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In the past decade, there has been a surge of interest in using patterned brain stimulation

to manipulate cortical oscillations, in both experimental and clinical settings. But the

relationship between stimulation waveform and its impact on ongoing oscillations remains

poorly understood and severely restrains the development of new paradigms. To address

some aspects of this intricate problem, we combine computational and mathematical

approaches, providing new insights into the influence of waveform of both low and

high-frequency stimuli on synchronous neural activity. Using a cellular-based cortical

microcircuit network model, we performed numerical simulations to test the influence of

different waveforms on ongoing alpha oscillations, and derived amean-field description of

stimulation-driven dynamics to better understand the observed responses. Our analysis

shows that high-frequency periodic stimulation translates into an effective transformation

of the neurons’ response function, leading to waveform-dependent changes in oscillatory

dynamics and resting state activity. Moreover, we found that randomly fluctuating

stimulation linearizes the neuron response function while constant input moves its

activation threshold. Taken together, our findings establish a new theoretical framework

in which stimulation waveforms impact neural systems at the population-scale through

non-linear interactions.

Keywords: stimulation waveform, synchrony, entrainment, neural dynamics, networks, oscillations

INTRODUCTION

Oscillatory brain activity results from the collective and synchronous discharge of large
populations of neurons, and is thought to play an important role in homeostasis, neural
communication and information processing (Singer and Gray, 1995; Engel and Singer, 2001;
Varela et al., 2001; Lakatos et al., 2008). In humans, such oscillations have been shown to
be important for cognitive functions, and disturbed brain oscillations can result in cognitive
deficits or neurological and psychiatric diseases (Uhlhaas and Singer, 2006). Many years of
correlational analysis have shown that parameters of brain oscillations correlate with human
perception, attention, memory, and behavior (Engel et al., 2001; Buzsáki and Draguhn, 2004;
Hipp et al., 2011). Recent studies using TMS and tACS to modulate brain oscillations
revealed a causal role of brain oscillations for such cognitive functions (e.g., Helfrich et al.,
2014; Cecere et al., 2015; Dreyer and Herrmann, 2015). Importantly, all parameters of brain
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oscillations (amplitude, frequency, and phase) have been related
to certain aspects of cognitive functions. While it has been
repeatedly shown that e.g., tACS can up-regulate the amplitude
of brain oscillations (Thut and Miniussi, 2009; Helfrich et al.,
2014), less is known about down-regulating their amplitude
or frequency, and how this depends on stimulation waveform.
Intuitively, repetitive trains of negative and positive current
pulses should have opposite effects on the frequency of brain
oscillations. Do positive and negative pulse trains simply mirror
each other with respect to the entrainment of alpha oscillations?
Are pulses equivalent to sinusoids? Can noise-induced-like
effects be triggered by deterministic signals? Answering these key
questions would significantly improve our understanding of the
role played by stimulation pattern on oscillatory brain dynamics,
and catalyze the development of new clinical stimulation
paradigms meant to engage neural populations and cortical
oscillations.

This study sets out to answer some of these questions by
harnessing computational and mathematical techniques and
study the effect of stimulation waveform on cortical alpha
oscillations. Alpha oscillations have been implicated in a wide
variety of physiological and cognitive functions (Başar, 2012;
Mierau et al., 2017), and have repeatedly been targeted using non-
invasive stimulation in investigations aimed at obtaining a better
understanding of the functional properties of cortical circuits
(Fröhlich and McCormick, 2010; Cecere et al., 2015; Romei et al.,
2016). Alpha oscillations have been shown to be maintained
by large scale processes (Hindriks et al., 2014) supported by
delayed network interactions (Cabral et al., 2014), and to build
on slower and more global inhibitory processes (Klimesch et al.,
2007; Womelsdorf et al., 2014). As such, to understand the
effect of stimulation on these collective oscillations, a population-
scale approach—in which networks of neurons are considered as
opposed to individual cells—is necessary.

To provide new insight into the effects of brain stimulation on
neural populations, we use two computational models in parallel
and explore the impact of stimulation waveform and polarity on
alpha oscillations. The first model, which we study numerically, is
a cortical microcircuit networkmodel which has been used before
by the authors to investigate alpha resonance and entrainment
in the cortex (Herrmann et al., 2016). The second model is a
reduced neural oscillator model (Lefebvre et al., 2015; Hutt et al.,
2016), which we derive from the cortical microcircuit model
and analyze to understand the relationship between stimulation
waveform and peak oscillation frequency. We combine insights
provided by these two models to better understand, from a
population-scale perspective, how stimulation waveforms can
be tuned to either accelerate or slow down cortical alpha
activity.We examine both near-resonant stimulation frequencies,
where phase locking with the stimulation waveform can be
observed, and higher frequencies, where we see the occurrence
of non-linear entrainment. Through this approach, we develop
a framework in which the effects of high-frequency stimuli
with various waveform shapes on neural oscillations can be
characterized by analyzing the associated transformation of
the neurons’ input/output (i.e., response) function. Recent
experimental and computational studies have shown that the

shape of the neural response function is altered in the presence
of direct cortical stimulation, through a combination of somatic
and synaptic effects (Lafon et al., 2017). To validate these
results, and see how they are impacted by stimulation waveform,
we systematically analyze neural population dynamics in the
presence of repetitive pulse trains of positive and negative
polarities, as well as sinusoidal drive and Gaussian white
noise. We compare each case by deriving the associated mean-
field dynamics, using a formalism that directly incorporates
the effects of stimulation into the model equations. We then
explore the influence of stimulation frequency and amplitude
on network oscillations. In addition, our analysis suggests
that, from a population perspective, the high-dimensionality
of stimulation waveform parameter space can be significantly
reduced by observing that seemingly distinct waveforms may
possess equivalent entrainment properties. Our results further
provide new perspectives on the waveform-specific interaction
between stimulation and non-linear feedback in neural networks.

MATERIALS AND METHODS

Cortical Microcircuit Model
To study the influence of different stimulation waveforms on
oscillatory dynamics in cortical microcircuits, we here consider a
model of interacting cortical populations and investigate changes
in limit cycle solutions when subjected to stimulation. This model
has been thoroughly discussed and analyzed in previous work
(Herrmann et al., 2016), and thus we present it here briefly only.

This cortical network consists of spatially extended excitatory
(e) and inhibitory (i) populations, whose activities are governed
by the dynamics and interactions of neuronal ensembles.
These ensembles, or sub-networks, include recurrently coupled
neurons subjected to excitatory and inhibitory synaptic input,
respectively. The ensemble spiking activity of each patch is
modeled by the non-homogeneous Poisson processes

X
j
n (t) → Poisson

(

f
[

u
j
n (t)

])

(1)

where X
j
n (t) =

∑

tl

δ
j
n(t − tl) is the ensemble spike train of the jth

patch and n = e, i indicate excitatory and inhibitory populations,
respectively. The firing rate functionf [u], also called the response
function, sets the relationship between input potentials and
output firing rates (Hutt and Buhry, 2014; Lefebvre et al., 2015;
Herrmann et al., 2016). It exhibits a sigmoidal shape given

by f
[

u
j
n

]

=
(

1+ exp
[

−β(u
j
n − h)

])−1
i.e., the firing rate

probability approaches f = 1 for large membrane potentials,
where the gain is β > 0 and the firing rate threshold is h. This
defined, the model combines both the spiking of single cells as
well as a dependence on the firing rate of the whole population.
Such a hybrid cortical model thus combines both spiking and rate

driven dynamics. The excitatory and inhibitory potentials u
j
e(t)

and u
j
i(t) represent ensemble-averaged potentials proportional

to averaged dendritic currents. They obey the set of non-linear
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stochastic equations

α−1
n

du
j
n (t)

dt
= L[u

j
n (t)]+

∑

m

G
j
nm (t)+

√

2Dn ξ
j
n (t)+ S(t) (2)

with n = e, i and the temporal rate constants αn. The linear
operator L [U] = k U represents membrane leaks. All cells in
the network are driven by an external global stimulation S(t)
exhibiting various waveforms. The cross-population recurrent

inputs G
j
nm (t) are defined by

G
j
nm (t) =

Nm
∑

k=1

W
jk
nm (c) · PSPkm

(

t − τ jk
)

(3)

where PSPkm(t) refers to mean post-synaptic potential of patch
k in population m at time t. Interactions between subnetworks
k and l are subjected to intracortical propagation delaysτ jk =
∣

∣x
(

k
)

− x (i)
∣

∣ v−1, with v being the axonal conduction velocity,
set here to v =0.13 m/s (Hutt et al., 2003). They are computed
by convolving the time-delayed ensemble spike trains with
exponential synapses of the form

PSPkm (t) =
t

∫

o

Xk
m (s)

1

am
e−

t−s
am ds (4)

with synaptic time constant am.
Excitatory and inhibitory populations are subjected to

endogenous sources of noise ξ
j
n(t), assumed to follow spatially

and temporally independent Gaussian white noise profiles with

fixed variance Dn. Synaptic weights within (W
jk
ee (c) ,W

jk
ii (c))

and between (W
jk
ei (c) ,W

jk
ie (c)) excitatory and inhibitory

populations exhibit sparse exponential profiles (Hellwig, 2000)
with connection probability c, that is

W
jk
nm (c) = wo

nm (c) exp
[

− σ 2
n,m

∣

∣x
(

j
)

− x
(

k
)∣

∣

]

(5)

Neuron ensembles in the network are distributed randomly
within a one-dimensional spatial domain �. The constants
σ 2
n,m = σ 2

e , σ 2
i correspond to the range of the excitatory and/or

inhibitory interactions, x
(

k
)

refers to the spatial location of
neurons in patch k and the connection probability is c = 0.6
i.e., 40% of the synaptic weights were randomly set to zero. The
spatially-averaged neuroelectric network activity is a weighted
sum over potentials of the excitatory and inhibitory population

A (t) =
1

Ne

Ne
∑

k=1

φk
eu

k
e (t) +

1

Ni

Ni
∑

k = 1

φk
i u

k
i (t) (6)

where φk
e,i are real positive coefficients. Here we assume that

the network fine scale structure is unknown, and thus consider
random weights i.e., φk

e,i =[0,1] (Herrmann et al., 2016). We
did this to take into account various sources of observational
variability that we do not model explicitly. However, specific

choices of coefficient distributions can be made to increase the
similarity of the neuroelectric output to signals such as LFPs and
EEG (e.g., see Lindén et al., 2010). Model parameters are given in
Table 1.

Spectral Analysis
Spectral analysis was performed using a fast Fourier transform
routine using freely available C++ scripts (Press et al., 2007).
The power spectrum for each simulation condition is an average
over five independent trials, each computed as the magnitude of
the Fourier transform (with rectangular time window) of a time
series of 4,000ms duration. The long duration of the time series
ensures negligible spectral leakage effects.

Reduced Neural Oscillator Model
To better understand the mechanism involved in shaping
oscillations in the cortical microcircuit model, we use a scalar
and reduced non-linear network as a prototype to rigorously
analyze the role of delayed and non-linear interactions in shaping
emergent oscillations, and specifically how those are impacted
by stimulation waveform. This simplified model sacrifices many
physiological details in comparison to the cortical microcircuit
model but preserves key components underlying the rhythmic
activity seen in the cortical microcircuit model while remaining
analytically tractable. Our goal here is to obtain a qualitative
assessment of the different phenomena observed in our results.

Oscillations in the cortical microcircuit model arise due to
delayed recurrent inhibition conveyed by inhibitory synapses. In
this regime, inhibitory interactions dominate the dynamics, and
the cortical microcircuit model can be significantly simplified,
preserving the key components responsible of the oscillations.
Specifically, we focus on parameters that result in an inhibition
driven regime in which

G
j
ee,G

j
ei ≪ G

j
ie,G

j
ii. (7)

Consequently, the dynamics of the cortical model obeys in good
approximation

α−1
e

du
j
e (t)

dt
≈ L[u

j
e (t)]+ G

j
ie(t)+

√

2Deξ
j
e (t) + S(t)

α−1
i

du
j
i (t)

dt
≈ L[u

j
i (t)]+ G

j
ii(t)+

√

2Di ξ
j
i (t) + S(t) (8)

This approximation renders independent the dynamics of the
inhibitory population from the activity of the excitatory cells.
The excitatory membrane potential is thus, on average, driven by
the activity of the inhibitory population, such that one may fully
characterize the activity of the network by considering inhibitory
ensemble dynamics. Assuming that the firing rate is high and that
σi is small enough, i.e., broad spatial connectivity, we can write

G
j
ii(t) ≈

∑Nm

k = 1
W

jk
ii (c) · f

[

uki

(

t − τ jk
)]

≈ wo
ii

∑Nm

k = 1
f [uki (t − τ̄ )] (9)
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TABLE 1 | Cortical microcircuit network model parameters.

Symbol Definition Value

� Network spatial size 10mm

Ne Number of excitatory neurons 800

Ni Number of inhibitory neurons 200

β Response function gain 300 a.u.

h Response function threshold −0.1 a.u.

τm synaptic time constant 10ms

αe Dendritic rate constant – excitatory 1.0

αi Dendritic rate constant – inhibitory 1.5

v Conduction velocity 0.128 m/s

c Connection probability 0.6

woee e → e synaptic connection strength 60

wo
ei

e → i synaptic connection strength 70

wo
ie
. i → e synaptic connection strength −70

wo
ii

i → i synaptic connection strength −70

σ2
e Excitatory synaptic spatial decay rate 1.0 a.u.

σ2
i

Inhibitory synaptic spatial decay rate 0.5 a.u.

D Intrinsic noise level 0.0001

dt Integration time step 1ms

where τ̄ =
∞
∫

0

τg (τ ) dτ ≈ 25 ms is the mean propagation delay

andg (τ ) = 2 c2

�2

(

�
c − τ

)

| 0 ≤ τ ≤ �
c . is the distribution of

delays in our model. Taken together, now we may fully describe
the response of the cortical populations to stimulation in the
inhibitory-driven regime by the following scalar equation,

α−1 d

dt
U j (t) = L

[

U j (t)
]

+ gN−1
∑N

j = 1
f [U j(t − τ̄ )]+ S (t)

(10)

where α−1 ≡ α−1
i and U j (t) ≡ u

j
i(t) was introduced to

distinguish the more detailed cortical microcircuit model and the
reducedmodel in the subsequent calculations. Themean synaptic
connectivity wo

ii = gN−1 has also been introduced to indicate the
average evaluated over all possible pairs of inhibitory neurons.
According to the derivations above the mean synaptic action is
inhibitory with g < 0. The non-linear response function above

remains the same with f [u] =
(

1+ exp
[

−β
(

u− h
)])−1

. This
kind of approximation has been used frequently in the literature
(e.g., Curtu and Ermentrout, 2004) to express the dynamics of
excitatory and inhibitory networks from the perspective of a
particular cellular species. For the rest of the analysis, we assume
that L [U] = −U.

Mean Field Dynamics in Presence of
Stimulation
A common approach when trying to understand the essential
dynamical characteristics of an otherwise high-dimensional
system is to derive mean-field representations. What is different
here is that we apply the mean field reduction by including
stimulation in the calculations. As such, let us further assume
that limit cycle solutions occur in a mean-driven regime in which

the local dynamics can be seen as small independent fluctuations
around a slowly varying mean Ū i.e.,

U j (t) = Ū (t) + V j(t) (11)

where Ū is given by

Ū (t) = N−1
N

∑

i=1

U j(t) ≡< U>N (12)

and < >N is an average performed over the N units of the
network. As an ansatz, local fluctuations V j from the mean obey
the zero mean processes

d

dt
V j = −V j + S (t) − µS, (13)

where we have used the fact that L [U] = −U and where

µS =
t+T
∫

t

S(s) ds (14)

for T sufficiently small. Then taking the mean over N neurons in
Equation (10) above yields the mean dynamics of the network in
presence of stimulation

d

dt
Ū (t) = −Ū (t) + gF

[

Ū (t − τ̄ )
]

+ µS . (15)

Now the network dynamics are governed by the effective neuron
response function (Hutt et al., 2016)

F
[

Ū
]

=
∫

�(ν)

f
[

Ū + V
]

ρ(V)dV (16)
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where ρ(V) is the probability density function of the solution
of Equation (13). According to this framework, the effect
of a dynamic stimulus S(t) with stationary statistics can be
characterized by looking at the probability density function
ρ (V) associated to the linear and zero-mean processes whose
dynamics obey Equation (13) and its convolution with the
response function of the network as per Equation (16). We note
that the mean field equation must be interpreted.

RESULTS

Response of Cortical Neurons to
Stimulation
To better understand the role of stimulation waveforms on the
entrainment of network oscillations, we integrated numerically
Equation (2) for different functional forms of the input term
S(t): positive pulses, negative pulses, sinusoidal stimulation, and
Gaussian white noise. In each case, all model parameters, except
those related to the stimuli, were kept constant. Representative
network responses to different waveforms are plotted in Figure 1.
As seen in Figure 1A, without any stimulation, and for the

set of parameters chosen, the network stabilizes into alpha-like

synchronous activity. Spiking of the neurons is locked to these
emergent global oscillations, resulting in a clear peak frequency
of 10Hz. When a pulse train stimulus with positive polarity
was applied continuously at a rate of 50Hz, network oscillations

were found to accelerate with respect to baseline, stabilizing at
a frequency of about 12Hz. As shown in Figure 1B, the power

of the associated oscillations and spike coherence were also both

increased. We here recover the results of Herrmann et al. (2016),
in which high-frequency (positive) pulse trains trigger non-

linear acceleration of endogenous oscillations by changing the
natural frequency of the solution of Equation (2). In Figure 1C

however, when the network is stimulated continuously with a
pulse train of negative polarity at a rate of 50Hz, the opposite

occurs: endogenous oscillations are slowed-down with respect

to baseline. This novel effect, in contrast to the positive pulses,
was not predicted by previous theoretical work. When sinusoidal

stimulation was applied as shown in Figure 1D, endogenous
oscillations were found to be entrained in a similar fashion as

with positive pulses (cf. Figure 1A). Uncorrelated Gaussian white

noise was found to have an analogous yet more pronounced effect
(Figure 1E). Taken together, these results indicate that different

stimulation waveforms have variable impact on the entrainment
of endogenous network oscillations.

To understand how these results depend on stimulation

settings and waveforms, we measured the response of the
network while stimulation parameters were changed. For pulse

trains and sinusoidal inputs, frequencies were systematically

varied between 0 and 100Hz with fixed amplitude. In the
case of Gaussian white noise, the intensity of the noise was

gradually increased between 0 and 0.01. Results are shown in
Figure 2. Figure 2A shows that for positive pulses, increasing
the stimulation frequency gradually shifted the peak response
frequency from 10 to 12Hz (Herrmann et al., 2016). The results
were quite different with negative pulses: In Figure 2B, the

peak frequency was slowed down and decreased in intensity
(power decreases) until endogenous oscillations lost stability.
Acceleration of endogenous oscillation was also observed in
Figures 2C,D when sinusoidal input and Gaussian white noise
were used, respectively. The different periodic stimulation cases
are also depicted in Figure 3, where the range of stimulation
frequencies is narrowed to a range about the endogenous
frequency.

For stimulation frequencies close to but larger than the
endogenous frequency, positive pulses and sinusoidal stimulation
entrain the endogenous rhythm. Conversely, negative pulses
entrain the endogenous rhythm for a more narrow range of
frequencies.

Impact of Stimulus Waveform on Alpha
Oscillations: Theoretical Insights
To understand the mechanism behind the numerical
observations made with the cortical microcircuit model
(Figures 1, 2), we developed a reduced non-linear network
model based on a mean-field approximation that preserved the
mean features of the initial model, but remained analytically
tractable (see section Materials and Methods).

As a first step to understand how the stimulation waveform
affects endogenous oscillations, we applied the reduced neural
oscillator model to characterize the effect of different stimulation
waveforms on the response function of the network in Equation
(15). These computations show that different stimulation
patterns—leading to different statistics of the fluctuations around
the activity mean—shape the effective response function in a
plurality of waveform-dependent ways. The cases analyzed below
are sequentially illustrated in Figure 4.

1. Pulse Train Stimulation

Let us first consider the stimulus waveform

S (t) = S
∑

n
δ

(

t −
2π

r
n

)

, (17)

where δ (0) = 1 and zero otherwise. This pulse train has a rate
r and an intensity ofS. Using the mean-field formalism we have
detailed earlier, fluctuations about the mean network activity ū
obey

d

dt
V j = −V j + S

∑

n
δ

(

t −
2π

r
n

)

− µS (18)

with µS = Sr. To obtain the effective neuron response function,
one has to convolve the firing rate function f with the normalized
probability density ρ(V) for the process (18) according to
Equation (16)

ρ (V) =
{

r
V−µS

| V ∈ [Se−
1
r , S]

0 | otherwise
(19)

Frontiers in Neuroscience | www.frontiersin.org 5 June 2018 | Volume 12 | Article 376

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hutt et al. Effect of Stimulation Waveform on Alpha Oscillations

FIGURE 1 | Variability of the cortical microcircuit network responses to stimulation with diverse waveforms. Stimulation has different impact on network resting state

oscillations depending on the waveform applied. (A) Baseline oscillatory activity in absence of stimulation. The network neuroelectric output is plotted (top), as well as

the spiking activity of the excitatory neurons (middle) and the power spectral density of the network output (bottom). The network displays stable oscillations of 10Hz

and ensemble spiking is phase locked to these intrinsic oscillations. (B) Positive pulses with a frequency of 50Hz are found to accelerate endogenous oscillatory

activity from 10Hz (A) up to 12Hz, entraining the neurons into faster cycles. Here, S = 2.5. Power expressed at the peak frequency also decreases with respect to

baseline. (C) Negative pulses at 50Hz, in contrast, decelerate endogenous oscillations from 10Hz to about 8Hz, and significantly suppress the power of endogenous

oscillations. Here S = 2.5. (D) A sinusoidal waveform delivered at 50Hz is also found to accelerate endogenous oscillations. The intensity of the sinusoidal signal, by

virtue of being a continuous (i.e., not a discontinuous) was set to a smaller amplitude. Here S = 0.5. (E) For reference, Gaussian white noise (GWN) is also applied,

and the 10Hz oscillations are significantly accelerated from 10Hz (A) up to 13Hz. Here the noise intensity was increased from D = 0.0001 (A–D) to D = 0.01.

In the limit of high gain, f [U] ≈ H[U − h], then the effective
response function becomes

F
[

Ū
]

= r

S e−
1
r

∫

S

H
[

Ū + V − h
]

V
dV

= −rH
[

Ū + S− h
] (

ln
[

−Ū
]

− ln [S]
)

+ rH

[

Ū + S exp

(

−
1

r

)

− h

]

(

ln
[

−Ū
]

− ln

[

S exp

(

−
1

r

)])

. (20)

Then the network mean activity ū obeys the mean-field dynamics

d

dt
Ū (t) = −Ū (t) + gF

[

Ū (t − τ̄ )
]

+ S r. (21)

Note that in these calculations, we have made no assumptions on
the value of S and as such the result above holds for both positive
and negative pulse trains. These two cases (S > 0, S < 0) are
illustrated in Figures 4B,C.

2. Sinusoidal Stimulation

Let us now consider the periodic stimulation

S (t) = S sin(2πωst) (22)

with angle frequency ωs. Fluctuations around the mean obey

d

dt
V j = −V j + S sin(2πωst) (23)

since µS = 0. This case was studied in detail in Hutt et al. (2016).
One can show that the associated normalized probability density
function ρ(V) reads (Baker, 2006)

ρ (V) =
1

π

√

(S/2πωs)
2 − V2

(24)

and consequently the effective non-linearity is given by

F̃
[

Ū
]

≈
µ
∫

−µ

H
[

Ū + V − h
]

π

√

(

S
2πωs

)2
− V2

dv =
1

π
sin−1(2πωSŪ/S)

+
1

2
, − 1 ≤ 2πωSŪ/S ≤ 1 (25)

F̃
[

Ū
]

= 1 , 2πωSŪ/S > 1

F̃
[

Ū
]

= 0 , 2πωSŪ/S < −1

As illustrated in Figure 4D, the effective response function of the
system is primarily linearized locally near the inflection point
(i.e., h = 0).

3. GaussianWhite Noise Stimulation

Next, we study Lefebvre and Hutt (2013):

S (t) = Sj (t) =
√
2D ξj(t), (26)
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FIGURE 2 | Diverse effects of stimulation waveform and frequency on the power spectrum in the cortical microcircuit network model. In each case, a waveform was

chosen and used to stimulate the network. Stimulation frequency was increased while the power spectrum of the network responses was calculated. (A) Positive

pulses, of frequencies ranging from 1Hz up to 100Hz are found to shape endogenous activity. The diagonal lines, representing the linear contribution of the stimulation

waveform, delineate regions of entrainment. For slower frequencies, the network peak frequency shifts from its endogenous value to the stimulation’s: neurons

ensemble spiking is phased locked to the stimulation. For higher stimulation frequencies, endogenous oscillations accelerate, indicating non-linear entrainment. (B)

Negative pulses do the opposite. Entrainment is weaker, and endogenous oscillations are gradually slowed down until they are suppressed as stimulation frequency is

increased. (C) Sinusoidal inputs show a similar yet more pronounced effect as positive pulses. (D) By increasing the variance of the Gaussian white noise (GWN) input,

the network’s oscillations also accelerate. No entrainment can be seen as the stimulation possessed no dominant frequency. Parameters are as in Figure 1.

FIGURE 3 | Impact of stimulation waveform on endogenous oscillations for near-resonant stimulation frequencies. This represents a close-up of the data plotted in

Figure 2, over the interval 8–20Hz. (A) Positive pulses with frequency ranging from 8 to 20Hz shows that entrainment of network activity occurs for stimulation

frequencies near the endogenous frequency of 10Hz. The entrainment region is also non-symmetrical around that frequency: phase-locking is more pronounced to

the right than to the left, indicating that the endogenous frequency accelerates as the stimulation frequency changes. (B) Negative pulses have a narrower entrainment

region, and the network slowing down can readily be seen dominating the dynamics. (C) Sinusoidal stimulation is clearly more effective at entraining endogenous

oscillations: the network dynamics is fully phase-locked to the stimulation frequency over this interval. Gaussian white noise (GWN) is here omitted because no

entrainment occurs (see Figure 2). In all panels, the stimulation amplitude is the same. Parameters are as in Figure 2.
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FIGURE 4 | Effect of stimulation polarity and fluctuation distribution on the effective response function of the reduced model. Stimulation-driven fluctuations around

the mean change the effective response function of the system in a waveform-dependent way. (A) In absence of stimulation, or in the case of a constant DC shift, the

system’s response function remains unchanged (top): the probability density function of the fluctuations is a delta function centered at 0. (B) For positive pulses, the

network response function is linearized but primarily over the positive U axis. This is due to the asymmetrical shape of the probability density function. Note the change

in effective threshold, due to the non-zero mean of the stimulation. Here S = 1, r = 0.2. (C) Analogous effect in presence of negative pulses, where the effective

response function of the system is now linearized toward the negative U axis. Here S = −1, r = 0.2. (D) The sinusoidal input shapes the response function in a hybrid

but symmetrical way, as its mean is centered at U =0. Here S = 0.1, ωs =12Hz. (E) Gaussian white noise (GWN) fully smoothes the system’s response function,

where the probability density function of the fluctuations are normally distributed and also centered around 0. Here D = 0.0001. All other parameters are as in Table 2.

TABLE 2 | Reduced model parameters.

Symbol Definition Value

N Number of Interacting Units 100

β Response function gain 300 a.u.

h Response function threshold −0.1 a.u.

τ̄ Effective mean delay 25ms

g Mean synaptic coupling −15 a.u.

k Linear operator gain constant −1 a.u.

dt Integration time step 1ms

where ξj are Gaussian white noise processes such that < ξjξk >=
δjk i.e., all neurons in the network experience independent
stochastic input of intensityD. This case was also studied in detail
in Hutt et al. (2016). Fluctuations around the mean obey the
stochastic Langevin equations

d

dt
V j = −V j +

√
2D ξj(t) (27)

where µS = 0. The associated probability density function ρ(V)
is a symmetric Gaussian

ρ (V) =
1

√
2πD

exp[−
V2

2D
]. (28)

Convolving with the threshold non-linearity yields

F̃
[

Ū
]

≈
1

√
2πD

µ
∫

−µ

H
[

Ū + V − h
]

exp

[

−
V2

2D

]

dv =
1

2
+

1

2
erf[

Ū
√
2D

].

(29)
This equation states that additive noise linearizes the effective
neuron response function as D is increased, cf. Figure 4E.

4. Continuous Stimulation

At last, let us consider the simple tonic stimulus

S (t) = S = constant (30)

In this particular case, the input has zero variance and the
effective response function is thus unchanged

F [U] = H
[

U − h
]

≈ f [U] (31)
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The effect on the dynamics can be understood by introducing the
change of variable

Ū → Ū − S (32)

which leads to the mean–field dynamics

d

dt
Ū (t) = −Ū (t) + gF̃

[

Ū (t − τ̄ )
]

(33)

with F̃ [U] = H[U − h̃] and h̃ = h − S. As such, the
impact of continuous stimulation is analogous to a change in the
response function threshold. This is in good agreement with the
reported change in input/output response functions measured
experimentally using tDCS (Lafon et al., 2017).

Impact on Alpha Peak Frequency
As the derivations above have pointed out, stimulation statistics
are reflected by changes in the effective response function, leading
to mean-field equations with variable non-linear structures.
Moreover, linear stability of the equilibria will also depend on
stimulation statistics, which will be reflected on the features of
oscillatory solutions. Regardless of stimuli waveform, limit cycle
solutions are deployed around the implicitly defined equilibrium

Ūo = gF
[

Ūo

]

+ µS . (34)

The linearized dynamics around the steady state ūo is

d

dt
Ū (t) = −Ū (t) + R[Ūo] Ū (t − τ̄ ) (35)

where R
[

Ūo

]

= g F
′
[Ūo] and R

[

Ūo

]

< 0 for the cases in
Figure 4. We highlight here that the linear gain R[Ūo] depends
explicitly on the stimulation waveform through the convolved
statistics in the effective function F and implicitly through
the stimulus corrected equilibrium state Ūo. To determine the
frequency of emergent alpha oscillations, the iterative Galerkin
method (He, 2005; Liu, 2005) is helpful to find a frequency ω

minimizing the measure

J =
2π/ω
∫

0

(
d

dt
Ū − F[Ū(t − τ̄ )]) · cos(ωt)dt (36)

Here we may consider small input stimuli i.e., S ≪ 1and gain in
the linear case

Jlin =
2π/ω
∫

0

(
d

dt
Ū − R[Ūo]Ū(t − τ̄ )) · cos(ωt)dt (37)

Using the ansatz Ū (t) = A cos(ωt)+ Ūo, one obtains for the first
iteration

Jlin = −
Aπ

(

R[Ūo] cos (ωτ) − 1
)

ω
(38)

FIGURE 5 | Peak frequency of the reduced model as a function of the linear

gain. For a fixed delay, changes in the linear gain due to the stimulation will

mediate the non-linear entrainment of the endogenous oscillations. Increases

in |R| will cause a slowing down of endogenous oscillations, e.g., negative

pulses, while decreases in |R| will do the opposite and increase the network

peak frequency.

Setting Jlin = 0 and solving for ω yields an approximation of the
linear frequency as a function of R[ūo] and delay τ i.e.

ω ≈
arccos

(

1
R[Ūo]

)

τ̄
(39)

Equation (36) approximates well the dependence of the
network peak frequency on stimulation statistics whenever the
stimulation amplitude remains small and its frequency high.
Figure 5 illustrates how the network endogenous frequency
depends on the linear gain for the delay considered in our model
(i.e., τ̄ = 25ms). Although R[Ūo] cannot always be computed
analytically due to the implicit condition for the equilibrium
(34), some specific cases such as Gaussian white noise for
instance, remain tractable and accurate (Hutt et al., 2016), and
can otherwise be computed numerically.

According to the local approximations above, effects of
stimulation waveform on equilibrium states and oscillations
can be characterized by local, stimulus-induced changes in the
linearized gain, evaluated at the fixed point Ūo. Equation (39)
above states that ω is inversely proportional to |R|: increases
(resp. decreases) in the linear gain R in Equation (35), i.e.,
decreases (resp. increases) of the slope of F[Ūo], translates
into an acceleration (resp. deceleration) of the network peak
frequency. For the stimulation types studied and shown in
Figure 4, this implies that network oscillations slow down
whenever the system becomes locally non-linear, i.e., the transfer
function becomes steeper, and accelerate when the network is
pushed toward the linear regime (Hutt et al., 2016), i.e., the
transfer function becomes more flat. Figure 4 (bottom panels)
shows the non-linear response function and we observe that
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the slopes F
′
[Ūo] of symmetric probability densities ρ are

symmetric with respect to the threshold h, set here to 0, whereas
the slopes of non-symmetric probability densities are non-

symmetric. Since F
′ [
Ūo

]

∼R for symmetric probability densities,
the effect of external stimulation depends on the distance of
the equilibrium state to the threshold only in contrast to non-
symmetric probability densities. This highlights the importance
of the shape of the probability density function and the
equilibrium state.

According to this framework, mathematically the sensitivity
of network oscillations to the stimulation waveform depends
fully on how the probability density ρ(V) interacts with the
network response function f . An important implication of this
result is that different stimulus waveforms that possess the same
statistical properties, i.e., the same probability density function
ρ(V), will affect oscillations in the same way since the effective
response function will possess an identical non-linear structure.
This significantly reduces the dimensionality of the stimulus
waveform parameter space, in the context of the optimization of
non-linear acceleration/deceleration.

Using the approach outlined above, we computed the peak
frequency of oscillations for various stimulation waveforms and
compared them to the values computed numerically in the
reduced networkmodel. Results are presented in Figure 6. For all
waveforms considered, the convolution approach (Equation 39)
captured well the major effect of high-frequency stimuli on non-
linear oscillations for small values of S, linking statistics of the
input waveforms to the system’s response. Themean field analysis
confirms that positive (resp. negative) pulse trains accelerate
(resp. slow down) ongoing oscillations, while both sinusoidal and
Gaussian white noise inputs increased the endogenous frequency
of the network.

The results above hold for high-frequency (or stochastic)
stimulation; what happens if this condition is relaxed? We
investigated this question numerically and results are plotted
in Figure 7. For slower frequencies, the network dynamics
were found to be dominated by (super- and sub-) harmonic
entrainment: endogenous oscillations maintain stable phase
relationships with the stimuli, sequentially jumping from one
harmonic to the next, as seen from the Arnold tongue
patterns portrayed in both Figures 7A,B. There, the waveform-
dependent non-linear interactions between stimulation and
network oscillations can be observed through the presence of
tilted Arnold tongues, due to non-linear shifts in the natural
frequency of the system (Lefebvre et al., 2015; Herrmann et al.,
2016; Hutt et al., 2016). Surprisingly, negative pulses were found
to be more efficient at entraining ongoing oscillations. Indeed,
Figures 7A,B show that Arnold tongues are wider for negative
pule trains (S < 0) compared to positive ones (S > 0).
Also, negative pulses were found to suppress network oscillations
beyond specific values of stimulation amplitude and frequency.
We note that this is fully analogous with the dynamics observed
in Figure 2where peak power is gradually suppressed by negative
pulse trains whose frequency exceeds ∼50Hz for S = 2.5.
Beyond this point, the network does not exhibit any internal
resonances and the peak frequency is the same as the stimulation
frequency.

DISCUSSION

Electromagnetic brain stimulation has become increasingly
popular to support a wide variety of clinical interventions.
It is routinely used in the treatment of various types
of neuropsychiatric disorders such as treatment-resistant
depression (Ferrucci et al., 2009), Parkinsonism (Hess, 2013),
Schizophrenia (Hoy et al., 2016), and the number of potential
applications is increasing rapidly. Both invasive (e.g., DBS)
and non-invasive (e.g., TMS, TACS) paradigms are emerging
as strong alternatives to pharmaceutical treatments and have
further raised the fascinating prospect of entraining brain
rhythms to engage neural circuits at a functional level (Fröhlich,
2015). However, the relationship between stimulation waveform
and entrainment outcomes remains a difficult and open problem.
How the different stimulation temporal patterns interact with
the intrinsic non-linear structure of cortical circuits to shape
synchronous neural dynamics is also poorly understood.

To answer some of these questions, we have combined
computational and mathematical methods to reconcile the
effect of stimulation at the mesoscopic neural ensemble and
macroscopic population scales using mean-field techniques.
Using a detailed cortical microcircuit model, we have numerically
explored the effect of stimulation pulse trains, sinusoidal
inputs and Gaussian white noise stimulation on resting state
alpha oscillations. First, our simulations have confirmed that,
as expected, distinct waveforms have different entrainment
properties. Notably, while positive pulse trains were found
to accelerate ongoing oscillations, negative pulses did the
opposite. To understand the source of this novel finding, we
have developed a framework in which the mesoscopic and
waveform-dependent effects of stimulation on oscillatory activity
can be characterized by a change in the neuron response
function, mathematically speaking through a convolution with
the probability density function associated with stimulation-
induced fluctuations around the mean. Using this approach,
it was possible to relate the statistics of stimuli to the
acceleration/slowing down of non-linear oscillations using a
reduced neural oscillator model that preserved the non-linear
structure of the more detailed cortical microcircuit model.
Taken together, these results show that the core differences in
entrainment properties between various stimulation waveforms
can be explained by population-scale changes in the effective
response function of the network—an emerging perspective in
line with recent findings in the literature (Kar et al., 2017; Lafon
et al., 2017). The approach we have put forward is relevant
especially in cases where the relative phase of stimulation with
respect to ongoing oscillations is not known and where the
stimulus and the ongoing activity coexist on different time
scales. Brain stimulation, especially in the non-invasive case,
engages populations of neurons with effects that go beyond
single cells and extend whole circuits. As such, the use of mean-
field techniques is warranted, providing appropriate description
of the dynamics at these larger spatial scales. The non-linear
structure of neuron response functions reflects the combined
effect of multiple neurophysiological mechanisms such as ion
channel dynamics (e.g., Hutt and Buhry, 2014), adaptation
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FIGURE 6 | Waveform-dependent non-linear entrainment of endogenous oscillations in the reduced model. The convolution approach allows us to compute the

dependence of the system’s peak frequency on the stimulation parameters. (A) Peak endogenous frequency as a function of the amplitude of pulses, either positive or

negative (top). The theoretical calculations (red line), based on local linear analysis, are accurate for small pulse amplitudes, and diverge away from the simulated

dynamics (black line) from there. The effect of pulses on the network peak frequency is monotonic and asymmetrical. The effect of the pulses’ amplitude on the steady

state ūo is also plotted (bottom). (B) Expectedly, sinusoidal waveforms have a symmetrical effect whether the amplitude is positive or negative, and are found to

accelerate the system’s peak frequency in both cases. (C) Gaussian White noise (GWN) also accelerates endogenous oscillations, in a more pronounced way. (D) For

comparison, a constant DC-shift input has an analogous effect as positive pulses, but the effect on the system’s steady state is different.

FIGURE 7 | Numerically computed Arnold Tongues of reduced model for different waveforms. Given the different impact of the stimulation on the network response

function and oscillatory properties, different waveforms possess different entrainment properties (linear or not). (A) Peak endogenous frequency as a function of

varying stimulation frequency and amplitude for pulse waveforms. The triangular regions represent Arnold tongues were the system’s activity is phase locked to the

stimulus drive. The resulting map is asymmetrical, where acceleration can be seen for positive pulses, and slowing down (and loss of stability) can be observed for

negative pulses. Notice also that the Arnold tongues are bent to the right, a clear signature of a change in endogenous frequency due to non-linear entrainment. The

dashed line denotes the parameter border below which network activity vanishes. (B) In contrast, sinusoidal inputs have fully symmetrical entrainment regions. These

are analogously bent to the right, as expected.
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(e.g., Benda et al., 2007) as well as recurrent feedback (e.g.,
Sutherland et al., 2009). As such, our results suggest that
distinct waveforms engage neural circuits through a plurality
of neurophysiological mechanisms, yet generate equivalent
outcomes as far as synchronous oscillations are concerned.

The analysis we have conducted has revealed that in regimes of
high frequency stimulation, distinct waveforms may have similar
impact on non-linear neural oscillations. Indeed, positive pulses,
sinusoidal inputs and Gaussian white noise were all found to have
similar influence on ongoing oscillations when the stimulation
frequency (or intensity D for Gaussian white noise) is high,
indicating that, within these regimes, it is possible to reduce
the high-dimensionality of the stimulation waveform parameter
space: multiple stimulation patterns have equivalent effect on
synchronous oscillations.

Our analysis has shown that, in first approximation, the local
features of the effective response function F near the fixed point
Ūo determine primarily the impact of stimulation waveforms on
limit cycle solutions. This means that the stimulation efficacy is
highly dependent on the state: changes to the response function
are commensurate with the proximity of the fixed point, implying
that the samewaveformwill have different impact on endogenous
oscillations if the equilibrium location in phase space differs. This
is in complete agreement with numerous recent findings showing
the state dependence of entrainment efficacy (Neuling et al., 2013;
Alagapan et al., 2016).

The results presented in this study are aimed at obtaining
a better understanding of the properties of mesoscopic
neural population activity in regimes where the dynamics are
dominated by recurrent inhibition. In our model, this arises
due to differential spatial profiles of excitatory vs. inhibitory
connections. Specifically, excitatory connections dominate at
smaller spatial scales, whereas inhibitory connections dominate
at larger spatial scales. This is the 1-D analog of classic
“Mexican Hat” profiles of lateral connectivity, as observed for
example in visual cortex (Amari, 1977; Kang et al., 2003). Other
neural population-scale mechanisms of rhythmogenesis that
have been studied in the experimental and theoretical literature
include intra-columnar circuit motifs (Wilson and Cowan, 1972;
Jansen and Rit, 1995; Womelsdorf et al., 2014) and long-range
thalamocortical loops (Lopes da Silva et al., 1974; Robinson
et al., 2001). Distinguishing the differential contributions of
these and other mechanisms to a given set of empirical
observations is a challenging and active research topic. However,
despite major differences in their exact neuroanatomical and
neurophysiological components, many of these different circuit
mechanisms can be understood as having in common the same
core rhythmogenic phenomenon—namely delayed recurrent
inhibition. As such, the mathematical techniques developed and
insights obtained in the present study regarding changes in
neural population response functions under different stimulation
waveform regimes may, we suggest, also prove useful for
characterizing analogous responses in other modeling and
experimental contexts.

In order to fully characterize the effects of electromagnetic
brain stimulation, it is necessary to consider both local effects
at the stimulation site, and distal effects that result from

propagation of stimulated response throughout the brain via
long-range white matter pathways (Massimini et al., 2005). Our
focus in this study has been on the first of these, with the
neural population and mean field models presented describing
oscillatory responses to various stimulation waveforms in an
isolated patch of cortex. An important direction for future work
shall be to extend this approach to investigate polysynaptic and
large-scale network effects. Such networks, extending on larger
spatial scales, are built of interconnected population patches, as
considered here. The rapidly growing literature on stimulation
and control problems in macro-connectomics has primarily used
relatively simple descriptions of neural population dynamics such
as planar oscillators (e.g., Spiegler et al., 2016), phase oscillators
(e.g., Gollo et al., 2017), or linear integrators (e.g., Betzel et al.,
2016), and typically focuses on spatial pattern formation and
recovery or modulation of canonical fmri-derived resting state
networks. A number of studies have examined power spectrum
changes in M/EEG-relevant frequency ranges following focal
stimulation (Spiegler et al., 2010; Cona et al., 2011, 2014; Fung
and Robinson, 2014). Recent work by Spiegler and colleagues
(Kunze et al., 2016) observed a sharpening and acceleration
of peak oscillatory frequencies, as well as an increase in long-
range synchrony, following simulated transcranial direct current
stimulation in a model of coupled neural masses. Importantly,
these authors found that heterogeneity in the level of neural
population response function saturation—which arose due to
the network topology and to the spatially diffuse effect of
electrical brain stimulation—played amajor role in shaping large-
scale network activity. Likewise, developing a spatially mapped
characterization of node-wise variation in response function
modifications due to diffuse and inhomogeneous stimulation
current distributions shall be important for translating the
theoretical insights obtained in the present study to improved
experimental paradigms and clinical treatments. Taken together
and in conjunction with previous studies, our results reinforce
the notion that stimulation effects and optimization has to
be considered from multiple spatial scales. Indeed, previous
work from the authors have demonstrated that delays, which
become non-negligible as the spatial scale considered increases,
play an important role not only on the immediate response
of the stimulated networks (Hutt and Atay, 2007; Lefebvre
et al., 2015; Hutt et al., 2016), but also on post-stimulation
after effects (Alagapan et al., 2016), and thus play a key role
in defining the entrainment properties of non-linear neural
systems.
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