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Brain-Computer Interfaces (BCIs) provide communication channels independent from

muscular control. In the current study we used two versions of the P300-BCI: one

based on visual the other on auditory stimulation. Up to now, data on the impact of

psychological variables on P300-BCI control are scarce. Hence, our goal was to identify

new predictors with a comprehensive psychological test-battery. A total of N = 40

healthy BCI novices took part in a visual and an auditory BCI session. Psychological

variables were measured with an electronic test-battery including clinical, personality, and

performance tests. The personality factor “emotional stability” was negatively correlated

(Spearman’s rho = −0.416; p < 0.01) and an output variable of the non-verbal learning

test (NVLT), which can be interpreted as ability to learn, correlated positively (Spearman’s

rho = 0.412; p < 0.01) with visual P300-BCI performance. In a linear regression analysis

both independent variables explained 24% of the variance. “Emotional stability” was

also negatively related to auditory P300-BCI performance (Spearman’s rho = −0.377;

p < 0.05), but failed significance in the regression analysis. Psychological parameters

seem to play a moderate role in visual P300-BCI performance. “Emotional stability” was

identified as a new predictor, indicating that BCI users who characterize themselves as

calm and rational showed worse BCI performance. The positive relation of the ability

to learn and BCI performance corroborates the notion that also for P300 based BCIs

learning may constitute an important factor. Further studies are needed to consolidate

or reject the presented predictors.

Keywords: predictors, visual P300-BCI, auditory P300-BCI, NVLT, emotional stability

INTRODUCTION

Brain-Computer Interfaces (BCI) translate intentions into operational commands for technical
devices or communication systems without requiring any motor action. Mostly, for non-invasive
BCIs, components of the electroencephalogram (EEG) are extracted as input signals. Control
signals include event related potentials (ERP) such as the P300 (Farwell and Donchin, 1988;
Kleih et al., 2011; Sellers et al., 2012) sensorimotor rhythms (SMR) (Pfurtscheller and Neuper,
1997; Pfurtscheller and McFarland, 2012; Yuan and He, 2014), slow cortical potentials (SCP) (e.g.,
Birbaumer et al., 1999), or steady state visually evoked potentials (SSVEP) (e.g., Müller-Putz et al.,
2005; Allison et al., 2012; Ahn et al., 2015). The ERP P300 is characterized by a positive deflection
in the EEG around 300ms after stimulus onset on central to parietal locations (Polich, 2007) and
is elicited by rare deviant stimuli during a stream of frequent standard stimuli, often described as
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oddball paradigm (Fabiani et al., 1987). In this study we realized
a P300 based BCI (further called P300-BCI).

Most P300-BCIs are based on vision; the so-called visual P300
speller was first described by Farwell and Donchin (1988). They
presented to their participants a 6 × 6 matrix of characters.
To select a letter, the rows and columns of the matrix flashed
randomly and the participant had to focus on the target character.
By focusing attention on a target, the respective letter turns into
a rare stimulus in an oddball paradigm, i.e., the P300 is elicited
every time when the target (in the row or column) flashes. For
a detailed description of the visual speller (see e.g., Sellers et al.,
2012).

For patients with neurodegenerative diseases, such as
amyotrophic lateral sclerosis (ALS), who lost the ability to
communicate during the progression of the disease, a BCI
could be the only remaining possibility to interact with their
environment. Preservation of communication is a substantial
factor for quality of life (Londral et al., 2015). P300-BCIs
are considered end-user friendly because only a short training
time is needed to effectively operate the BCI application,
high information transfer rates were achieved by end-users
with disease (Kaufmann et al., 2013), and they can be used
independently of researchers being present at the end-users’
home (Sellers et al., 2010; Botrel et al., 2015; Holz et al., 2015).

For patients with impaired vision, visual P300-BCI are not
feasible. Auditory BCI may constitute a possible communication
channel for such end-users. Several auditory BCI applications
were presented using different auditory stimuli instead of flashing
rows and columns (Furdea et al., 2009; Höhne et al., 2011;
Schreuder et al., 2011b, 2012; Käthner et al., 2013; Simon et al.,
2014; Baykara et al., 2016). To provide end users with the BCI
that will most likely allow them interaction, it may be beneficial
to have predictors of successful BCI operation. End-users could
then be tested if they were successful in controlling a BCI. Such a
procedure is only feasible if robust predictors can be identified. In
the future non-responders might be trained on such predictors as
ameasure to overcome the BCI inefficiency phenomenon (Kübler
et al., 2011).

To date, studies on predictors of P300-BCI performance
are sparse. In a sample of 40 healthy BCI users and 11
severely motor impaired end users, Halder et al. (2013a,b,
2016) predicted P300-BCI performance of a web browsing task
on the basis of a previously applied auditory oddball. In a
sample of healthy participants, a relationship between heart
rate variability and BCI performance (visual P300-BCI) was
found (Kaufmann et al., 2012). Kleih and colleagues manipulated
motivation by monetary reward and showed that the P300
amplitude of highly motivated users was significantly higher
as that of less motivated participants (Kleih et al., 2010).
Baykara and colleagues also investigated the effects of training
and motivation using a multi-class auditory P300 speller in a
sample of 16 healthy students (Baykara et al., 2016). Motivation
significantly influenced P300 performance rate as well as P300
amplitude. In contrast, the variable “motivation for helping
patients” was neither correlated to P300-BCI performance nor to
the P300 amplitude (Kleih and Kübler, 2013). But unexpectedly,
participants with a low ability for perspective taking, i.e., lower

empathy, showed significantly higher P300 amplitudes. Kleih
and colleagues speculated that good perspective takers might
be emotionally too involved; as a consequence they can hardly
concentrate on their actual task, possibly due to a higher
workload which was shown to reduce P300 amplitude and P300-
BCI performance (Käthner et al., 2014). This effect was also found
by Ke and colleagues, but they could also identify a positive
impact of mental workload on BCI performance: if participants
were exposed to an appropriate extent of mental workload
during the BCI training phase, they showed better performances
during the following practical application phase (Ke et al.,
2016). In comparison, the performance of participants who
started under ideal laboratory conditions declined when mental
workload increased in a later phase of the study. Sprague and
colleagues identified working memory and general intelligence
as significant P300-BCI predictors, but working memory failed
significance when psychological covariates (e.g., fatigue, mood,
motivation) were added into the regression model (Sprague
et al., 2016). Nevertheless, this result is in line with Morgan
and colleagues, who showed that P300 amplitude decreased
when working memory load increased (Morgan et al., 2008).
Finally, Gurrera and colleagues reported that the P300 amplitude
elicited in an auditory oddball paradigm correlated positively
with the personality factors conscientiousness, agreeableness,
extraversion, and openness of the Big Five Questionnaire, but
negative with neuroticism; correlation coefficients were in the
range of 0.38 and 0.51, and thus, moderate to high (Gurrera et al.,
2001). It has to be noted that the latter two results used a simple
oddball paradigm only, not a P300-BCI. Thus, results cannot be
readily transferred to P300-BCI control, but they can serve as a
basis for selection of potentially predictive variables.

Taken together little is known about which psychological
parameters play a predictive role in BCI control and this is
even more so for end-users with disease. This implies that
we basically do not know if it is possible to transfer the
results of healthy controls to patient end-users. Nijboer et al.
(2010) investigated the impact of psychological variables (e.g.,
depression, motivation, mood) of six ALS patients on their BCI
performance (P300-BCI or SMR-BCI). In particular, challenge
and mastery confidence—subscales of the Questionnaire for
Current Motivation (Rheinberg et al., 2001) adapted to BCI
(Nijboer et al., 2008)—were positively correlated with BCI
performance, whereas incompetence of fear was negatively
related. Current mood showed no correlation with BCI
performance. According to Geronimo et al. (2015), ALS patients
become less susceptive for using a BCI system with increase of
impairment. Importantly, the authors reported that their patients
changed their opinion toward the utility of the BCI system as a
function of their perceived success during BCI use. Furthermore,
they assessed predictors of study participation. Surprisingly,
education was identified as a negative predictor. The authors
speculated that highly educated patients were still able to work
or had other activities which occupied their time. Likewise
unexpectedly, high bulbar function was positively related to study
participation. Geronimo and colleagues argued that patients with
difficulties to speak, may also show more behavioral impairment,
which is in turn associated with factors such as apathy and
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rigidity and hence, lower levels of interest. Patients with cognitive
impairment were more interested; however this connection
might be due to their cognitive abnormalities because those
patients tend to give unrealistically positive judgements.

Recently, we investigated the predictive value of psychological
factors on performance with a BCI controlled by SMR (Hammer
et al., 2014). We could show that visuo-motor coordination
ability and subjects’ “attentional impulsivity” accounted for
almost 20% of the variance of SMR-BCI performance. Moreover,
we were able to identify visuo-motor coordination ability as a
predictor for SMR-BCI performance with an average prediction
error of 12.07% (Hammer et al., 2012, 2014). Thus, in the current
study we were aiming at conducting a comprehensive study of
which and to what extent those and other psychological factors
can also predict P300-BCI performance.

Following our previous works (Hammer et al., 2012, 2014),
in the current study we applied a psychological test-battery
including performance, personality, and clinical tests (see section
Materials and Methods) to healthy young BCI novices, who
subsequently participated in a visual and an auditory P300-
BCI session. Our goal was to identify psychological predictors
of P300-BCI performance on the basis of the respective results
obtained in our previous studies. We assumed that attention,
concentration abilities, motivation and conscientiousness would
moderately predict performance with the P300-BCI, while other
personality traits, other performance variables, intelligence, and
clinical variables would show a low or no correlation.

MATERIALS AND METHODS

The study was conducted at the University of Tübingen,
Institute of Medical Psychology and Behavioral Neurobiology,
and approved by the Ethical Review Board of theMedical Faculty,
Universitiy of Tübingen.

Participants
A total of 40 healthy BCI novices (normal sighted or with to
normal corrected vision; normal hearing; 21 male, 19 female,
mean age 25.8, SD 8.46 years, range 17–58) took part in the study.
Most participants were students (92%). Each participant gave
informed consent after having been informed about the purpose
of the study. Participants were paid 8 e/h for their participation.
The dataset from one participant had to be excluded from
analyses because of technical problems during EEG recording, as
well as two further auditory datasets. Thus, n = 39 datasets were
available for predictor analysis of the visual and n = 37 for the
auditory P300-BCI.

Psychological Tests
Performance Tests

Cognitrone—COG (Schuhfried, 2007)
The COG is a general performance test for the assessment
of attention and concentration. Participants had to judge the
congruence of a geometrical figure to four reference figures.
“Mean time correct rejections” is the mean time the subject
needed for a correct rejection when the figure did not match with
one of the reference figures.

Raven’s Standard Progressive Matrices—SPM (Raven, 1998)
The test assesses non-verbal intelligence and logical reasoning.
Participants were confronted with a matrix in which one detail
was missing. Their task was to choose the matching detail from
a set of six or eight choices. Participants were confronted with
60 matrices with increasing complexity. The “total of correct
answers” was used as main outcome variable.

Verbal Learning Test—VLT (Sturm andWillmes, 1994b)
The VLT assesses verbal learning abilities by presenting
neologisms. The participants were instructed that 160 words
would be presented and that they would have to memorize them
because some words would be recurring during the subsequent
test. For each item subjects had to decide if it was new or
already seen before. Outcome variables were “sum of correct
YES answers,” “sum of incorrect YES answers,” and “sum of the
differences of correct minus incorrect YES answers” (difference
between all correct and incorrect YES answers).

Non-verbal Learning Test—NVLT (Sturm and Willmes,

1994a)
The NVLT assesses non-verbal learning processes by presenting
graphical material that is difficult to verbalize. This non-verbal
test allows for examination of non-verbal learning abilities and
for detection of memory disorders in patients with brain damage.
Procedure and outcome variables correspond to those of the
Verbal Learning Test (VLT).

Personality Tests

Big Five Plus One Personality-Inventory—B5PO

(Holocher-Ertl et al., 2003)
The B5PO comprises the six dimensions “empathy,” “emotional
stability,” “extraversion,” “conscientiousness,” “openness to
experience,” and “agreeableness.” These personality traits were
measured on the basis of self-reports. Bipolar adjectives (e.g.,
quiet vs. active) presented the poles of a response scale. Self-
reports were provided via a click with the computer mouse
anywhere on the response scale between the bipolar items.

Fragebogen zu Kontrollüberzeugungen—IPC-Scales

(Krampen, 1981)
This test assesses generalized locus of control and comprises three
scales. A high test value on the “internal scale” (I-Scale) means,
that participants perceive having control over their own life. The
“powerful others scale” (P-Scale) assesses the amount of perceived
externality due to the subjective feeling of powerlessness. A high
value on this scale means that the person feels powerless and that
he or she believes to depend on powerful others. The “chance
scale” (C-Scale) assesses to what extent subjects consider their life
dependent on destiny, fortune, misfortune and chance.

Achievement Motivation-Test (Hermans et al., 1978)
The test assesses to what extent subjects attribute success and
failure to internal (e.g., ability) or external factors (e.g., fortune)
and comprises four scales: “pursuit of accomplishment,”
“endurance and diligence,” “exam anxiety that inhibit
performance,” and “exam anxiety that supports performance.”
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Questionnaire for Current Motivation—QCM (Rheinberg

et al., 2001)
Participants’ current motivation just before the BCI session was
assessed with an adapted (to BCI) version of the “Questionnaire
for Current Motivation” (Nijboer et al., 2008), which comprises
18 statements, to be rated on a 7-point Likert-type scale and load
on four sub-scales (“mastery confidence,” “fear of incompetence,”
“interest,” and “challenge”).

Attitudes toward work—AHA (Kubinger and Ebenhöh, 1996)
The AHA is an objective personality test which assesses
“exactitude,” “decisiveness,” “impulsivity/reflexivity,” “aspiration
level,” “performance level,” “frustration tolerance,” “target
discrepancy,” and “performance motivation.” The AHA
comprises three subtests: (1) “Comparing surfaces”: Respondents
were asked to choose among three possible answers (right/left/no
decision) for deciding about which one of two simultaneously
presented surfaces is larger. (2) “Coding symbols”: Participants
had to assign symbols to abstract shapes according to a pre-set
code, and were asked to estimate their performance in the next
task. (3) “Differentiating figures”: Participants were asked to
indicate which one of various symbols did not belong to the
others.

Clinical Tests

Allgemeine Depressionsskala—ADS-L (Hautzinger and

Bailer, 1993)
The ADS-L is the German version of the Center for
Epidemiologic Studies Depression Scale (Radloff, 1977). It
is a self-report depression scale designed for the general
population. The scale required participants to estimate how
much they agree with each of 20 statements on a 4-point
Likert-type scale with respect to the last week. Scores range from
“0” (best possible) to “60” (worst possible).

Symptom Checklist-90-Revised—SCL90-R (Franke, 1995)
The instrument assesses a broad range of psychological problems
and symptoms of psychopathology. The following outcome
variables were assessed: “Global Severity Index,” “somatization,”
“obsessive-compulsive,” “interpersonal sensitivity,” “depression,”
“anxiety,” “hostility,” “phobic anxiety,” “paranoid ideation,” and
“psychoticism.”

Current mood (Averbeck et al., 1997)
To measure the subjects’ current mood during the BCI session,
we applied the subscale “current mood” of the “Skalen zur
Erfassung der Lebensqualität” (SEL, English: scales to assess
quality of life). It comprises 10 items on a 5-point Likert-type
scale.

All psychological tests were presented electronically, most of
them by the “Vienna Test System (VTS)” which is a computerized
psychological assessment tool (Schuhfried GmbH). No computer
knowledge was needed to use the system. Answers were entered
by the computer mouse or a keyboard. For tests presented via the
VTS, the “response panel” (a keyboard that includes joysticks and
several buttons) was used.

Experimental Design
Psychological testing and BCI session were conducted on two
separate days. Each participant started with the psychological
tests, which required about 3 h to be completed. The single
BCI session lasted about 4 h, including rest periods. During
the BCI session, the participants were seated in a comfortable
armchair, ∼1m away from a monitor. Auditory stimuli
were presented with conventional headphones. First, an
auditory oddball was presented (results see Halder et al.,
2013b, data not reported in the current study), followed
by the visual P300-BCI, and the auditory P300-BCI
paradigms.

Visual P300-BCI—The Visual Speller
We used a 5 × 5 matrix comprising the letters of the Latin
alphabet, except the letter Z. The participants’ task was to
spell the English word “BRAINPOWER” three times, which was
presented in two separate words, i.e., in two runs (“Brain” and
“Power”). Participants performed six runs (altogether 30 letters)
in the so-called copy spelling mode (Kübler et al., 2001), in
which they had to spell a pre-set word character by character.
Participants were instructed to focus on the target letter and
to count how often it flashed or to think “now” whenever the
target flashed. No feedback was presented during the first two
runs, which served to calibrate the classifier. Then, feedback was
provided after each selected character (presented below the target
letters).

To select a letter, all subjects were presented with 15 sequences
comprising 10 flashes each (one for each row and column) of a
duration of 80ms, followed by an inter-stimulus (ISI) of 160ms.
After each selected letter there was a break of 2.4 s in which
the signal was classified and the letter was presented to the BCI
user. Accuracy was defined as the overall percentage of correctly
selected characters.

Auditory P300-BCI—The Auditory Speller
Following Furdea and colleagues, a so called visual support
matrix was provided to the participants to facilitate localizing the
target letter; each row and columnwere represented by a number.
The numbers were placed at the top of the columns and at the left
side of the rows (Furdea et al., 2009).

In contrast to the visual P300-BCI, rows and columns did
not flash, instead the numbers coding the letters were presented
acoustically by a male voice. Each character’s position was
represented by two spoken numbers, the first corresponding
to the row and the second to the column. To select a target,
participants were instructed to focus on the respective numbers
by counting how often the number was presented. First, the
numbers of the rows (1–5) and then the numbers of the
columns (6–10) were presented. As in the visual paradigm,
participants completed six runs, spelling the words “Brain” and
“Power” three times, and again no feedback was provided in
calibration runs one and two. The stimulus presentation time
was 450ms and ISI was 550ms. Fifteen sequences were used
with intervals of 2.4 s between each letter selection. Again, BCI
performance was defined as the percentage of correctly selected
letters.
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Data Acquisition
The EEG was recorded with Ag/AgCl electrodes in a 128-
channel cap (Easycap GmbH), 67 channels (of these, four
for vertical and horizontal electrooculography [vEOG/hEOG])
were used during the P300-BCI session. The localization of
electrodes was based on an extended 10–20 system of the
American Electroencephalographic Society (Sharbrough et al.,
1991). Electrode impedances were kept below 5 k�. The EEG
was recorded with a BrainAmp DC Amplifier (Brainproducts
GmbH).

Preprocessing
Online the EEG data was notch-filtered at 50Hz and sampled
at 500Hz. The resolution was set to 0.1 µV/bit. This led to an
internal sampling rate of 5 kHz which was low-passed at 1 kHz
to prevent aliasing. Decimation to 500Hz was performed within
the software of the manufacturer. No additional filtering was
applied to the online recording. Before classification, the data was
smoothed with a moving average filter with a width of 25 samples
and then decimated by a factor of 25.

Classification
We used stepwise linear discriminant analysis (SWLDA)
for online and offline classification (target vs. non-target
classification), which is an established classification method for
visual and auditory P300-BCI data (e.g., Krusienski et al., 2006).

Ceiling Effect
As described byHalder et al. (2013b), a ceiling effect was observed
in the online visual P300-BCI performance (100% accuracy for
28 (70%) participants). Therefore, the data was reclassified offline
using all six runs of all participants in a leave-one-run-out cross
validation loop and the number of sequences needed to achieve
the criterion level for meaningful spelling (70%) (Kübler et al.,
2001), was determine, which was three sequences.

Definition of Amplitude and Latency
Amplitude of the P300 ERP component was defined as the
maximum amplitude between 200 and 800ms after stimulus
presentation. Latency was defined as the time in ms at which
the maximum amplitude occurred in relation to stimulus
presentation. We chose Cz for the analysis of the visual P300-
BCI ERPs and Pz for the analysis of the auditory P300-BCI ERPs
because of the more frontal orientation of the visual data (see
Halder et al., 2013a, Figure 7).

Statistical Analyses
Normal distributions of data were checked with Kolomogorov-
Smirnov tests and with visual inspection of the QQ-Plots. To
identify psychological predictors, either Pearson (when variables
were normally distributed) or Spearman correlation coefficients
(if variables were not normally distributed) were calculated
between psychological parameters and P300-BCI performance
(correct response rate = CRR [%], i.e., the number of correct
letters divided by the total numbers of letters ∗ 100). For
all analyses the respective probability of type I error was
maintained at the level of 0.05. For the psychological tests

we calculated percentile ranks (PR), standardized for age-
independent representative norm samples. If no correspondent
norms were available, we used cumulative values. The mean
percentile ranks of the measured psychological variables were
mainly in a range between PR 16 and PR 84, which indicates
average values.

We log transformed the visual P300-BCI CRR because
those data were not normally distributed. However, since the
auditory P300-BCI performance rates contained zero values,
the log transformation was not applicable. Therefore, we
transformed the CRR according to van Albada and Robinson
to improve the statistical properties (van Albada and Robinson,
2007). To identify psychological variables that could serve as
independent variables in the regression, a variable selection
procedure was performed: We matched each test to one of the
three test groups that were performance, personality or clinical
tests (categorization see section Psychological Tests). Then
correlations were calculated between CRR and all independent
variables from the respective group. Thereby predictors were
selected according to the following rule: Variable X is selected if
(I) it correlates significantly with the CRR and if (II.) it is not
inter-correlated with another variable of the same subgroup that
is also correlated with the CRR. If there is an inter-correlation,
the variable with the higher correlation coefficient with the CRR
was selected. To solve the problem of multiple comparisons, we
corrected according to Bonferroni in each block of tests.

To identify significant psychological predictors, we applied
linear regression analyses. To determine how much variance
in P300-BCI performance could be explained by psychological
predictors, we built two regression models, one for the CRR
based on visual P300-BCI and one for the CRR based on auditory
P300-BCI as dependent variables.

RESULTS

P300-BCI Online Performance
Average visual P300-BCI accuracy was 94.49% (Md = 100.0%;
SD 14.9; 35–100), only two subjects showed poor performance
(both 35%). Twenty-eight participants reached 100% CRR.
As expected, mean auditory P300BCI performance rate was
lower (M = 64.32%; Md = 85%; SD 37.42; 0–100). Seventeen
participants (42.5%) remained below the criterion level of 70%.

Predictor Analyses for the Visual P300-BCI
After reclassification with three sequences due to the ceiling effect
(see section Ceiling Effect) mean CRR of the entire sample was
73.64% (SD 22.52; 3–99). All further predictor analyses were
conducted with the reanalysed data.

Across all three test groups of tests (performance, personality
and clinical), only two outcome variables were significantly
correlated with the normalized CRR for the visual P300-BCI:
The variable “emotional stability” of the personality test B5PO
was negatively correlated (Spearman’s rho = −0.416; p < 0.01),
but failed significance after Bonferroni correction (adjusted alpha
level p= 0.002).

The outcome variable “sum of the differences of correct
minus incorrect YES answers” of the NVLT, which can be
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interpreted as an ability to learn was positively correlated with
the CRR (Spearman’s rho = 0.412; p < 0.01, adjusted alpha
level p = 0.006), but also failed significance after Bonferroni
correction. “Emotional stability” and the NVLT outcome variable
were not inter-correlated (Spearman’s rho=−0.021; p= 0.899).

To estimate the predictive value of “emotional stability” and
the NVLT outcome variable we calculated a linear regression
analysis with visual CRR as dependent variable.

The regression of these two variables on visual P300-BCI
performance explained about 24% of the variance [R² = 0.242;
F(2, 36) = 5.74; p < 0.05]. On its own, “emotional stability”
accounted only for 5% (R² = 0.049; F(1, 37) = 1.91; p = 0.175]
of the variance and failed significance. The NVLT variable
was identified as a significant predictor which accounted for
about 19% [R² = 0.189] of the variance. Key parameters of the
regression model are listed in Table 1.

By visual inspection of the data, two outliers were identified,
namely two participants whose CRR were poor (both 35%). To
check the influence of these outlier values on the regression
model, we excluded both and conducted a new regression
analysis. The entire regression model explained about 36% of
the variance [R² = 0.361; F(2, 34) = 9.62; p < 0.001], “emotional
stability” explained about 17% of the variance [R²= 0.169; F(1, 35)
= 7.13; p < 0.05], both variables were identified as significant
predictors (see Figures 1, 2).

Predictor Analysis for Auditory P300-BCI
Again, “emotional stability” was significantly correlated with
the normalized auditory P300-BCI CRR (Spearman’s rho =

−0.377; p < 0.05, adjusted alpha level p = 0.002), but the
correlation failed significance after Bonferroni correction. No
other significant correlations were found. We calculated a linear
regression analysis with “emotional stability” as independent
variable and the auditory P300-BCI CRR as dependent variable.
The independent variable explained 8% of the variance (R² =
0.084) but failed significance. Key parameters of the regression
model are listed in Table 2.

Relation Between Psychological and
Physiological Variables
The auditory P300 ERP component had a mean amplitude of
4.8 µV (SD 3.2, range 0.7–11.1) and a latency of 471ms (SD
128, range 210–800) and the visual P300 a mean amplitude of
4.1 µV (SD 2.6, range 1.4–12.2) and latency of 432ms (SD 109,
range 240–800). No significant correlations were found between
the psychological variables and the P300 amplitudes and latencies
neither for the visual nor for the auditory P300-BCI. Plots of the
visual and auditory P300 at Cz and Pz averaged across all subjects
are depicted in Figures 3, 4.

DISCUSSION

The purpose of the current study was to investigate psychological
variables that may serve as performance predictors in a P300-BCI
with visual and auditory stimulation. On the basis of previous
results, we assumed that attention, concentration abilities,
motivation, and conscientiousness would moderately predict
performance with the P300-BCI, while other personality traits,

TABLE 1 | Model summary and significance tests of the regression model corresponding to the variables “emotional stability” and “sum of the differences of correct

minus incorrect YES answers.”

Model R² ANOVA

Sum of squares df Mean square F Sig.

emot. stability 0.049 Regression 0.79 1 0.79 1.91 0.175a

Residual 15.32 37 0.41

Total 16.11 38

emot. stability + SUMD 0.242 Regression 3.89 2 1.95 5.74 0.007b

Residual 12.22 36 0.34

Total 16.11 38

Coefficients

Unstandardized coefficients Standardized

coefficients

Model B Std. error Beta t Sig.

1 (constant) 1.984 0.128 15.456 0.000

emotional stability −0.002 0.002 −0.221 −1.381 0.176

2 (constant) 1.673 0.155 10.778 0.000

emotional stability −0.002 0.002 −0.230 −1.583 0.122

SUMD 0.005 0.001 0.439 3.024 0.005

a Independent variable: “emotional stability” (BIG5PO).
b Independent variables: “emotional stability” (BIG5PO), “sum of the differences of correct minus incorrect YES answers” (NVLT). Dependent variable: visual P300-BCI performance.
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FIGURE 1 | Correlation between emotional stability and the visual P300-BCI offline performance after two outlier values were excluded (PR is the abbriviation for

percentile rank).

FIGURE 2 | Correlation between “sum of the differences of correct minus incorrect YES answers” (NVLT; = “the ability to learn”) and the visual P300-BCI performance

after excluding two outlier values.

other performance variables, intelligence, and clinical variables
would show low or no correlation.

In the visual P300-BCI, two variables were related to BCI
performance: “Emotional stability,” a variable of the B5PO, was
negatively correlated and the variable “sum of the differences
of correct minus incorrect YES answers” of the NVLT was
positively correlated with visual P300-BCI performance. After
exclusion of two outlier values, both variables were identified as
significant predictors, explaining about 36% of the variance; on
its own “emotional stability” explained about 17% of the variance.

“Emotional stability” was also negatively correlated with auditory
P300-BCI performance and explained 8% of the variance. This
result replicates that of the visual P300-BCI albeit the explained
variance was much lower.

The personality factor “emotional stability” is often referred
to as the low pole of the personality trait neuroticism. People
with high a score on the factor “emotional stability” characterize
themselves as calm, withdrawn and rational compared to
frantic, impulsive and emotional. Highly neurotic people report
higher anxiety values and feel more stressed and unconfident.
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TABLE 2 | Model summary and significance tests of the regression model corresponding to the variable “emotional stability.”

Model R² ANOVA

Sum of squares df Mean square F Sig.

Emotional stability 0.084 Regression 2.12 1 2.12 33.19 0.083a

Residual 23.24 35 0.664

Total 25.36 36 Total

Coefficients

Unstandardized coefficients Standardized

coefficients

Model B Std. error Beta t Sig.

1 (constant) 0.437 0.408 1.069 0.292

emotional stability −0.009 0.005 −0.289 −1.787 0.083

a Independent variable: “emotional stability” (BIG5PO); Dependent variable: auditory P300-BCI performance.

Unexpectedly, participants with a high score of “emotional
stability” showed worse BCI performance, in our study. To date,
there have been no BCI studies that found a correlation between
“emotional stability” and BCI performance, but there are some
studies that attributed a negative impact of high neuroticism
on attention and information processing. Consistently, high
neuroticism was associated with cognitive inflexibility and
difficulty in ignoring irrelevant stimuli (Maclean and Arnell,
2010) as well as difficulties in disengaging from salient stimuli,
meaning high neurotic people tend to overinvest attentional
resources in the processing of salient yet irrelevant stimuli
(Dhinakaran et al., 2014). Greater neuroticism is associated with
a longer attentional blink (a short attention deficit occurring
in rapid serial visual presentation tasks), which is connected
to less efficient cognitive control (Maclean and Arnell, 2010).
Fjell et al. (2005) aimed at describing differences in information
processing by comparing a group of highly stable and a
group of highly neurotic participants on the basis of event-
related potentials. They did not find differences in an auditory
P300 and a visual P300 oddball task. The authors concluded
that there is no significant disparity in fast neurocognitive
processing between highly emotionally stable and highly neurotic
people. To summarize, our findings contradict results reported
in the literature. One reason may be that, in contrast to
those studies, the group of highly neurotic subjects was rather
small in the current sample—only three participants showed
highly neurotic test values with a PR smaller than 16. Eysenck
postulated in his arousal theory (Eysenck, 1967) that people
with higher neuroticism scores have lower excitation thresholds
in subcortical structures which would be associated with a
higher level of arousal of the limbic system. Hence, one might
speculate that BCI users with higher neuroticism values were
more responsive to the given task because of their lower arousal
thresholds. Potentially, higher neuroticism turned into a small
advantage for operating a P300-BCI. The fact that “emotional
stability” was identified as predictor in both P300-BCI paradigms
cautiously supports its validity, which of course requires further

investigation. To test the stability of the newly found predictor in
a further study, one could first identify participants with extreme
values on the two poles of the dimension neuroticism and then
compare P300-BCI performance between the two groups in a
second step.

The predictor “sum of the differences of correct minus
incorrect YES answers” can be interpreted as an ability to
learn. The NVLT assesses non-verbal learning processes—which
may be considered relevant to master the P300-BCI tasks—
by presenting graphical material that is difficult to verbalize. A
high score of the outcome variable “sum of the differences of
correct minus incorrect YES answers” means that a participant
is able to differentiate between new and already presented
items. Therefore, it is also an indicator of memory capacity and
the ability to concentrate on the presented material, and both
memory and concentration are mandatory for learning. Sachs
et al. (2004) investigated anomalies in ERPs in patients with the
diagnosis social phobia. They identified reduced P300 amplitude
and increased P300 latency. The latter was correlated with
deficient learning abilities measured by the NVLT supporting the
potential relevance of this variable for P300-BCI performance.
Our findings are in line with the results of Sprague and colleagues,
who identified working memory as a significant predictor of
P300-BCI performance (Sprague et al., 2016). They proposed
that working memory could be improved throughout a special
training program with the aim to increase BCI performance. The
authors discussed different experimental designs how one could
test the effectivity of a training program. They also stated that
long-term repeated BCI use itself could lead to an improvement
in working memory. Therefore, they recommended comparing
three groups: a working memory training group, a BCI group
and a control group. Such a study design could also be used
to investigate the causal effect of non-verbal learning abilities
on P300-BCI performance. It is important to note, that we—
at the time the study was conducted—did not expect the
“ability to learn” to be relevant for P300-BCI performance.
Specifically, healthy subjects are often at 100% CRR in the
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FIGURE 3 | Plot of the visual P300 at Cz averaged across all subjects.

first session (Guger et al., 2009). However, recently it was
shown that also P300-BCI performance can increase with
learning, specifically under more difficult conditions. Baykara
and colleagues and Herweg and Kübler confronted healthy
subjects with non-visual BCIs and demonstrated a significant
learning in the auditory and the tactile modality (Baykara et al.,
2016; Herweg et al., 2016). Halder and colleagues confirmed these
results in end-users with neurodegenerative disease (Halder et al.,
2016). These results indicate that the “ability to learn” may be
more relevant for P300-BCI than previously assumed.

In contrast to Sprague et al. (2016) intelligence was not
identified as a significant predictor in the current study. This
may be attributed to different definitions of intelligence. Sprague
and colleagues used the Picture Vocabulary Test, which measures
general intelligence, specifically crystallized intelligence, whereas
the Raven’s Standard Progressive Matrices (SPM), which was used
in the current study, assesses fluid intelligence.

Unlike Kleih and colleagues and Baykara and colleagues
motivation was not identified as a significant predictor in the
current study (Kleih et al., 2010; Baykara et al., 2016). Differences
in study designs may account for this discrepancy. Motivation
was systematically manipulated by Kleih and colleagues and

FIGURE 4 | Plot of the auditory P300 at Pz averaged across all subjects.

Bayakara and colleagues used animal sounds in their auditory
P300-BCI and subjects had to accomplish five BCI sessions.

Against our assumption, we could not identify a significant
correlation between attention or concentration assessed via the
Cognitrone test and the P300-BCI performance. The Cognitrone
provides information about selective attention abilities, meaning
focusing attention on relevant stimuli while ignoring irrelevant
aspects of the task. These skills are substantial for controlling
effectively a P300-BCI. A recent study showed that changes
in stimulus presentation, such that they better catch the users’
attention (honeycomb-shaped figure with red dots), lead to
improved BCI performance (Jin et al., 2017). Lakey et al.
(2011) tried to manipulate attention through a short mindfulness
meditation induction. Participants of the treatment group
showed higher P300-BCI performance rate as well as larger
P300 amplitudes compared to BCI users of the control group.
Thus, attentional processes play an important role for P300-
BCI control, but it was not possible to operationalize this effect
with the Cognitrone in our study. Concerning BCI end users,
Geronimo et al. (2016) reported that ALS patients become less
effective at utilizing a BCI system with increase in cognitive
impairment, particularly in the realm of attention.
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In contrast to our hypothesis, the personality factor
conscientiousness was not linked to performance. Albeit
we found an effect of two psychological variables on P300-BCI
performance, none of the psychological variables were related to
the amplitude and latency of the P300. This may be explained
by the high number of sequences in the online session which
reduces the variance of the P300 amplitude. It has to be noted
that we also could not find any predictors for the visual P300-
BCI performance when using online performance as dependent
variable, due to a lack of variance in the data. In further studies,
the number of sequences has to be reduced, e.g., such that an
online performances of 70% CRR is achieved.

There are several limitations of the current study: As in
many other BCI studies, we recruited a sample of young
and healthy people, who had high a level of education.
These sample characteristics lead to reduced variance in
psychological test results, which may be responsible for the
lack of significant correlations. Further, it is not possible to
generalize these results to BCI end users with disease, because
there are several differences between those groups (e.g., age
distribution, cerebral gray, and white matter volume). For
example, McCane et al. (2015) compared patients with ALS
and age-matched controls with respect to their performance
in a visual P300-BCI and amplitude, latency, and location of
other potentially relevant ERPs. The authors reported that the
groups did not differ in P300-BCI performance or information
transfer rate. Differences were observed in the location of
the target ERPs, the amplitudes of the late positivity, the
amplitude of the early negativity (N200) and the latency of
the late negativity. These results emphasize the necessity of
studies with patients in order to investigate reliability and
validity of predictors that were identified for healthy BCI-
users.

Due to the large number of psychological test variables,
e.g., the subgroup of personality tests comprised 25 outcome
variables, the sample size was too small to maintain significance
after Bonferroni correction. Thus, to gain higher power a larger
sample must be included which, however, increases the effort for
data collection. Finally, our number of stimulus repetitions was
too high such that we encountered the described ceiling effect
and needed to use offline data for the predictor analysis. At the
time of data collection the dynamic stopping method (Schreuder
et al., 2011a, 2013; Kindermans et al., 2014) was not yet published,
which nowadays should be included in such an approach. This
holds also true for the by now established face overlay to elicit
larger a P300 and additional ERPs (N170 and N400f; Kaufmann
et al., 2013; Zhou et al., 2016).

CONCLUSIONS

There are many psychological factors—personality, performance,
and clinical—that could potentially influence P300-BCI
performance. The current study identified only few that indeed
did so and these were “emotional stability” and the “ability
to learn.” Emotional stability negatively predicted P300-BCI
performance in both modalities, which is counter-intuitive
and contradicts other findings. However, as it was found in
both paradigms—auditory and visual—it is worth further
investigation. The significant predictor for the “ability to learn”
is also somewhat surprising as learning has—until recently—not
been assumed as particularly relevant for operating a P300-BCI.
Yet, recent results with non-visual P300-BCIs and end-users with
disease point toward learning as relevant when conditions are
more difficult. As we found the “ability to learn” only predictive
of visual P300-BCI performance, also this predictor requires
further studies for its confirmation or rejection. Taken together,
in healthy subjects only few psychological factors seem to play a
moderate role for P300-BCI performance. To confirm or reject
these predictors, studies with more difficult conditions, such as
few sequences, non-visual modalities or distracting additional
tasks, are necessary. To establish causality, experimental designs
are required that manipulate the predicting variables.
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