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As an endogenous neuromodulator, hydrogen sulfide (H»S) exerts multiple biological
effects in the brain. Previous studies have shown that HoS is involved in the regulation
of neural synaptic plasticity and cognition in healthy rodents. It is well known that
there is a progressive decline of cognitive function that occurs with increased age. The
purpose of this study was to investigate the role of HoS in aging-associated amygdalar
synaptic plasticity and cued fear memory deficits as well as to explore the underlying
mechanisms. We found that H»S levels in the amygdala were significantly lower in aged
rats when compared with healthy adult rates, which displayed significant deficits in long-
term potentiation (LTP) in the thalamo-lateral amygdala (LA) pathway and amygdala-
dependent cued fear memory. Bath application of an H»S donor, sodium hydrogen
sulfide (NaHS), significantly reversed the impaired LTP in brain slices from aged rats, and
intra-LA infusion of NaHS restored the cued fear memory in aged rats. Mechanismly, we
found that Ho S treatment significantly enhanced NMDAR-mediated synaptic responses
in the thalamo-LA pathway of aged rats. Notably, GIuN2B-containing NMDARSs, but not
GIluN2A-containing NMDARs, contributed to the effects of HoS on aging-associated
impairments of amygdalar LTP and fear memory, because applying GIuUN2B antagonist
could abolish the beneficial effects of NaHS treatment on amygdalar LTP and cognitive
performance in aged rats. Collectively, these results show that H»S can reverse aging-
associated amygdalar synaptic plasticity and fear memory deficits by restoring the
function of GIuN2B-containing NMDARSs, suggesting that supplement of HoS might be
a therapeutic approach for aging-related cognitive disorders.

Keywords: aging, hydrogen sulfide, amygdala, synaptic plasticity, fear memory, NMDA receptor

INTRODUCTION

Cognitive decline is a natural part of aging (Corey-Bloom et al., 1996; Bishop et al., 2010) and
memory is normally the first cognitive domains to decline as individuals age (Singh-Manoux et al.,
2012). As a particular kind of memory, fear memory has been shown to be severely affected
during the aging process (Deptula et al., 1993; Gould and Feiro, 2005; Fukushima et al., 2008;
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Kaczorowski et al, 2012; Zeng et al, 2012). Aging-related
processes, including inflammatory, oxidative stress, endocrine
and immune changes cause functional and anatomical alterations
of the amygdala, a key brain area for fear memories, in
turn contributing to aging-associated fear memory impairments
(McGaugh, 2000; von Bohlen Und Halbach and Unsicker, 2002;
Roozendaal et al., 2008; Kumar, 2015).

Synaptic plasticity, which includes long-term potentiation
(LTP) and depression (LTD), is a broadly utilized cellular model
of memory and learning (Lynch, 2004). Numerous studies have
demonstrated a decline in LTP with increased age, and this
defect in LTP is believed to underlie age-associated memory
impairment (Mothet et al., 2006; Yang et al., 2010; Haxaire et al,,
2012). The N-methyl-d-aspartate receptor (NMDAR) is one of
the excitatory glutamate receptors known to play a significant role
in both memory and learning (Collingridge, 1987; Kumar, 2015).
Mounting evidence has indicated that aging is associated with
hypofunction of NMDAR:s in regions of the brain associated with
synaptic plasticity, memory, and learning (Kumar, 2015). For
instance, NMDAR-mediated excitatory postsynaptic potentials
(EPSPs) in the hippocampus are decreased in aged rodents
(Yang et al., 2010; Haxaire et al., 2012) and reduced protein
expression of NMDARSs is observed in the hippocampus of aged
animals (Liu et al., 2008; Zhao et al., 2009; Marquez Loza et al,,
2017). Nowadays, it is generally accepted that hypofunction of
NMDARSs contributes to impediments in memory and learning
that occur with increased age (Das and Magnusson, 2011; Foster,
2012; Kumar and Foster, 2013; Li et al., 2017) and augmenting the
expression and functional activity of the NMDAR subunit could
overcome the cognitive impairments in aged animals (Slutsky
et al., 2010; Robillard et al., 2011; Brim et al., 2013; Wang et al,,
2014).

Hydrogen sulfide (H,S) is a highly toxic and flammable
gas that is colorless in appearance. Currently, there is
mounting evidence to suggest that H,S may function as
an endogenous gasotransmitter because it regulates several
physiological and pathophysiological activities in different
biochemical processes (Paul and Snyder, 2015, 2017). There
are two mechanisms by which H,S produced at high levels
(50-160 pwmol/L) in the brain, either by the union of cysteine
aminotransferase with 3-mercaptopyruvate sulfurtransferase
(3-MST) or by the enzyme cystathionine-B-synthase (CBS)
(Hu et al., 2011). Abe and Kimura (1996) were the first
researchers to investigate the influences of H,S on synaptic
plasticity and the function of NMDAR function. They showed
that physiological concentrations of H,S could specifically
enhance NMDAR activity and facilitate LTP induction in
the hippocampus (Abe and Kimura, 1996). Dysfunction
of H,S signaling contributes to cognitive impairments in
degenerative disorders, such as ischemic cerebral stroke and
Alzheimer’s disease (AD) (Li et al., 2011; He et al., 2014;
Yang et al., 2016). Aged rats showed decreased hippocampal
levels of H,S and exogenous H,S could alleviate the impaired
hippocampal NMDAR-dependent LTP (Li et al., 2017). However,
the role that H,S may play in aging-associated amygdalar
synaptic plasticity and deficits in fear memory remains
unknown.

Previously, we have shown that H,S can exert a regulatory
role in amygdalar LTP and cued fear memory in rats (Wang
et al., 2015; Chen et al., 2017). Specifically, treatment with H,S
promoted cued fear memory and amygdalar LTP by improving
NMDAR function in normal rats (Wang et al., 2015); inhibition
of endogenous H,S generation reduced the synaptic responses
of amygdalar NMDARs and impaired cued fear memory in
rats (Chen et al, 2017). The aim of this current study was
to investigate if H,S could reverse aging-associated amygdalar
synaptic plasticity and cued fear memory impairments in aged
rats. H,S levels in the amygdala of aged rats were first examined.
Then we investigated the influence of H,S donor on aging-
associated amygdalar LTP and cued fear memory impairments.
Next, NMDAR functions were determined to investigate the
mechanisms by which H,S exerts beneficial effects on aging.

MATERIALS AND METHODS

Animals

Thirty-two adult (3-4 months) and 60 aged (22-24 months)
male Sprague-Dawley rats were obtained from the Hunan SJA
Laboratory Animal Company (Changsha, Hunan, China). Rats
were fed in a room with controlled light-dark cycle (12:12) and
steady temperature (22 £ 2°C). Water and food were supplied
ad libitum. This research was carried out in accordance with
the EU Directive 2010/63/EU and was approved by the Review
Committee for the Use of Human or Animal Subjects of Jiangxi
Mental Hospital.

Measurement of HoS

The content of H,S in amygdala tissue was examined according
to a method described in previous studies (Yang et al., 2016;
Chen et al.,, 2017). In brief, the tissue of amygdala was isolated
and homogenized in ice-cold KHPOy4 buffer (pH 7.4, 10 pL
buffer per mg tissue). The homogenate was centrifuged, and then
200 wL of supernatant was added to sealed Eppendorf tubes
containing 200 L zinc acetate (1% w/v). Then, 150 L N,N-
dimethyl-p-phenylenediamine sulfate (20 mM) in 7.2 M HCl and
100 pL FeCl3 (30 mM) in 1.2 M HCI were added. Reactions
were terminated by TCA (10% w/v, 250 pL) after 15 min color
development. The resulting solutions were transferred to 96-
well plates, and the absorbance of the mixture was measured at
670 nm.

Electrophysiological Recording

Field potentials recording was used to record LTP and NMDAR-
mediated synaptic responses in the thalamo-LA pathway of rats.
These procedures were conducted as previously described (Chen
et al., 2017). In brief, the brain of the rat was quickly removed,
and coronal slices (350 jum) containing amygdala were cut using
a vibratome in ice-cold artificial cerebrospinal fluid (ACSF).
Slices were recovered for at least 1.5 h by putting them in a
holding chamber filled with oxygenated ACSF at 28°C. Then,
a single slice was transferred to the perfusion-type recording
chamber which was continuously superfused with ACSF pre-
gassed with 95% O,/5% CO;. A bipolar electrode was placed
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in the internal capsule and a 3.0 M NaCl-filled glass electrode
was placed in the LA region to record EPSPs. The stimulation
frequency was 0.033 Hz and the stimulating intensity was set
to produce an EPSP with 1/3 of the maximal response. High-
frequency stimulation (HFS) was used to induce LTP. It consists
of five trains at 100 Hz for 1 s, and the interval between trains
is 90 s. APV (50 pM), a selective NMDAR antagonist, was used
to test whether this LTP was NMDAR-dependent. To isolate
NMDAR-mediated synaptic responses, ACSF was changed to
magnesium-free ACSF containing glycine (10 wM) and CNQX
(10 wM), an AMPA/kainate receptor antagonist (Yang et al.,
2016; Chen et al., 2017). 30 wM bicuculline was added into the
ACSF to block the activity of GABA, receptors when slices were
recorded.

Fear Conditioning Task

Fear conditioning task was performed according to our
previously described method (Chen et al., 2017). One day before
fear training, animals were taken into the experimental room
and handled for 5-min to make them familiarize the stimuli in
the room. On the training day, rats were put into the training
chamber for a 3-min acclimatizing period, and then received two
pairings of a conditioned stimulus (CS: tone, 80 dB, 30 s) and
unconditioned stimulus (US: electric foot shock, 0.75 mA, 1 s).
CS and US were co-terminated, and the intertrial interval (ITT)
between two trials was 90 s. Rats were stayed in the chamber
for 30 s after termination of the procedure and then returned to
their cage. 24 h later, cued fear memory was tested. During the
test, the rat was placed in a chamber which differentiated from
the training chamber for a 3-min acclimatizing period, and then
received eight tones (30 s each) with an ITT of 10 s. Freezing
was measured as the complete absence of activity except for
respiratory movement. Fear memory was assessed by calculating
the time spent freezing during the test periods. The freezing
behavior was measured by a trained researcher who was blinded
from the treatment.

Measurement of Pain Threshold

The pain threshold was measured according to a method
described in our previous study (Chen et al., 2017). After the
fear conditioning experiment, the rat was placed into another
conditioning chamber for a 3-min acclimatizing period. The
electric foot-shocks (1 s) were applied, starting at an intensity of
0.1 mA. The current intensity was increased stepwise by 0.05 mA.
The respective current intensity of shock at which the rat began
to jump was taken as the pain threshold.

Open Field Test

The open field test was conducted according to our previously
described protocol (Wang et al., 2015). Briefly, an individual
rat was allowed to freely behave in an open field arena
(40 cm x 40 cm x 40 cm) monitored by a video tracking system.
The locomotor activity and the time rats spent in the center
region (20 cm x 20 cm) during the 3-min test period were
monitored and assessed. The time taken in the central square is
used for measuring anxiety-like behaviors.

Surgery and Injection

The procedures of surgery and injection were performed
according to our previous study (Chen et al., 2017). A rat was
placed in a stereotaxic apparatus after being anesthetized. Two
22-gauge cannulas were bilaterally implanted in the LA region
(+2.8 AP, £5.0 ML, —8.0 DV from bregma) and secured to the
skull with dental acrylic. Rats were recovered for at least 7 days
before the behavioral experiments started. When injection was
performed, the inner sealing wire was replaced by a 33-gauge
injector and drugs were infused into the LA in freely moving
rats at a rate of 0.5 pL per min with total volume of 0.5 L per
side. The injector was left for 1.5-min after injection to minimize
dragging of injected liquid along the injection track.

Statistical Analysis

All data are presented as the mean £+ SEM and were analyzed
using SPSS 18.0 software. The results were statistically analyzed
using Student’s ¢-tests or one-way analysis of variance (ANOVA).
For ANOVA, post hoc comparisons were performed using
Bonferroni or Dunnetts T3 post hoc tests, depending on the
presence of equal or unequal variance in the groups, respectively.
Statistical significance was set at p < 0.05.

RESULTS

Aged Rats Display Deficits in Amygdalar
Synaptic Plasticity and Cued Fear
Memory

The content of H,S in amygdala tissue of aged rats was first
measured. We found that amygdalar H,S levels in aged rats were
lower than those detected in adult rats (p < 0.05; Figure 1A).
H,S is a modulator for NMDAR function. We then adopted field
potentials recording to examine NMDAR-dependent LTP in the
thalamo-LA pathway of aged rats. HFS evoked a stable LTP in the
thalamo-LA pathway from the adult rat slices (137.3 £ 7.1% of
baseline), while pre-incubation with D-APV (50 pM), a NMDAR
antagonist, for 10 min obviously blocked the LTP induction
(101.4 £ 7.0% of baseline; p < 0.01 vs. control; n = 6-7 slices per
group), suggesting that the LTP evoked by HFS was NMDAR-
dependent (Figures 1B,C). In agreement with a previous study
(Zeng et al., 2012), a significant suppression of NMDAR-
dependent LTP was observed in the thalamo-LA pathway of aged
rats in this study (adult rat 139.2 & 7.9%, aged rat 105.4 £ 7.3%;
p < 0.01; n = 8 slices per group; Figures 1D,E). Paired-pulse
facilitation (PPF) is a common indicator used for evaluating
presynaptic function. There was no significant difference in PPF
between the two groups (p > 0.05; Figure 1F), suggesting that
impairment of amygdalar LTP in aged rats should attribute to a
modification in postsynaptic responsiveness, but not be from the
altered release of the presynaptic neurotransmitter.

Then classical fear conditioning paradigm was conducted to
evaluate changes in amygdala-dependent memory in aged rats.
On the day of conditioning, rats were given two-tone (CS) -
footshock (US). The aged rats displayed normal acquisition
during the training phase, and a similar number of freezing
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FIGURE 1 | Aged rats display reduced hippocampal HoS level and impaired NMDAR-dependent LTP. (A) Amygdalar H»S levels were lower in aged rats in
comparison to healthy adult rats (*p < 0.05; n = 4 rats per group). (B) D-APV (50 wM) effectively blocked HFS-induced LTP in the thalamo-LA pathway of adult rats
(n = 6-7 slices per group). (C) The mean EPSP slope, as depicted through histograms, from 50 to 60 min post-HFS in control and APV-treated slices (**p < 0.01).
(D) HFS failed to induce LTP in the thalamo-LA pathway of aged rats (n = 8 slices per group). (E) The mean EPSP slope, as depicted by histograms, from 50 to
60 min post-HFS in slices obtained from adult and aged rats (**p < 0.01). (F) There was no significant difference in PPF between the healthy adult and aged rats
(n = 6 slices per group). In (B,D,F), the insets are sample traces from the indicated times on the graph. All data are expressed as the mean + SEM.

responses was observed in aged rats compared to the adults
(p > 0.05). At 24 h post-conditioning, the rats were put into a
new chamber and the auditory conditioned stimulus tone was
delivered 3 min later. Significantly increased levels of freezing
elicited by the tone were observed in the adult rats, whereas
the aged rats displayed a significant reduction in the number of
freezing responses when compared with the adult rats (p < 0.01)
(Figure 2A). Notably, the reduction in freezing behavior in aged
rats was not due to adjustments in their pain threshold, state
of anxiety, or locomotion of animals because no difference in
these indexes was found between the two groups (Figures 2B,C).
Altogether, our results confirm that aged rats exhibited deficits in
cued fear memory and amygdalar NMDAR-dependent LTP.

H>S Donor Reverses the Impaired
Amygdalar LTP and Fear Memory in
Aged Rats

Next, we investigated whether application of an H,S donor could
undo the amygdalar LTP and cued fear memory impairments in
aged rats. NaHS is a commonly utilized exogenous donor for H,S.

Exposure to 75 WM NaHS via bath application in slices of aged
rats did not affect the basal neurotransmission (Figure 3A), but
significantly enhanced the amygdalar NMDAR-dependent LTP to
a level commonly found in adult rats (p < 0.05 vs. aging control;
n = 6-9 slices per group; Figures 3B,C). In accordance with
the electrophysiological findings, intra-LA infusion of 0.5 pL
of 75 WM NaHS (per side) in aged rats 30 min prior to fear
conditioning improved the freezing rate to that found in healthy
adult rats [ANOVA, F(; 13y = 5.130, p = 0.017; n = 6-9 rats
per group; Figures 3D,E]. As previously reported (Wang et al.,
2015), treatment with NaHS did not significantly impact anxiety
levels, sensitivity to pain, or locomotion in aged rats, ruling out
the possibility that the effect of NaHS in aged rats was a gross
change in pain sensitivity or anxiety (data not shown). Statistical
analyses revealed a significant difference in mean freezing rates
between ACSF-treated aged rats and NaHS-treated aged rats
(p = 0.048), and the freezing rate of the NaHS-treated aged
rats was indistinguishable from the level of the adult group
(p > 0.05). These data suggest that the application of H,S may
undo impaired amygdalar LTP and cued fear memory in aged
rats.
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FIGURE 2 | Aged rats exhibit a deficit in cued fear memory. (A) During fear
training, there was no observable difference in freezing rates between healthy
adult and aged rats, while freezing responses were significantly decreased in
aged rats during cued memory test (**p < 0.01). (B) There was no significant
difference in the pain threshold between the two groups. (C) There was no
significant difference in either locomotion (left) or anxiety (right) between the
two groups. N = 7 rats per group. All data are expressed as the mean + SEM.

H>S Donor Improves Amygdalar
GluN2B-Containing NMDAR Function in

Aged Rats

Previous studies have revealed that H,S can regulate NMDAR
function in LA neurons as well as amygdalar synaptic plasticity
and cued fear memory (Wang et al,, 2015; Chen et al., 2017).
Hence, we tested whether the benefits of H,S in LTP and
fear memory in aged rats arose from its regulatory role in
NMDAR function. The NMDAR-mediated synaptic potentials
were isolated by exchanging the normal ACSF for Mg?"-free
ACSE, which contained 10 pM glycine and 10 uM of an
AMPA receptor antagonist known as CNQX (Figure 4A). We
found that NaHS treatment (75 pM) increased the amplitude
of NMDAR-mediated EPSPs in the thalamo-LA synapses of
aged rats [ANOVA, main effect of NaHS F(; 6y = 333.416,
p < 0.001; Figure 4B]. Then input-output curves for NMDAR-
EPSPs were conducted to further evaluate the effect of H,S
on NMDAR function in aged rats. The amplitude of NMDAR-
mediated EPSPs increased with incremental stimulus intensity
(Figure 4C); however, the mean amplitude of NMDAR-mediated
EPSP recorded in the slices obtained from aged rats was
significantly lower than that of the healthy adult controls when
the same stimulation was delivered. Also, bath application of
NaHS in slices from aged rats increased the NMDAR-mediated
EPSP to a level that was comparable to that of adult rats (n = 5
slices per group). The ANOVA (mixed model) for input-output
curves showed a significant aging main effect [F(; 9y = 18.219,

p < 0.001] and a significant NaHS treatment effect [F(;,9) = 9.720,
p = 0.003], suggesting that administration of H,S could rescue
amygdalar NMDAR function in aged rats.

We further explored the influence of H,S on GluN2A-
and GIuN2B-containing NMDAR function by pharmacologic
manipulation. PEAQX is a specific antagonist of GluN2A-
containing NMDARs. In the presence of PEAQX (0.4 pM), NaHS
treatment could still increase the NMDAR-EPSPs recorded in
the thalamo-LA synapses of aged rats [ANOVA, main effect of
NaHS F(1 5) = 374.676, p < 0.001; Figure 4D]. However, NaHS
treatment failed to cause an increase in NMDAR-EPSPs in the
thalamo-LA pathway in the presence of ifenprodil (3 wM), which
is a specific antagonist of GluN2B subunit (Figure 4E). Together,
these findings indicate that the GIuN2B subunit is likely involved
in the mechanism by which H»S effects amygdalar NMDAR
function in aged rats.

Blockade of GluN2B Abolishes the
Beneficial Effects of H,S on Amygdalar

LTP and Fear Memory in Aged Rats

We then investigated whether blocking GluN2B-containing
NMDARs modulated the beneficial effects of H,S in aged rats.
As shown in Figures 5A,B, pretreating slices of aged rats with
ifenprodil (3 wM) observably abolished the rescued effect of
NaHS on the induction of amygdalar LTP (p < 0.05 vs. NaHS
treatment alone; n = 6-8 slices per group). In a separate set
of experiments, aged rats were bilateral intra-LA infused with
ifenprodil or ACSF (0.2 pg per side) at 15 prior to NaHS infusion,
and 30 min following NaHS treatment, were fear conditioned
(Figure 5C). We found that treatment with ifenprodil in aged
rats did not affect the behavioral performance during the training
session, yet it observably blocked the enhancement effect of
NaHS on cued fear memory [ANOVA, F(3 16) = 7.848, p = 0.005;
Figure 5D]. Post hoc comparisons using Bonferroni’s test revealed
that the freezing level in the NaHS-treated aged rats that were pre-
infused with ifenprodil was not different from the freezing rate
in ACSF-treated aged rats during fear memory test (p > 0.05),
indicating that the GluN2B subunit may mediate the beneficial
effects of H,S in aged rats.

DISCUSSION

In this study, our primary finding was that supplementing aged
rats with H,S can reverse deficits in cued fear memory and
amygdalar NMDAR-dependent LTP, which is a validated model
of memory and learning. The H,S effects may be associated
with the upregulation of GluN2B-containing NMDAR because
treatment with NaHS enhanced the synaptic responsiveness of
GluN2B-containing NMDARs in the thalamo-LA pathway of
aged rats and a GluN2B-specific antagonist could abolish the
benefits of H,S in amygdalar LTP and cognitive performance.
These findings suggest that H,S supplementation may be a
promising strategy for the treatment of age-related fear memory
deficits.

H,S acts as an endogenous neuromodulator in the brain (Hu
et al,, 2011). H,S at physiological concentration can promote
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mean EPSP slope, as illustrated by histograms, from 50 to 60 min post-HFS (*p < 0.05, **p < 0.01). (D) Schematic describing the behavioral experiment setup.

(E) Freezing responses were unaffected by intra-LA infusion with NaHS (75 wM, 0.5 L per side) in aged rats during fear conditioning; however, the freezing rate was
increased to levels consistently found in ACSF-treated adult rats during cued memory testing (*p < 0.05, **p < 0.01; n = 5-8 rats per group). All data are expressed
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NMDAR-dependent LTP, which is correlated with behaviorally
relevant memory functions, in both amygdala and hippocampus
(Abe and Kimura, 1996; Wang et al., 2015). An increase of H,S
signal in the limbic system in vivo can improve fear memory in
aged rats (Wang et al., 2015; Li et al., 2017). Accumulating studies
have demonstrated a link between dysfunction of H,S signaling
and the pathogenesis of age-related neurodegenerative disorders,
including Parkinson’s disease (PD), AD and cerebral ischemia
(Hu et al., 2011; Li et al,, 2011; Yang et al., 2016). For instance,
decreased H,S levels have been noted in the brains of AD animal
models (He et al., 2014; Yang et al.,, 2016) and administration
of H,S can alleviate the neuropathophysiological changes and
undo the deficits in cognitive and synaptic plasticity in AD animal
models (Giuliani et al., 2013; He et al., 2014; Yang et al., 2016).
In this study, we demonstrate that amygdalar H,S levels were
significantly decreased in aged rats and NaHS treatment could
reverse the impairments in amygdalar NMDAR-dependent LTP
and cued fear memory, suggesting that endogenous H,S has an
important influence in aging-associated fear memory deficits.
What are the molecular mechanisms underlying the beneficial
role that H,S plays in the synaptic and cognitive impairments of
aged rats? NMDAR is a known action target of H,S in neurons.
H,S could improve NMDAR-mediated synaptic responses in

both amygdala and hippocampus (Abe and Kimura, 1996; Wang
et al., 2015). Previously, NMDAR function was found to be
impaired when endogenous H,S levels were suppressed (Chen
etal., 2017). Hypofunction of NMDARs was shown to contribute
to the cognitive impairments resulting from aging and many
aging-related neurodegenerative diseases (Barnes et al., 1997;
Kumar and Foster, 2013; Yang et al, 2016). Therefore, we
surmise that the benefits of H,S in aged rats arise from its
regulatory role in amygdalar NMDARs. This assumption was
tested by recording NMDAR-mediated synaptic responses (Chen
et al., 2017). The input-output responses of NMDAR-mediated
potentials in the thalamo-LA pathway of aged rats were much
lower than those of adult rats. In slices obtained from aged rats,
application with H,S donor could observably increase NMDAR-
mediated EPSP amplitude and return the NMDAR-EPSPs to
levels found in healthy adult rats. The expression of GIuN2A
and GluN2B, two essential modulatory subunits of NMDAR, was
decreased in multiple brain regions of aged rodents (Magnusson
et al., 2007; Liu et al., 2008; Zhao et al., 2009). In this study,
we showed that H,S donor could increase NMDAR-mediated
synaptic potentials in the thalamo-LA synapses of aged rats with
the presence of GIuN2A specific antagonist, whereas no increase
was observed in NMDAR-mediated EPSPs with the presence of
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FIGURE 4 | NaHS restores amygdalar NMDAR-mediated synaptic responses by regulating GIuN2B-containing NMDAR function in aged rats. (A) NMDAR-mediated
EPSPs in the thalamo-LA pathway were isolated by pharmacological intervention. Treatment with MK-801, an NMDAR non-competitive inhibitor, showed complete
inhibition of EPSPs. (B) NaHS (75 M) in slices obtained from aged rats increased the amplitude of NMDAR-EPSPs in the thalamo-LA pathway (1 = 7 slices). (C) As
shown by input-output curves, NaHS increased the amplitude of NMDAR-EPSPs to that of healthy adult controls in the slices from aged rats (p < 0.05 vs. aging
alone) (n = 5 slices per group). (D) PEAQX (0.4 M) pre-treatment did not impact the effect of NaHS on NMDAR-mediated EPSPs in aged rats (n = 6 slices).

(E) Ifenprodil (3 M) pre-treatment inhibited the action of NaHS on NMDAR-mediated EPSPs in aged rats (n = 6 slices). All data are expressed by mean + SEM.

GluN2B antagonist, suggesting that H,S specifically regulated
the activity of GluN2B-containing NMDARs in the amygdala of
aged rats. Furthermore, antagonizing GluN2B could abolish the
benefits of H,S in the impairments of amygdalar LTP and cued
fear memory in aged rats, suggesting that GluN2B-containing
NMDARs may be a critical molecular target of H,S action.
GluN2B-containing NMDARs are proposed to mainly
localize on the extrasynaptic site and considered as a crucial
factor involved in apoptosis (Hardingham and Bading, 2010;

Zhou et al., 2015). However, there is growing evidence suggesting
that GluN2B-containing NMDARs may be functional at the
synapse of the amygdala (Lopez de Armentia and Sah, 2003;
Miwa et al., 2008; Duan et al., 2015). For instance, blockade
of the receptors leads to deficits in amygdala-dependent LTP
and memory (Rodrigues et al.,, 2001; Muller et al., 2009) and
enhancement of the receptors promotes amygdalar synaptic
plasticity and fear memory in rats (Abumaria et al., 2011; Wang
etal,, 2015). The GIuN2B subunit is severely affected by the aging
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abolished the improvements, that resulted from NaHS treatment, on cued fear memory in aged rats (*p < 0.05, **p < 0.01; n = 5-7 rats per group). All data are
expressed by mean + SEM.

process (Magnusson et al., 2007; Zhao et al., 2009). Our results
show that H,S treatment selectively enhanced GluN2B-mediated
synaptic responses in the thalamo-LA pathway of aged rats
and specific GluN2B antagonist abolished the benefits of H,S
donor in amygdalar NMDAR-dependent cued fear memory and
LTP, not only indicate that upregulation of GIuN2B function is
responsible for the effects of H,S in aged rats but also suggest
that hypofunction of GluN2B-containing NMDARs contribute
to aging-associated amygdalar synaptic plasticity and cognitive
defects. However, the mechanisms by which GIuN2B subunits
are regulated by the H,S in the amygdala requires further
investigations.

Activation of GluN2B and GluN2A is thought to be needed
for hippocampal LTD and LTP, respectively (Liu et al.,, 2004).
However, mounting evidence has indicated that GluN2B subunit
is required for the induction of amygdalar LTP (Miwa et al., 2008;
Muller et al., 2009; Wang et al., 2015). Perhaps the differences in
biophysical properties and protein expression of the two subunits
between amygdala and hippocampus could be responsible for this
discrepancy. Specifically, more GluN2B subunits were found in
the synapses of LA neurons compare to the CA1 region (Lopez
de Armentia and Sah, 2003). The ratio of NMDA-EPSCs to

AMPA-EPSCs in the LA neurons is significantly larger than that
in the CA1 region and the effect of Mg?>* on the NMDARs is
much lower in the LA neurons than in the CA1 neurons (Miwa
et al., 2008). Our previous study showed that improvements in
amygdalar LTP and emotional memory by HjS treatment were
dependent on the activation of GluN2B-containing NMDARs
(Wang et al., 2015). In the study, the restoration of GluN2B-
containing NMDARs is shown to contribute to the beneficial
properties of H,S on amygdalar LTP and fear memory in aged
rats, also providing evidence for the importance of GluN2B
subunit in amygdalar synaptic plasticity and memory.

There are some limitations in this study. First, due to
the technological difficulties of performing whole-cell patch
clamp recording in brain neurons of aged animals, we
adopted field potential recording to detect a NMDAR-mediated
synaptic response in the thalamo-LA synapses by pharmacologic
manipulation. In the future, whole-cell patch clamp recording
may allow for the direct measurement of NMDAR-mediated
excitatory postsynaptic current in LA neurons to confirm the
influence of H,S on NMDAR function in aged rats. Second,
a single concentration and dosage of NaHS, selected from our
previous studies (Wang et al., 2015; Chen et al, 2017), was
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used to investigate the influence of H,S on the impaired fear
memory and synaptic plasticity in the amygdala. In the future,
other concentration and dosage should be investigated to explore
the effective range of H,S in the treatment of aging-associated
amygdalar LTP and fear memory deficits. Moreover, whether the
beneficial effects of H,S found in aged rats could be generalized
to other animal species, especially for human being remains
unknown. In addition, considering the lethality of H,S at high
concentrations, determining the lowest effective dose will help
with treatment planning. H,S could enhance the excitotoxicity
of glutamate after a stroke and aggravate seizure-like events (Qu
et al., 2006; Luo et al., 2014). Thus, the potential risks of brain
damage and epileptic seizures should also be assessed during
treatment planning.

CONCLUSION

We show that H,S can reverse amygdalar NMDAR-dependent
LTP and fear memory deficits in aged rats, and the mechanism
might be correlated to upregulation of GluN2B-containing
NMDAR function. H;S is a gaseous molecule that can rapidly
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