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Electroencephalography (EEG) source localization approaches are often used to

disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches

differ substantially between experiments, may be strongly parameter-dependent, and

results are not necessarily meaningful. In this paper we provide a pipeline for EEG

source estimation, from raw EEG data pre-processing using EEGLAB functions up

to source-level analysis as implemented in Brainstorm. The pipeline is tested using a

data set of 10 individuals performing an auditory attention task. The analysis approach

estimates sources of 64-channel EEG data without the prerequisite of individual

anatomies or individually digitized sensor positions. First, we show advanced EEG

pre-processing using EEGLAB, which includes artifact attenuation using independent

component analysis (ICA). ICA is a linear decomposition technique that aims to reveal

the underlying statistical sources of mixed signals and is further a powerful tool to

attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted

to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward

an objective approach on component identification, the semi-automatic CORRMAP

algorithm is applied for the identification of components representing prominent and

stereotypic artifacts. Second, we present a step-wise approach to estimate active

sources of auditory cortex event-related processing, on a single subject level. The

presented approach assumes that no individual anatomy is available and therefore the

default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals.

Individual noise modeling in this dataset is based on the pre-stimulus baseline period.

For EEG source modeling we use the OpenMEEG algorithm as the underlying forward

model based on the symmetric Boundary Element Method (BEM). We then apply the

method of dynamical statistical parametric mapping (dSPM) to obtain physiologically

plausible EEG source estimates. Finally, we show how to perform group level analysis

in the time domain on anatomically defined regions of interest (auditory scout). The

proposed pipeline needs to be tailored to the specific datasets and paradigms. However,

the straightforward combination of EEGLAB and Brainstorm analysis tools may be of

interest to others performing EEG source localization.
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INTRODUCTION

Despite strong competition from other imaging techniques,
the scalp-recorded electroencephalogram (EEG) is still one
of the key sources of information for scientists interested in
the study of large-scale human brain function. Due to its
high temporal resolution EEG acquisition technology is well
suited to capture the essence of neural dynamics of perceptual,
cognitive and motor processes. However, complex cognitive
operations go hand in hand with complex spatio-temporal
neuronal interactions. Even for the processing of very simple
sounds several brain areas are involved and information of
different brain areas has to be incorporated within tens of
millisecond (Shahin et al., 2007). Due to volume conduction
(among other reasons) the EEG signal recorded from a single
channel is a mixture of contributions from an unknown number
of different, even distant neural and non-neural sources (Lopes
da Silva, 2013). Consequently, differences between conditions
or individuals cannot easily be interpreted with regard to their
spatial origin when only sensor level data is considered. Source
modeling on the other hand allows to draw inferences about
the timing and the location of brain processes of interest and
may resolve to some degree the ambiguity we are faced with
sensor level analysis (Michel et al., 2004; Lopes da Silva, 2013;
Baillet, 2017). Despite the fact that a source level analysis
does not solve the inverse problem (Musha and Okamoto,
1999; Grech et al., 2008), high-density EEG in combination
with source modeling is considered as an electrical brain
imaging tool (Michel and Murray, 2012), which helps to confirm
predictions about the likely spatial origin of EEG sensor level
features. For instance, we have used source level analysis of
96-channel EEG recordings to study cross-modal processing
in the auditory cortex of cochlear implant users (Stropahl
et al., 2015; Stropahl and Debener, 2017), and showed that in
these individuals, auditory cortex is recruited for the processing
of visual stimuli. This pattern has been repeatedly confirmed
with EEG source analysis, as well as imaging modalities such
as functional near infrared spectroscopy (fNIRS), but could
not be easily obtained with functional magnetic resonance
imaging (fMRI), which cannot be used for cochlear implant
users (Sandmann et al., 2012; Stropahl et al., 2015, 2017;
Chen et al., 2016). In other studies we used source level
analysis to disentangle left and right auditory cortex activation
patterns (Hine and Debener, 2007; Hine et al., 2008; Sandmann
et al., 2015) and investigate the temporal evolution of auditory
entrainment using 64-channel EEG recordings (Bauer et al.,
2018).

There are numerous other examples of successful EEG

source modeling. Most researchers agree that volume conduction

heavily compromises the validity of sensor level connectivity

pattern results (Schoffelen and Gross, 2009). Source modeling
can facilitate the analysis by mitigating to some degree
disadvantageous effects of volume conduction. Hence, source
modeling seems useful for studying resting state EEG (Hipp
et al., 2012), spontaneous neural oscillations and their spatial
origin (Srinivasan et al., 2006) or to disentangle sub-processes of
auditory perception (De Santis et al., 2007; Shahin et al., 2007). In

a clinical context, EEG source modeling can be used to identify
the epileptic focus in epilepsy patients (Brodbeck et al., 2011).

In the context of magnetoencephalography (MEG) analysis
source modeling is well established and widely used (Baillet,
2017). There is an ongoing and recurrent debate on the spatial
acuity of EEG and MEG source modeling (Cohen and Cuffin,
1991; Crease, 1991; Barkley, 2004; Baumgartner, 2004; Baillet,
2017). MEG and EEG source modeling do not necessarily yield
the same source locations (Scheler et al., 2007), as the sensors
have different sensitivities to different sources. EEG source
modeling appears to be more sensitive to errors in the forward
model (Leahy et al., 1998), but with a sufficient number of
sensors, and use of an accurate individual head model with
reasonable conductivity values, EEG source localization accuracy
may be at par with MEG localization accuracy (Malmivuo, 2012;
Klamer et al., 2014).

In the following we will show the joint use of two highly
popular open source Matlab toolboxes, EEGLAB (Delorme and
Makeig, 2004) and Brainstorm (Tadel et al., 2011) for performing
EEG source modeling. While the former has been developed
primarily for multi-channel EEG analysis, it provides some
capabilities for MEG analysis as well. The opposite is true for
Brainstorm, which has been designed forMEG analysis but is also
well suited for EEG source modeling.

EEGLAB may currently be the most popular EEG analysis
toolbox. Each release initiates thousands of downloads, the
reference paper has been cited over 5,000 times, and an increasing
number of powerful plugins has expanded its functionality. One
reason for the popularity of EEGLAB may be that it offers
functionality for Matlab newbies (graphical user interface) and
fluent programmers alike. Another reason is that EEGLAB
facilitates the use of independent component analysis (ICA),
a linear decomposition approach, that, if applied correctly
(Winkler et al., 2015), performs very well in the attenuation
of various EEG artifacts (Jung et al., 2000a). Denoising EEG
signals is not the only virtue of ICA, it can also be used to
disentangle otherwise missed contributions from different brain
sources (Debener et al., 2010). The focus of EEGLAB lies on
sensor level analysis and the modeling of statistical, but not
bio-physiological sources. The possibilities of performing and
consequently visualizing the results of a dipole analysis are
limited with EEGLAB.

Brainstorm on the other hand provides extensive possibilities
of source estimation and advanced source level analysis on both,
single subject and group level. However, the primary focus of
brainstorm is on MEG processing, and not all processing steps
are optimal or necessary for EEG data, and may not be overly
intuitive for EEGLAB users. Furthermore, source modeling will
often be only one step in the signal analysis of an otherwise
complete analysis that could be performed with EEGLAB and
custom-made Matlab routines.

Here, we demonstrate how a well-established EEGLAB based
pre-processing (including ICA artifact attenuation) sensor level
analysis can be combined with the source modeling of this pre-
processed EEGLAB data in Brainstorm. We present a pipeline
for computing single subject as well as group level source activity
for EEG data when no individual anatomical data is available,
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using a standard head model as implemented in Brainstorm. The
pipeline provides an easy way to estimate and compare source
activity in (pre-defined) regions of interest.

MATERIALS AND EQUIPMENT

Participants
Data was collected from 10 participants with a mean age of
µ = 48 years (SD = 13.7 years, age range: 21–68 years; 7
females, 3 males). All participants had normal or corrected-
to-normal vision and normal hearing (thresholds <30 dB HL
from 0.5 to 4 kHz). None of the participants reported acute
neurological or psychiatric conditions. The study was conducted
in agreement with the declaration of Helsinki and was approved
by the local ethical committee of the University of Oldenburg.
Each participant gave written informed consent prior to the
experiment.

Experimental Design
The aim of the experiment was to elicit auditory evoked
potentials (AEP) to analyse the N100 AEP. Participants therefore
listened passively to auditory stimuli presented in a free-
field setting. The experiment was conducted in a sound-
shielded booth and participants were seated 1.5m in front
of a 24 inch monitor looking at a fixation cross. The
auditory stimulus was a narrowband noise with a center-
frequency of 1 kHz, a bandwidth of 100Hz and a sampling
frequency of 44.1 kHz. The narrowband noise had a duration
of 400ms and was presented through two high-quality speakers
positioned at 45◦ azimuth in front of the subject. Prior to the
experiment, intensity of the stimulus was adjusted individually
to a comfortable loudness level in steps of 1 dB; loudness
adjustment started at 79 dB(A). In total, 60 trials were
presented with a jittered inter-stimulus-interval between 1,500
and 2,000ms.

EEG Acquisition
Electroencephalography (EEG) data were collected from a 64
Ag/AgCl electrode cap with an equidistant sensor placement
(Easycap, Herrsching, Germany) and a BrainAmp EEG
amplifier system (BrainProducts, Gilching, Germany). In
our experience, equidistant electrode placement based on
infra-cerebral spatial sampling facilitates source localization
efforts by a better coverage of the head sphere, although
systematic comparisons to traditional 10–20 electrode layouts
were not conducted (Hine and Debener, 2007; Debener et al.,
2008; Hine et al., 2008; Hauthal et al., 2014; Stropahl and
Debener, 2017). The nose-tip was used as reference and a
central fronto-polar site as ground. To capture eye blinks and
eye movements, two electrodes were placed below the eyes.
Electrode impedances were kept below 20 k�. Sampling rate
of EEG recording was 1000Hz and online filters from 0.016 to
250Hz were applied. Stimulus presentation was controlled with
Presentation software (Neurobehavioral Systems, Albany, CA,
USA).

Analysis Pipeline and Data Sharing
The EEG data of the 10 participants and the analysis scripts
are available at https://figshare.com/s/48f8d9de715bafa5811b.
The scripts and the detailed step-by-step tutorial are also
available within the Supplementary Materials. Included is the
EEGLAB code for the pre-processing of EEG data, including
artifact attenuation using ICA (Bell and Sejnowski, 1995;
Jung et al., 2000a,b) and CORRMAP (Viola et al., 2009).
Furthermore, the Brainstorm source estimation pipeline was
scripted and includes functionality for a group-level analysis.
Note that a manual set-up of the Brainstorm database is
necessary. A screenshot of the settings for the database used
here can be seen in Supplementary Figure S2 (cf. Brainstorm
tutorial on creating a new protocol http://neuroimage.usc.
edu/brainstorm/Tutorials/CreateProtocol). To use the BEM
head model, OpenMEEG has to be installed, which needs
an active Internet connection (see Brainstorm Tutorial on
headmodeling http://neuroimage.usc.edu/brainstorm/Tutorials/
HeadModel).

The use of the provided script requires that users have
at least basic understanding of Matlab and signal processing,
as well as of EEG analysis. The provided scripts are under
the MIT license and are provided without warranty of any
kind. We do not take any responsibility for the validity of the
application or adaptation of this code, or parts thereof, on other
datasets.

STEPWISE PROCEDURE

Please download the analysis scripts as well as the EEG raw data
here https://figshare.com/s/48f8d9de715bafa5811b (.zip). After
unzipping the archive including all necessary files, Matlab needs
to be opened and the current Matlab folder should be changed to
the/scripts directory.

EEG Data Analysis
Pre-processing of EEG data was performed using custom scripts
and EEGLAB 13.6.5b (Delorme and Makeig, 2004) within the
Matlab environment (Mathworks). For a schematic illustration
of the processing pipeline, see Figure 1.

Step 1

The EEG raw data files (.vhdr, BrainAmp file format)
are transformed to EEGLAB (.set) files. Execute the script
ana00_convert_rawdata.m.

Step 2

Raw EEG data was subjected to an independent component
analysis (ICA), based on the extended Infomax (Bell and
Sejnowski, 1995; Jung et al., 2000a,b), to attenuate stereotypical
artifacts such as eye blinks, lateral eye movements and electrical
heartbeats (cf. script ana01_ICA.m).

ICA decomposition can be improved by high-pass filtering
(Winkler et al., 2015) and by excluding data segments that
contain rare and non-stereotypical events (Debener et al., 2010).
In order to improve the ICA decomposition quality, data were
low-pass filtered (windowed sinc FIR filter, cut-off frequency
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FIGURE 1 | Schematic illustration of the processing pipeline. The dashed line indicates that alternative processing steps are possible, but are not implemented in the

current pipeline. EEG pre-processing using EEGLAB is shown on the left, while source analysis implemented in Brainstorm is shown on the right.

40Hz, filter order 500) and high-pass filtered (windowed sinc
FIR filter, cut-off frequency 1Hz, filter order 100; Widmann and
Schröger, 2012; Widmann et al., 2014). To reduce computation
time, data were then re-sampled to 250Hz. In order to identify
non-stereotypical events, continuous datasets were segmented
into consecutive epochs with a length of 1 s. Epochs with a
joint probability larger than three standard deviations (SD)
were rejected prior to computing the ICA. The choice of this
parameter was based on our lab standard. Please see Step
4 for further explanation of parameter choices for artifact
correction. ICA was performed using the option ‘extended’,
enabling the algorithm to extract sub-Gaussian and super-
Gaussian sources (Lee et al., 1999). In our experience, this option
can enhance the representation of noise sources and thereby
improve artifact attenuation quality. The option ‘PCA’ reduced
the number of components decomposed from 64 to 50. This
step is not necessary but reduces computation time. Note that
large datasets, and analyses strategies aiming for particular brain
signals contributing little variance to the overall recordings, may
benefit from decomposition without dimensionality reduction.

The resulting ICA weights were then applied to the original,
unfiltered, continuous data set, to allow for a paradigm-specific
pre-processing (see below).

Step 3

Subsequently, ICA components representing artifacts were
identified using the semi-automatic algorithm CORRMAP
(Viola et al., 2009; cf. script ana02_corrmap.m). CORRMAP is
compatible with EEGLAB and can be used as a plug-in (https://
sccn.ucsd.edu/wiki/EEGLAB_Plugins). The algorithm clusters
ICA components with a similar topography in all datasets based
on a manually selected template component (see Supplementary
Figure S3 for an exemplary CORRMAP output). Similarity
between all ICA components and the user-selected template
component is computed by a correlation of the ICA inverse
weights (Viola et al., 2009). Here, the applied threshold criterion
for selection was a correlation coefficient of r ≥ 0.8, which is the
default value in CORRMAP and which has been proven to reveal
accurate results. It is known that physiological processes such as
eye blinks can be represented in more than one (but typically
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<4) ICA components, especially if high-density EEG recordings
are used. CORRMAP therefore includes a parameter to define
how many components could represent the same artifact (Viola
et al., 2009). The maximum number of components that can
be selected within one dataset was here set to three. Selected
components were removed from each continuous EEG data
sets (see Supplementary Figure S4). A more recently developed
toolbox named Eye-Catch (Bigdely-Shamlo et al., 2013) seems to
perform at par with CORRMAP and provides a fully automatic
eye –component detection procedure.

Step 4

After cleaning the continuous data from stereotypical artifacts
with ICA, EEG data sets were filtered with a low-pass (windowed
sinc FIR filter, cut-off frequency 40Hz, filter order 100) and a
high-pass (windowed sinc FIR filter, cut-off frequency 0.1Hz,
filter order 500; cf. script ana03_preprocesing.m). Data were
segmented relative to sound onset into 1s epochs (−200
pre-stimulus onset to 800ms post-stimulus onset) and all
epochs were corrected to a pre-stimulus baseline of 200ms.
Remaining artificial epochs not accounted for by ICA-based
artifact attenuation were identified and rejected. We used the
method of joint probability, which calculates the probability
distribution of values regarding all epochs. Segments that contain
artifacts are likely to show a difference in occurrence and can
therefore be detected with this method. The parameters are set
to a rather conservative threshold of 4 standard deviations to
avoid selecting epochs containing useful data (joint probability
of >4 SD; see Supplementary Table S1 for rejected epochs).
The parameters were set according to our lab standards and the
experimental conditions. Be aware that the choice of parameters
depends on the quality of your EEG data, the experimental design
and the analysis to be performed.

Source Analysis
Step 5

Cortical source activations were estimated using Brainstorm
software (Tadel et al., 2011). Brainstorm uses a distributed dipoles
model as fitting approach. For the current experiment, the
method of dynamic statistical parametric mapping was applied
to the data (dSPM, Dale et al., 2000). dSPM tends to localize
deeper sources more accurately than standard minimum norm
procedures, but the spatial resolution remains low (Lin et al.,
2006). The dSPMmethod uses the minimum-norm inverse maps
to estimate the locations of the scalp-recorded electrical activity
and works well, in our experience, for modeling auditory cortex
sources.

After EEGLAB based pre-processing (artifact attenuation,
filtering and epoching, output from ana03_preprocessing.m),
the EEG data were imported into Brainstorm (cf. script
ana04_brainstorm.m Part 1). Note that in this pipeline no
individual anatomies and no individual electrode locations are
used. Instead one general electrode location file was used for all
participants. For this, the exact positions of all cap electrodes
were first digitized (Xensor electrode digitizer, ANT Neuro,
The Netherlands) and the measured electrode locations were

then visually inspected and manually corrected to fit the default
anatomy using the Brainstorm graphical interface.

Single-trial pre-stimulus baseline intervals (−200 to 0ms)
were used to calculate single subject noise covariance matrices
and thereby estimate individual noise standard deviations at each
location (Hansen et al., 2010). The boundary element method
(BEM) as implemented in OpenMEEG and was used as a head
model using Brainstorms default parameters. The BEM model
provides three realistic layers and representative anatomical
information (Gramfort et al., 2010; Stenroos et al., 2014). For
source estimation, the option of constrained dipole orientations
was selected, which models one dipole, oriented perpendicular
to the cortical surface for each vertex (Tadel et al., 2011). EEG
data were re-referenced to the common average before source
estimation, which is a default pre-processing step in most source
analysis software. The main reason for re-referencing to the
common average is to fulfill the assumption that a net source
activity of zero current flow is achieved to not bias source strength
estimates (cf. Michel et al., 2004). The single-trial EEG data is
averaged for each participant and the estimate of active sources
is performed on the subject average.

Extracting Source Activity Time Series
For the definition of a region-of-interest (ROI), the Destrieux
atlas (Destrieux et al., 2010) as implemented in FreeSurfer
(http://ftp.nmr.mgh.harvard.edu/fswiki/CorticalParcellation)
and available in Brainstorm was used, as no individual anatomies
of the participants were available. An auditory ROI was
selected, corresponding to the ‘S_temporal_transverse’ scout
in the Destrieux atlas. Individual peak activation of the N100
AEP in the auditory ROI were extracted and analyzed on a
group level for both the right and left hemisphere (cf. script
ana04_brainstorm.m Part 2–3).

Brainstorm offers the possibility to use predefined scouts
(atlas based), or to manually define a region of interest either
anatomically or functionally (e.g., based on the activation pattern
of a localiser task). To illustrate this option, a second ROI was
defined based on the source level activity. For this, the source level
average group activation was calculated in Brainstorm, and the
region around the maximal activity on the auditory cortex was
used as center of the ROI (scout). In the current approach, the
scout was defined manually by visual inspection. However, there
are several options to define a scout. For example a statistical
test that differentiates the activation of the baseline and the N100
peak could be applied (using statistical functions in Brainstorm).
This approach gives a more objective way of defining the
activation region for the N100 component. A similar approach
to define a scout can be applied for comparing conditions or
groups of subjects. The atlas-based and the manually defined
activity-based scouts for the left and right hemisphere, have here
a similar size (between for 10 and 15 vertices), which allows better
comparison.

Time-Frequency Analysis
Brainstorm gives the option to perform a time-frequency analysis
of the estimated source activation (cf. ana04_brainstorm_TF).
The first steps are similar to the previously explained pipeline
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with the difference that time-frequency decomposition is
computed on the single trial source estimates for each
subject. The parameters for the time-frequency decomposition
depend on the experimental design and the default settings
in Brainstorm may be a good starting point (cf. Brainstorm
tutorial on time-frequency analysis http://neuroimage.usc.edu/
brainstorm/Tutorials/TimeFrequency). For the here presented
pipeline, time-frequency decomposition is an optional processing
step. Due to experimental constraints, no time-frequency
results are shown in this pipeline. Please be aware, that
the scripts ana04_brainstorm.m and the one with time-
frequency decomposition (ana04_brainstorm_TF.m) should be
used in separate brainstorm databases, otherwise the correct
functionality could not be guaranteed.

Visualization of Results
Step 6

Calculation and visualization of sensor level group results
(EEGLAB) is done based on the pre-processed data (output of
ana03_preprocessing.m). ERP time courses and topographies for
different latencies are plotted with the help of the EEGLAB gui.

Step 7

Calculation and visualization of source level group results
(Brainstorm) is done based on the estimated source activity
(output of ana04_brainstorm.m). The grand average source level
activity is depicted as well as the grand average time series of the
pre-defined regions of interest (scouts).

To reproduce the figures shown in this manuscript follow
the steps explained in details in the Supplementary Materials.
Additionally, a statistical comparison of the estimated time
course of the left and the right scout was performed. Though,
this is not the focus of this tutorial the intention was to briefly
show this option in brainstorm using the gui (see Supplementary
Material Step 7).

RESULTS

In the next section, the results will be presented following the
previously explained analysis pipeline.

ICA Decomposition
To show the effect of ICA decomposition on the raw EEG
data, one exemplary dataset is illustrated (see Figure 2). The
graphic shows 10 s of multi-channel raw EEG data of a
subset of 18 channels before (left part of Figure 2) and after
removing selected ICA components (right part of Figure 2).
Three ICA components representing eye-blinks, eye-movement
and heartbeat were identified with the CORRMAP algorithm
(middle part of Figure 2).

The components presented in Figure 2 represent common
artifacts that can often be identified by ICA in raw EEG
data despite different experimental and electrode set-ups
(Debener et al., 2010). These components usually have distinct
topographies as well as time courses, which simplifies their
identification. Other components, such as event-related
components or other less stereotypic artifactual components are

often more difficult to distinguish. The removal of artefictual
components by back-projection reveals a new, artifact-attenuated
EEG data set (see Figure 2, right part), which is suitable for
further processing. Note that we provide here a realistic example;
ICA artifact correction may outperform other procedures but
is not perfect. Hence, residual artifact may remain in the data
(cf. Figure 2), or brain-features of interest may be lost during
ICA correction. An additional comparison of pre-processed EEG
data (grand average ERP of all data sets) with and without ICA
artifact correction is shown in the Supplementary Materials.

EEG Analysis
The classical EEG sensor level analysis shows the expected
auditory evoked response to the presented auditory stimulus
(Figure 3). The morphology of the grand average auditory
evoked potential (AEP) shows the characteristic components
with prominent peaks at 64ms (P100), 127ms (N100), and
at 219ms (P200). The overall morphology is consistent across
single subjects (Figure 3, black lines). The topographies obtained
at peak latencies are also characteristic for the respective ERP
components (Figure 3, top). The P100 is known to correspond
to an early sensory response to the auditory stimulus, and is
reflected as a positivity over central electrodes. The P1 is often
used in specific paradigms to test suppression effects, e.g., in
schizophrenic patients (Sur and Sinha, 2009).

The N100 is mostly distributed over more fronto-central
electrodes, and is known to be mainly generated from primary
auditory cortices (Näätänen and Picton, 1987; Zouridakis et al.,
1998). The P200 component is reflected as a positive-voltage
deflection prominent over the vertex electrode. A recent study
provided evidence that N100 and P200 have distinct generators
in the auditory cortex (Ross and Tremblay, 2009). The P200
seems to be generated in more anterior regions of the auditory
cortices compared with the N100. This might be reflected in the
activation shift observed in the topographies. Nevertheless, due
to the inverse problem, sensor-based EEG data cannot reveal
accurate spatial information with regard to which sources are
involved (Lopes da Silva, 2013). EEG source localization is one
tool aimed toward overcoming this problem. However, findings
of adjacent and overlapping but partly different generator sites
for N100 and P200 may be difficult to obtain from EEG and were
mainly observed with MEG.

Source Localization
The estimated active sources of the EEG data are shown in
Figure 4. Here the peak activation of the N100 of the right
and the left hemisphere (top) for an atlas-based ROI (red) and
an activity-based ROI (blue) is plotted. The data of cortical
activation is shown as absolute values with arbitrary units based
on the normalization within the dSPM algorithm. For the left
hemisphere, the atlas-based ROI does not fully capture the
hotspot of the source level activity. The activity-based ROI is
located deeper, adjacent to, but outside of the auditory cortex,
pointing toward EEG spatial resolution limitations. However,
additional activation in the auditory areas can be readily
observed, and the overall activity pattern is compatible with the
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FIGURE 2 | ICA based artifact attenuation. Left) Original EEG time course, shown for a subset of 18 electrodes and 10 s. Center) ICA topographies representing

eye-blinks (Top), lateral eye movements (Middle) and heartbeat (Bottom). Right) EEG data after ICA based artifact attenuation. The EEG time courses were

reconstructed excluding the identified artifact components.

interpretation of one, or several adjacent, sources in the auditory
cortex.

The activation in the atlas-based ROI is, as expected, lower
compared with the activity-based ROI (see Figure 4, right
column). EEG source localizationmay have an accuracy of∼2 cm
in ideal conditions (i.e., with a large number of electrodes and
an individual head model Klamer et al., 2014). Due to missing
individual anatomies, interpretation of the exact location of the
activity-based ROI should be considered with caution. A similar
but smaller pattern of magnitude difference between the atlas-
and the activity-based ROI as in the left hemisphere was revealed
for the right hemisphere. The activity-based ROI of the right
hemisphere is located closer to the atlas-based ROI compared
with the left hemisphere (Figure 4, lower part). Due to similar
location of the ROIs the magnitude of activity does not differ as
much as over the left hemisphere (Figure 4, right column).

DISCUSSION

The analysis pipeline presented here provides the option to
process raw EEG recordings with ICA and additional pre-
processing steps, to achieve good quality EEG data. The data can
be further used to analyse effects on sensor space as well as to
estimate the location of active neural sources.

The results obtained on the sensor and the source levels
are in line with previous AEP work. AEP morphology and
topographic maps of the sensor level data represent the AEPs
as known from previous literature (Luck, 2005). Moreover, the
AEP N100 is localized here to the supratemporal plane, which
is in line with earlier reports for combined EEG/MEG data
(Shahin et al., 2007; Gramfort et al., 2013). As generators of neural
activity cannot unambiguously be interpreted from sensor EEG
data, the transition from sensor to source space may facilitate
interpretation of EEG results.

The Analysis Pipeline
The pipeline we propose facilitates EEG source modeling by
taking care of the consistent processing of all datasets and by

FIGURE 3 | Sensor level analysis. Shown is the grand average (Red line) of all

subjects as well as single subject AEPs. Additionally, the grand-average

topographies for the P100 component and the N100-P200 complex are

plotted on top. Figure is made with the Matlab function plot.m and the

EEGLAB function topoplot.m.

implementing important EEG pre-processing steps. However, we
do not claim that the pipeline outperforms other approaches,
or is suitable for other paradigms and datasets. We claim,
however, that the combination of two well-established Matlab
toolboxes, each of them having their specific merits, can be
advantageous. EEG pre-processing, including ICA based artifact
attenuation, filtering and epoching as well as the sensor level
analysis can be easily performed using EEGLAB. EEGLAB
is a well-established and widely used EEG analysis toolbox
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FIGURE 4 | Grand average source level activity for the N100 component. Shown is the activation at the latency of the N100 peak for the left hemisphere (Top) and the

right hemisphere (Bottom) for an activity-based ROI (Blue) and a (Destrieux) atlas-based ROI (Red). The middle part of the figure shows a zoomed view of the ROIs for

a better visualization. Activation is shown as absolute values with arbitrary units based on the normalization within the dSPM algorithm. Right Colum: Time series of

the activation in the atlas-based ROI (Blue) and the activity-based ROI (Blue). Activation is shown as absolute values and in arbitrary units, as provided by the

normalization within the dSPM algorithm.

that allows extensive signal processing in sensor and ICA
component space. EEGLAB can be used either via a graphical
user interface or the command line, and therefore allows easy
access for novice users as well as extensive scripting capabilities
for advanced users. EEGLAB has also a well-defined interface for
implementing and sharing own extensions or plug-ins addressing
specific signal processing challenges, such as CORRMAP (Viola
et al., 2009) or CIAC (Viola et al., 2012), to name our own
contributions.

Regarding EEG source level analysis we prefer using
Brainstorm as it provides extensive source modeling capabilities
and advanced, high-quality tools for visualization of source-
modeled data. The combination of these two toolboxes provides
an easy-to-work-with processing pipeline, specifically tailored for
the purpose of traditional sensor space and subsequent, advanced
source space analyses. With the detailed description and the
scripts in themethod section it should be fairly easy for the reader
to reproduce the obtained results and to adapt the presented
pipeline for their specific purpose.

The presented pipeline is flexible in its application. All
parameters can be easily adapted to the specific research question.
This includes, but is not limited to, the choice of the head model,
the definition of scouts (region of interest) as well as subsequent
signal analysis steps on source-level data. The source estimation
can be computed either on the average over trials (as done here)
or subjects, or on individual subject single trial data (as shown in
script ana04_brainstorm_TF.m). Single trial source time courses
can be subjected to any kind of signal processing, such as basic

time domain analysis, time-frequency transformations or phase
amplitude coupling.

ICA Artifact Component Identification
EEG data is typically contaminated with non-brain artifacts
such as eye movement, heartbeat and muscle activity related
artifacts. Some of these artifacts seem to continuously contribute
to ongoing EEG signals (see, e.g., Fitzgibbon et al., 2015, for
electromyogram contributions to the EEG). Consequently, a
simple rejection approach, focusing on the removal of intervals
with visible artifact, may not always suffice. Instead of rejecting
data segments contaminated by stereotypical artifacts and thus
losing a considerable amount of data, eye-related artifacts can be
statistically modeled and subsequently removed from the data
(Delorme et al., 2007; Viola et al., 2009). ICA separates the
recorded data into multiple components, representing neural
and non-neural sources. A good-quality decomposition allows
identifying non-neural components with some experience. The
data can be reconstructed without these components, which leads
to an attenuation of unwanted sources. ICA artifact attenuation
however requires distinguishing components that represent
artifacts from components that contain signal of interest, a
far from trivial problem. Here, we used CORRMAP, a semi-
automated approach, which requires the manual selection of a
single template component only. However, while fully automated
identification of artifact components is possible (Bigdely-Shamlo
et al., 2013) we recommend a careful visual inspection of the ICA
decomposition and the resulting ICA based artifact attenuation.
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Source Analysis
We used the ICBM152 anatomy to compute the head model,
as no individual anatomies were available. Brainstorm also
provides the possibility to use the MNI Colin-27 brain and
the FSAverage by default, but every other anatomical model
suited for the specific research question or population can be
used. The lack of individual anatomical information is common
for many EEG studies due to financial or time constrains,
but EEG source modeling can be justified without individual
anatomical information if the results are interpreted with care
(Sandmann et al., 2012; Stropahl et al., 2015; Stropahl and
Debener, 2017; Bauer et al., 2018). However, in general it seems
beneficial to use individual anatomical information for EEG
source modeling. With a large number of electrodes and an
accurate head model the localisation accuracy of EEG can be
comparable to MEG, but can be several centimeters otherwise
(Klamer et al., 2014).

For the definition of the scouts, or anatomical regions
of interest, we used the Destrieux surface based anatomical
atlas, but other atlases are available as well in Brainstorm.
Further, scouts can also be defined based on the activation
itself (e.g., based on the activity of an independent localizer
task), or by hand for a specific region of interest, either on
group level or for each individual. Again, a word of caution
is advised when using (pre-defined) scouts. Individual, or
default, brain anatomy and functional localisations can differ, as
shown in the present example. Specifically, predefined regions
of interest may or may not match to a particular individual
anatomy. The risk of mismatches between brain structure and
estimated functional localization seems more prominent for
small regions of interest, such as auditory cortex; for regions
known to be characterized by large individual differences in
anatomy, and thereby deviations from a default anatomy; for
complex source configurations, such as source contributions
from adjacent, but opposing patches of cortical sulci; and for
regions where head model inaccuracies may be more likely
to occur, such as near-by skull openings. As a result, we
generally tend to interpret unexpected activation patterns such as
insular cortex contribution to the AEPs (Figure 4) as reflecting
limitations and possible errors of EEG source modeling, and
interpret only expected activation patterns confirming a priori
predictions (such as auditory cortex contributions to AEP
N100).

CONCLUSION

The aim of this paper was to provide a pre-processing and
analysis pipeline for processing raw EEG data, starting from
pre-processing to obtain cleaned and high-quality data up to
advanced source modeling. While the pre-processing of the
EEG data was implemented using the Matlab analysis toolbox
EEGLAB, the estimation of source activity was performed with
Brainstorm. The current analysis pipeline is neither dependent
on individual anatomies nor on individual electrode positions
and can be used for single subject or group level analysis.
Moreover, the current pipeline is flexible and can be easily
adjusted to the specific purpose of various experiments.
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