (Rauschecker and Scott, 2009).
Especially the ipsi-lateral connections may more significantly
affect auditory processing than previously thought (Schneider
et al., 2009). Thus, tonal pattern recognition deficit may result
from impaired interactions of ipsi-, contra-lateral and inter-
hemispheric processes.

In the present study, children with CAPDdisplayed difficulties
when performing DDTs for both the right and left ear (Table 1).
Since DDT measures binaural integration and separation, which
is necessary for the management of auditory information
presented simultaneously to both ears (Bellis, 2003), poor results
on this test could indicate an impairment of this function. In
a typical dichotic listening task, speech sounds (e.g., digits)
exposed to the right ear directly reaches the language centers
of the left hemisphere, whereas the auditory input to the left
ear is initially transferred to the right hemisphere, and then
through the corpus callosum, reaches the speech areas of the
left hemisphere (Kimura, 1961a,b; Bellis, 2003). Therefore, poor
DDT performance in both ears could result from a dysfunction
in both hemispheres, or in only one hemisphere (e.g., the left)
when it is accompanied by involvement of corpus callosum. In
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the latter case, lowered scores in the left ear are caused by an
engagement of callosal fibers and the right ear deficit is observed
owing to a contralateral ear effect. Musiek and Pinheiro (1987)
reported that reduced performance in both ears could also result
from brainstem lesions.

Both the CAPD and control groups obtained higher
percentages of correct responses in the right than left ear
(Table 1), which indicates the typical right ear (left hemisphere)
advantage (REA) effect for the processing of dichotomously
presented verbal sounds (Kimura, 1961a; Bryden, 1963; Satz
et al., 1965; Bellis, 2003). Furthermore, children with CAPD
demonstrated a higher REA index than their healthy peers, which
is concurrent with a previous finding regarding a larger REA in
dichotic listening tasks of children with CAPD compared to TDC
(Bellis et al., 2011). This effect combined with considerably lower
scores in the left ear may be caused by the immaturity of the right
hemisphere and/or overcompensation of the left hemisphere.
However, since children with CAPD showed a bilateral decrease
in DDT performance, it is more likely that other factors related
to attention and short-term memory may affect the outcomes. In
this case, loweredDDT scores could result from increased arousal
and/or distractibility during the experimental procedure, which
requires dividing attention between the two ears and making
decisions about what is heard.

Finally, children with CAPD were not significantly different
from TDC in terms of performance on the aSpN test, for
subjects in the present study (Table 1). These outcomes could
be interpreted as demonstrating the normal ability of CAPD
children to perceive speech in challenging listening conditions.
Nilsson et al. (1994) suggest that aSpN evaluates phonetic
decoding, which is an ability to use external information
(extrinsic redundancy) or previous auditory experiences
(intrinsic redundancy) to complete distorted acoustic signal
and recognize it correctly (Masquelier, 2002). In our study,
children with listening difficulties did not show deficits in this
test, which indicates normal phonetic decoding in this CAPD
subtype.

In the following paragraphs, we will refer to our QEEG
outcomes in terms of other neurodevelopmental disorders in
an effort to delineate the changes in bioelectrical resting-state
activity that may be specific to a core auditory deficit.

Summary of QEEG Results
In children with CAPD, we found alternations in delta and theta,
as well as low- and middle-frequency beta bands (Figure 1).
Specifically, in children with listening difficulties there was no
effect of greater delta power under the EC condition compared
to the EO condition that was observed in the healthy control
group (Figure 2). Additionally, CAPD, relative to TDC, showed
a tendency toward increased theta power in the EO state and,
irrespective of the condition, enhanced theta power in the
anterior brain area, at the F3 and Fz electrodes. Intergroup
differences were also found for low- and middle-frequency beta
power. Specifically, children with CAPD showed reduced low-
frequency beta power, with this effect observed in both resting-
state conditions in the posterior brain area (T5, O1, and O2
electrodes). Considering middle-frequency beta power, there was

a decreased power in the CAPD group compared to the control
group, but only under the EC condition.

CAPD Profile and Resting-State QEEG
Pattern
Recently, imaging techniques have gained interest as potential
methods for CAPD evaluation (Micallef, 2016). Investigating
brain activity for clinical purposes is often associated with a
dilemma of what paradigm should be applied. Firstly, patients use
different cognitive strategies while performing a cognitive task,
which substantially increases the variability of results. Secondly,
a task-related paradigm induces only specific activations and not
the whole brain network. These limitations may be overcome by
using a resting-state protocol in which there are no external tasks.
This paradigm allows the examination of the whole brain without
restrictions to the areas involved in a particular task. Another
advantage of this protocol is its short duration (few minutes),
which is advantageous for testing children who have difficulty
being motionless and sustaining attention for a long time.

Resting-state QEEG has been proven to be highly reliable and
reproducible (Salinsky et al., 1991; Burgess and Gruzelier, 1993;
Corsi-Cabrera et al., 1997; Hughes and John, 1999; Thatcher
and Lubar, 2009). In many developmental disorders including
ADHD (Clarke et al., 1998, 2001a,b; Monastra et al., 1999,
2001; see Barry et al., 2003 for a review; Arns et al., 2008),
dyslexia (Duffy et al., 1980; Arns et al., 2007), or autism (Pop-
Jordanova et al., 2010; Linden and Gunkelman, 2013 for a
review) different abnormal bioelectrical activity patterns have
been reported. These outcomes indicate that QEEG may be an
adequate tool for investigating EEG activity, specific to a core
auditory deficit in children with listening difficulties.

In contrast with TDC, the CAPD group showed no effect
of reduced delta power in the EO compared to the EC state
(Figure 2). After visual inspection of Figure 2, one may claim
that a lack of difference between these two resting conditions
was owing to increased delta power during the EO block in
the children with CAPD. Delta rhythm may have both thalamic
and cortico-thalamic origins (Steriade, 2006). These structures
are considered to be involved in maintaining cortical arousal
(the current energetic level of the organism), and/or activation,
which reflects the task-related mobilization of energy needed for
task performance (Cannon, 2012). Therefore, we hypothesized
that an increased resting delta power in children with CAPD
reflects abnormalities in the excitation levels, which, in turn,
may contribute to auditory processing and attention deficits.
Enhanced delta power in children with CAPD in the EO state
may reflect diminished arousal and a reduced readiness to
respond to stimuli.

Delta rhythm in a normal awake state is observed occasionally
and becomes prominent only during drowsiness (Britton et al.,
2016). It is also visible in the wakefulness of patients with brain
injuries who suffer from slowing of reactions and increased
distractibility (Gotman et al., 1973; Jackel and Harner, 1989;
Logar and Boswell, 1991; Harmony et al., 1995; Murri et al., 1998;
Fernández-Bouzas et al., 1999, 2002; Lukashevich et al., 1999;
Babiloni et al., 2006).
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Increased delta power has previously been observed in
individuals with ADHD, mainly in the posterior (Matousek et al.,
1984; Clarke et al., 1998, 2001a; Koehler et al., 2009), frontal,
and fronto-central regions of the brain (Matsuura et al., 1993;
Koehler et al., 2009; Kropotov, 2009). Children with dyslexia also
demonstrated slow activity (delta and theta) in the frontal and
temporal regions of the brain (Arns et al., 2007). In the children
with CAPD in our study, the effect of increased delta power was
less focal and generally distributed in the scalp. Further studies
are warranted to determine whether resting-state delta rhythm
may be useful in discriminating between listening difficulties and
other disorders with overlapping symptoms.

In the present study, children with CAPD showed a
tendency toward increased theta power during the EO state.
Simultaneously, enhanced theta power was observed in the
frontal areas, at the F3 and Fz electrodes, irrespective of the
resting condition (Figures 1A,B). Similarly to delta rhythm,
enhanced theta frequency band power normally occurs with
drowsiness and a subconscious mental state (Sih and Tang,
2013). It is also considered a marker of brain pathology
(Montgomery et al., 1991; Coutin-Churchman et al., 2003).
Increased theta power has been observed in traumatic brain
injuries (McClelland et al., 1994; Fenton, 1996), epilepsy
(Clemens, 2004), schizophrenia (Clementz et al., 1994; Sponheim
et al., 2000; Wichniak et al., 2015), or polysubstance abuse
(Coutin-Churchman et al., 2003).

Elevated theta power has been frequently observed in children
and adults with ADD/ADHD, both in the EO and EC states
(Janzen et al., 1995; Clarke et al., 1998, 2001a,b, 2002; Lazzaro
et al., 1998, 1999; Bresnahan et al., 1999; Barry et al., 2002, 2003;
Bresnahan and Barry, 2002; Loo and Makeig, 2012), as well as in
dyslexia (Arns et al., 2007) and high-functioning autism (Yeung
et al., 2016). This effect, found especially in the frontal area of
the brain, may reflect poor concentration (Mann et al., 1992)
and executive function deficits, such as difficulty in inhibiting
inadequate reactions (Pliszka et al., 1996). Similar to individuals
with ADHD, children with CAPD in our study showed increased
theta power in the anterior region of the brain.

Children with CAPD showed enhanced theta power,
accompanied by a decrease of middle-frequency beta power
(15–18Hz), but only during the EC condition in this study
(Figure 1B). The effect of increased theta power accompanied by
a reduced beta rhythm, also described as an increased theta/beta
ratio, is typically observed in subjects with ADHD (Lubar, 1991;
Mann et al., 1992; Barry et al., 2003, 2009). More specifically,
there is decreased beta power in the parietal area accompanied
by elevated frontal theta power (Janzen et al., 1995; Chabot
and Serfontein, 1996; Clarke et al., 1998, 2001a; Lazzaro et al.,
1999; Monastra et al., 1999; Chabot et al., 2001). An increased
theta/beta ratio is thought to represent hypoarousal (Satterfield
and Cantwell, 1974; Lubar, 1991; Loo and Barkley, 2005) or task-
related underactivation (Barry et al., 2009), which is responsible
for an impaired capacity for attentional tasks.

The effect of increased theta and decreased beta power may
also account for the maturational-lag hypothesis (Kinsbourne,
1973; Clarke et al., 1998; Lazzaro et al., 1998, 1999). According
to this theory, the typical CNS maturation processes’ slow

rhythms are replaced with fast bioelectrical activity. Therefore,
the increased slow rhythms (theta) and decreased fast activity
(beta) in our study may reflect underdevelopment of the CNS
in children with CAPD, affecting both auditory processing and
attentional performance.

Middle-frequency beta power has been considered to reflect
the activity of the noradrenergic network, which is involved
in sustained attention and working memory processes (Posner
and Petersen, 1990; Posner and Raichle, 1994). Previous studies
have shown that an enhancement of in the 15–18-Hz band
after neurofeedback training was associated with better sustained
attention (Lubar and Lubar, 1984; Lubar et al., 1995; Linden et al.,
1996). Other studies reported a greater number of false alarms
and shorter reaction times in the continuous performance task
(Egner and Gruzelier, 2001), or faster, but not necessarily correct
responses, in sustained attention tasks (Egner and Gruzelier,
2004). In both these studies, elevated beta power was also
accompanied by increased P300 amplitude in an auditory oddball
paradigm. The elevated P300 amplitude may have arisen from
higher cortical excitation (Polich and Kok, 1995) and improved
cognitive processes involved in the stimulus evaluation and the
updating of information in the working memory (Donchin and
Coles, 1988).

In the present study, children with CAPD who showed
decreased power in the 15–18-Hz rhythm. Middle-frequency
beta rhythm is also believed to reflect the local inhibition
processes in the cortex (Kropotov, 2009), which are carried
out by neural networks consisting of inhibitory interneurons
(Pfurtscheller et al., 1997). Excitation and inhibition processes
in the cortex are in constant competition. The neural network
responsible for cortical activation receives and processes stimuli,
whereas the inhibitory network terminates the activity after
incoming information has been already processed (Kropotov,
2009). Decreased beta power, which was observed in the CAPD
subjects in our study, may cause dysfunction of inhibitory
processes contributing to difficulty in refraining from inadequate
behavioral reactions.

Beta power is also considered to be related to motor and/or
sensorimotor functions (Pfurtscheller et al., 1996). This rhythm
is particularly evident during constant muscle contraction and
suppressed by volitional movements (Baker, 2007), or the image
of movement (de Lange et al., 2008). It has been found that
beta power in the frontal region increases during inhibition of
inadequate motor responses (go/no go tasks), whereas beta in the
motor cortex decreases in “stop” trials (Swann et al., 2009). Beta
power generated in the central sensorimotor areas appears to be a
marker of processes that maintain movement representation and
block any new movements in the cortex (Engel and Fries, 2010).
Therefore, abnormal beta rhythms in the sensorimotor area
may reflect impaired periodic recalibration of the sensorimotor
system.

In the current study, we observed decreasedmiddle-frequency
beta power in the central brain areas in children with CAPD
(Figure 1B). This may suggest hyperactivity or hypersensitivity
in this group. The 15–18Hz rhythm was also decreased in the
posterior regions of the brain (Figure 1B), which are involved
in the modulation of top-down processes (Posner and Dehaene,
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1994; Mirsky, 1996; Levy and Swanson, 2001). It has been also
found that the central (premotor) parietal network is engaged
when attention is directed to visual, auditory stimuli, or both
these modalities simultaneously (Saito et al., 2005). Reduced beta
activity in this network may reflect attentional deficits.

In the present study, children with CAPD also showed
reduced low-frequency beta power (12–15Hz) in the posterior
brain area, under both the EO and EC conditions (Figures 1A,B).
Low-frequency beta power in the sensorimotor cortex is called
sensorimotor rhythm (SMR), which has been often been
described as reflecting cortical inhibition processes (Howe and
Sterman, 1972). Neurofeedback training that aimed to increase
SMR has been used to suppress activity of the sensorimotor
area, or more generally, cortical hyperactivity in children with
ADHD (Lubar and Shouse, 1976; Shouse and Lubar, 1979). It
has been found that enhancement of SMR coexisted with better
results on continuous performance and sustained attention tasks
(Egner and Gruzelier, 2001, 2004), or with a clear improvement
in semantic working memory, but only limited improvement
in attentional processing (Vernon et al., 2003). Furthermore,
SMR positively correlated with the amplitude of the P300
component (Egner and Gruzelier, 2001) that is thought to
be an index of attention resources allocated to a given task
(Polich, 2007).

In the current study, intergroup differences in low-frequency
beta power were observed in spatial locations atypical for
SMR. More specifically, children with listening difficulties
demonstrated decreased 12–15Hz power in the left temporo-
occipital and bilateral occipital areas (Figures 1A,B). Similar
to how the temporal lobe processes auditory inputs, the
occipital lobe is important for correctly understanding visual
information. Therefore, abnormal changes in low-frequency beta
power in these regions may indicate problems with processing
acoustic and visual stimuli. Further studies, are needed to
clarify a relationship between low–frequency beta rhythm and
CAPD.

Relationships Between QEEG and CAP
Tests Outcomes
The results of correlation analysis between QEEG and CAP tests
outcomes clearly support a link between resting bioelectrical
activity and auditory information processing.

In the present study, delta and theta power was negatively
associated with DDT for both ears, FPT and DPT results
(Figure 4A and Tables S1, S2). The effect of increasing delta
and theta power with decreasing correctness level in these tests
was observed at most electrodes in both resting conditions,
especially in the EO block (Figure 3 and Table S1). Thus, worse
performance on temporal patterning and dichotic listening tasks
was associated with a distinct delta and theta frequency band
power.

Enhanced delta is thought to reflect reduced excitation level
(Cannon, 2012) that may contribute to increased distractibility
affecting the CAP tests execution. Similarly, increased theta
may be related to poor concentration and executive functions
deficits (Pliszka et al., 1996). To perform DDT, FPT, or DPT

correctly, attention and short-term memory must be involved.
Thus, correlations of delta and theta power with the outcomes
of above-mentioned CAP tests may be a further evidence
supporting a link between enhanced delta and theta rhythms and
inattention.

In the present study we did not find any significant differences
between CAPD children and TDC in alpha power (Figure 1).
However, there were negative correlations between alpha power
and the DDT for left ear, FPT and DPT correctness level
(the higher alpha power, the fewer correct responses in these
tests) (Figure 4A and Tables S1, S2). The most pronounced
effect was observed in DDT for left ear in the EO condition
(Figure 3 and Table S1). Alpha rhythm is thought to reflect top-
down control: it regulates the inhibition of masker (irrelevant)
information during speech processing in challenging listening
conditions (Strauß et al., 2014). Children with CAPD in our study
performed poorly in auditory tests that require processing of
verbal sounds presented simultaneously (dichotic listening task).
This effect co-occurs with enhanced alpha power. Moreover,
in CAPD children increased alpha power coexisted with worse
performance of dichotic speech listening task, but only for left
ear (right hemisphere) (Figure 4A). Increased alpha (generally
or only in the right hemisphere) may reflect over-suppression
of the acoustic information presented to the left ear (the right
hemisphere).

Significant negative correlations of alpha power with auditory
pattern recognition (FPT and DPT tests) results have been
also observed. Enhanced alpha band activity has been related
to tonic alertness (Dockree et al., 2007) which is thought to
increase during internally oriented attention (Verbeke et al.,
2014). Enhanced concentration on an internal state is often
observed in highly anxious persons. Thus, it is possible that in our
study the increased alpha in children with CAPD reflected higher
level of anxiety in this group, which might have affected not only
the temporal patterning tests performance but also other tasks
(DDT for left ear) in which CAPD children achieved significantly
worse scores compared to the TDC group.

We also found significant negative associations between the
beta band power in the frontal area under the EO condition
and the results of temporal patterning tests (DPT) (Figures 3,
4B and Table S1). Since the anterior brain regions are typically
engaged in attention and short-term memory (e.g., Buckner,
2004), this relationship may be a further evidence of a substantial
contribution of these processes to the auditory performance.

In our study we have also found significant correlations
between middle- and high-frequency beta at central electrodes
and gap detection threshold in GDT (Figures 3, 4B and Tables
S1, S2). In general, fast rhythms (e.g., beta) reflect sampling rate,
i.e., adaptation (efficient synchronization) of neural networks
to incoming sensory information (Baltus and Herrmann, 2016).
The lower power of beta frequency band may reflect disturbed
sampling rate (poor temporal resolution) which may result in an
elevated gap detection threshold.

Study Limitations and Future Directions
A major limitation of the current study findings was the small
sample size, which prohibits making any strong conclusions
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based on the obtained results. However, to our knowledge,
this is the first study showing preliminary data on the resting-
state bioelectrical activity and coexisting attentional deficits in
children with listening difficulties. Furthermore, we aim to
present the results from larger cohort in the future. We also
intend to distinguish CAPD subtypes based on our behavioral
and EEG data, which may allow us to design a neurofeedback
therapy especially dedicated to particular groups of children
with listening problems. A larger sample size will also allow
for more advanced analyses of EEG data (e.g., EEG signal
coherence), with the examination of any correlation between
behavioral and electrophysiological results. We also intend to
compare the results in children with both listening difficulties
and ADD/ADHD, since these disorders are heterogeneous and
characterized by overlapping symptoms, particularly attention
deficits, which could affect performance on CAP tests.We believe
this would be useful in clinical practice since ADD/ADHD
appears to be a potential confounding factor in CAPD evaluation.

CONCLUSIONS

This study present the preliminary electrophysiological results
in children with a CAPD subtype characterized by deficits in
auditory processing of competing acoustic signals and auditory
pattern recognition (or temporal patterning). Changes in the
absolute delta, theta, low-, and middle-frequency beta power,
may distinguish CAPD from normally developing children.
Therefore, QEEG seems a useful tool for improving CAPD
evaluation. A potential application of this method to discriminate
between different CAPD subtypes and other neurodevelopmental
disorders with overlapping symptoms may be an important topic
of future research.

We also found the evidence of the relationship between
the individual frequency bands in QEEG data and
CAPs. Further studies on a larger sample are needed to
investigate the clinical relevance of combining resting state
electrophysiological data with central auditory processing tests’
results.
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