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It is commonly assumed that restoration of locomotion is the ultimate goal after spinal

cord injury (SCI). However, lower urinary tract (LUT) dysfunction is universal among

SCI patients and significantly impacts their health and quality of life. Micturition is a

neurologically complex behavior that depends on intact sensory and motor innervation.

SCI disrupts both motor and sensory function and leads to marked abnormalities in

urine storage and emptying. Current therapies for LUT dysfunction after SCI focus

on preventing complications and managing symptoms rather than restoring function.

In this study, we demonstrate that Transcutaneous Electrical Spinal Stimulation for

LUT functional Augmentation (TESSLA), a non-invasive neuromodulatory technique,

can reengage the spinal circuits’ active in LUT function and normalize bladder and

urethral sphincter function in individuals with SCI. Specifically, TESSLA reduced detrusor

overactivity (DO), decreased detrusor-sphincter dyssynergia (DSD), increased bladder

capacity and enabled voiding. TESSLA may represent a novel approach to transform the

intrinsic spinal networks to a more functionally physiological state. Each of these features

has significant clinical implications. Improvement and restoration of LUT function after SCI

stand to significantly benefit patients by improving their quality of life and reducing the risk

of incontinence, kidney injury and urinary tract infection, all the while lowering healthcare

costs.

Keywords: Non-invasive spinal cord stimulation, spinal cord injury, lower urinary tract, urodynamics, bladder

function, paralysis

INTRODUCTION

It is generally perceived that paralysis caused by spinal cord injury (SCI) only impacts one’s ability
to ambulate. However, restoration of autonomic functions such as bladder control are of the highest
priority to SCI individuals (Anderson, 2004; Snoek et al., 2004). The function of the lower urinary
tract (LUT) includes storage of urine without leakage and timely emptying without urine retention.
All of the urinary problems encountered after a SCI are manifestations of impairments in these two
functions of the LUT (Burns et al., 2001). The LUT is innervated by autonomic and somatic motor
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nervous system: parasympathetic fibers, originating from
the parasympathetic nucleus (S2–S4) promote bladder
contraction and voiding; sympathetic fibers originating from
the thoracolumbar portion of the sympathetic chain promote
bladder relaxation and bladder neck contraction, thus promoting
continence; and somatic innervation arising from a distinct
region of S2–S4 drives contraction of the external urethral
sphincter (EUS), thus also promoting continence (de Groat and
Yoshimura, 2001). In a healthy state, bladder and EUS activity
are coordinated, with the EUS contracting and the bladder
relaxing during urine storage, and the reverse occurring during
voiding. Coordination of EUS-bladder activity is mediated
by several nuclei in the brainstem. Because SCI disrupts
communication between the brainstem and the lumbosacral
cord, the bladder, and the EUS become uncoordinated, a
condition known as detrusor-sphincter dyssynergia (DSD). The
sensory innervations to the LUT are as important as motor
fibers. The LUT transmits a variety of sensory information
to the central nervous system and that transmission is also
interrupted by SCI. As a result, myelinated Aδ fibers that
normally ensure normal sensation are replaced by unmyelinated
C fibers (de Groat, 1997; de Groat and Yoshimura, 2010).
This leads to the emergence of spinal reflex mechanisms
that promote uninhibited detrusor contractions during urine
storage (a condition known as detrusor overactivity, DO) and
further DSD. DSD can be particularly dangerous: as the bladder
contracts against a closed EUS, it generates increased pressures,
which can lead to renal injury and loss of bladder compliance
(Kaplan et al., 1991).

Current therapy for LUT dysfunction after SCI focuses on
managing these complications without addressing the underlying
cause or attempting to normalize or restore bladder function.
Historically, a variety of electrical stimulation techniques
have been proposed to improve urine storage by increasing
capacity and reducing DO; and improve urine voiding by
stimulating detrusor contraction and sphincter relaxation at
patient-determined intervals. These strategies include direct
electrical stimulation of the pelvic nerve (Holmquist, 1968),
the sacral nerve (Sievert et al., 2010; Granger et al., 2013) or
the pelvic plexus and bladder wall (Walter et al., 2005). While
promising, these approaches have not been widely implemented
due to their invasive nature and need for concurrent sensory
denervation (e.g., the sacral nerve stimulator) or lack of
long-term effectiveness (e.g., bladder wall plexus stimulator).
Additionally, these approaches act locally to reduce DO or
induce detrusor contraction by direct nerve stimulation. On
the other hand, neuromodulating approaches, such as the one
presented here, may promote restoration of LUT function by
activating the inherent to the spinal neural networks and re-
establish communication between neural centers separated by an
injury.

Epidural spinal cord stimulation (ES) has been previously
introduced as a novel approach to activate neural networks
and enable a variety of functions after SCI (Gerasimenko
et al., 2008). This approach has been demonstrated to enable
volitional motor function in animal models and humans after
SCI (Courtine et al., 2009; Harkema et al., 2011). Further,

ES of the lumbosacral spinal cord has shown potential utility
for activating neural networks associated with LUT function
in rodents (Gad et al., 2014; Abud et al., 2015). However,
ES is highly invasive, which limits its application and scope.
Recently, transcutaneous spinal cord stimulation (TSCS) has
been developed as a non-invasive method to activate neural
circuits in the human spinal cord in order to enable function of
upper (Gad et al., 2018a; Inanici et al., 2018), trunk (Rath et al.,
2018), and lower extremity (Gerasimenko et al., 2015; Gad et al.,
2017). We have demonstrated the feasibility and utility of using
TSCS over the thoracolumbar spine to activate the detrusor in
neurologically intact rhesus macaques (Grahn et al., 2017; Gad
et al., 2018b). In this report, we demonstrate that Transcutaneous
Electrical Spinal Stimulation for LUT functional Augmentation
(TESSLA) can activate and improve LUT function after a severe
SCI. We hypothesize that TESSLA activates the spinal neural
networks that are active in controlling LUT function. Key
features of TESSLA include its non-invasiveness and its subject
specific adaptability for the selection of stimulation sites and
parameters. In addition, the non-invasive feature of TESSLA
may be appealing to a broader population of subjects at a
modest cost compared to surgically invasive neuromodulatory
devices.

METHODS

This study was approved by the Institutional Review Board
of Rancho Research Institute, the research arm of Rancho
Los Amigos National Rehabilitation Center, Downey, CA. All
research participants signed an informed consent form before
the start of the study and consented to their data being used in
future publications and presentations. Seven individuals (Four
male and three females) with SCI at T11 or above who used
clean intermittent catheterization to manage the LUT were
recruited. Each subject had a stable SCI that occurred at
least one year prior to study initiation. Baseline demographic,
medical, and urodynamic parameters of study participants are
shown in Table 1. The experiments were carried out with
use of a proprietary non-invasive Transcutaneous Electrical
Spinal Cord Stimulator (NeuroRecovery Technologies, Inc.).
Six participants were tested for a 6-h period over 2 days (3 h
per day), and one participant underwent additional testing
on Day 3. On Day 1, the LUT was mapped to spinally
evoked responses. Spinal stimulation was delivered at 0.5Hz
(individually at T11 and L1) with current starting at 10mA
and increasing at increments of 10–200mA (or until tolerable
or responses had plateaued). On Day 2, a baseline urodynamic
procedure without stimulation was performed with the subjects
either in seated (n = 4) or supine (n = 3) position. Next,
TESSLA was delivered at 30Hz at T11. Urodynamic recording
was commenced and the bladder was filled until a detrusor
contraction was elicited. The stimulation was turned off and the
bladder was fully emptied. Subsequently, the bladder was filled
to a 75% capacity. To ensure that reflex bladder contraction
did not occur, detrusor pressure was monitored for at least
2min. Next, TESSLA was delivered at 1Hz at T11 to initiate
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voiding. When voiding was completed, the bladder was emptied
completely. On Day 3, one subject (566729), who was able to
sit comfortably on a modified padded toilet seat was asked
to undergo a uroflow test in the absence and presence of
TESSLA.

URODYNAMIC STUDY

The external genitalia were prepared and draped in sterile
fashion. The urethra was lubricated and a 7-Fr triple lumen T-
DOC R© Air-ChargedTM urodynamic catheter (Laborie, Ontario,
Canada) was placed per urethra with the distal pressure port
positioned within the bladder and the proximal pressure port
within the EUS. Position within the urethral sphincter was
confirmed by the pressure reading from the proximal port.
Electromyography (EMG) of the EUS was performed with
bilateral patch electrodes placed at the anal verge. Abdominal
pressure measurement was obtained via a 7-Fr single-lumen
T-DOC R© Air-ChargedTM catheter (Laborie, Ontario, Canada)
placed per rectum. Urodynamic studies (UDS) were performed
according to International Continence Society urodynamic
standards using a GobyTM urodynamic system (Laborie, Ontario,
Canada) with a fill rate of 30 ml/min (Rosier et al., 2016). In
addition to EMG, the following urodynamic parameters were
recorded: vesical pressure (Pves), abdominal pressure (Pabd),
EUS pressure (Pura), and flow rate. Detrusor pressure (Pdet)
was obtained by subtracting Pabd from Pves. Closure pressure
(Pclo) was obtained by subtracting Pves and Pura. Bladder
capacity was defined as the bladder volume at which urinary
incontinence occurred. Post-void residual saline was withdrawn
by using the indwelling urodynamic catheter to empty the
bladder following urination. Voiding efficiency was defined
as

Voided Volume

Voided Volume+ Postvoid Residual
. .

NON-INVASIVE SPINAL CORD
STIMULATION

TSCS was delivered between spinous processes using 2.0 cm-
diameter round gel adhesive electrodes (Axelgaard, ValuTrode R©

Cloth) as cathode and two 5.0 × 10.0 cm2 rectangular electrodes
(Axelgaard, ValuTrode R© Cloth) placed over the iliac crests as
anode.

Mapping
TSCS was delivered individually along the midline between
spinous processes at T11-T12, and L1-L2 at 0.5Hz to map
the LUT. Stimulation was started at 10mA and increased in
increments of 10–200mA or until it was no longer tolerable.
Each intensity of stimulation determined by the pulse width was
repeated 5 times to assess reproducibility of responses.

Testing
The stimulation intensity and site chosen were based on the
recruitment curves obtained from mapping studies (Figure 1).

FIGURE 1 | An example of TSCS evoked pressure changes and EMG

responses (average of 5 responses) from the vesicular (Pves), urethral (Pura),

abdominal (Pabd) and detrusor (Pdet) pressures and Urethral sphincter (EUS)

EUS, Hamstring (HM) and Tibialis Anterior (TA) EMGs at 150mA TSCS

between T11-T12 and L1-L2 vertebral processes from a subject (566729, AIS

A, T4). Recruitment curves for the example showed on the left.

Similar methods have been used in our animal studies (Gad
et al., 2014, 2016). During functional UDS studies with
TESSLA, the frequency was set at either 1 or 30Hz (see main
text). The intensity used during 1 and 30Hz TESSLA was
determined based on responses observed during the mapping
studies.
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FIGURE 2 | Examples of urodynamic recording from a representative subject (566729) (A) without TESSLA, with (B) TESSLA at 1Hz (T11) and with (C) TESSLA at

30Hz (T11). Note the presence of detrusor over activity (DO) with 205ml infused (Table 1) and high level of detrusor sphincter dyssynergia (DSD) in the absence of

TESSLA but a greater level of reciprocal activation between the Pura and Pdet in the presence of TESSLA and during voiding. Note the increased bladder capacity

(281ml, Table 1) in the presence of TESSLA at 30Hz compared to baseline as well as the reduced DSD during voiding. Pdet is defined as Pves-Pabd and Pclo is

defined as Pves-Pura.
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URODYNAMIC STUDIES WITH TESSLA

30Hz Stimulation
The bladder was emptied via the indwelling urodynamic catheter.
TESSLA at 30Hz was initiated at T11. The bladder was then
infused with saline at a rate of 30 ml/min until a detrusor
contraction occurred. At the end of the detrusor contraction, the

FIGURE 3 | Pdet and Pura during voiding without and with TESSLA (1Hz) for

the 6 individual subjects. Yellow highlight identifies the region of voiding. Note:

2 subjects (955941, 573487) demonstrated a non-voiding responses during

TESSLA Off, thus the pressure traces are not included.

bladder was manually emptied via the infusion port to calculate
the residual volume.

1Hz Stimulation
The bladder was emptied via the indwelling urodynamic catheter.
The bladder was filled with saline to 75% of bladder capacity
(determined by baseline UDS) at a rate of 30 ml/min. Filling was
then stopped and detrusor pressure was monitored for at least
1–2min to ensure that no detrusor contraction occurred. Next,
TESSLA was delivered at a frequency of 1Hz at T11. Within
60 s of stimulation, a detrusor contraction was induced. After
the induced detrusor contraction ended, bladder was manually
emptied via the infusion port to calculate the residual volume.

DATA ANALYSIS

The studies provided several urodynamic parameters were
analyzed including: (1) infused volume; (2) post void residual; (3)
voiding efficiency; (4) peak pressure during detrusor and urethral

FIGURE 4 | (A) Voiding efficiency for the 7 individuals tested in the absence of

TESSLA and TESSLA at 1Hz. (B) Bladder capacity in the absence of TESSLA

and TESSLA at 30Hz. * significantly different from TESSLA Off at P < 0.05

(Statistical difference identified via paired t-test).

FIGURE 5 | (A) Co-activation between Pdet and Pura during voiding with

TESSLA off (black) and TESSLA at 1Hz (red) in a single subject (566729).

(B) Normalized (to TESSLA Off) co-activation between Pdet and Pura per

second during voiding for the subjects (n = 5) that demonstrated voiding with

TESSLA off. * significantly different from TESSLA Off, demonstrating lowered

level of DSD with TESSLA 1Hz compared to TESSLA Off (Statistical difference

identified via paired t-test).
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contraction; (5) peak-to- peak pressures and EMG amplitude
duringmapping studies. These average peak to peak responses for
each intensity were used to generate the recruitment curves for
each site of stimulation. (6) Co-activation between Pdet and Pura
per second during voiding was defined as Pdet∗Pura

voiding duration
to assess

the level of DSD, (7) Bladder capacity was defined as the volume
at which first DO with leakage occurred. (8) Infused volume at
which first DO occurred was used to quantify severity of DO.

STATISTICAL ANALYSIS

The paired t test was used to compare data between groups with
TESSLA Off and TESSLA On using Graphpad software.

RESULTS

Mapping over T11-12 demonstrated detrusor contractions with
lower levels of activation of the urethra and abdomen, whereas
stimulation of L1-2 minimally activated the detrusor, urethra
and abdomen (Figure 1). Note the unique pattern of responses
in the Pves, Pura, Pabd, and Pdet. Lower extremity responses
were consistent with those reported earlier (Sayenko et al.,
2015a; Gad et al., 2017). The contractions in the detrusor and
urethra, identified via pressure changes, were used as indicators
to identify appropriate sites for functional studies. The site at
which the largest detrusor contraction was observed at the lowest
stimulation intensity was used for functional studies in the next
phase.

Baseline UDS demonstrated features that are typical of UDS
recordings in individuals with SCI (Figure 2A,Table 1; Weld and
Dmochowski, 2000). TESSLA delivered at T11 at 1Hz resulted in
improved voiding efficiency (VE), increased flow rate, decreased
residual volume and improved coordination between the
detrusor and sphincter (Figures 2B, 3, Supplementary Movie).
The voiding efficiency increased from 26.99 ± 15.41 to 50.80
± 5.25 % (P < 0.05, n = 7). In contrast, TESSLA delivered
at 30Hz at T11 resulted in reduced DO during urine storage,
i.e., increased bladder capacity (Figures 2C,4) and improved
detrusor-sphincter coordination during voiding (Figures 3, 5, n
= 5, P < 0.05). The bladder capacity increased from 170.54
± 15.86 to 252.59 ± 18.91ml (P< 0.05, n = 7). Since the
SCI subjects were unable to generate a voluntarily induced
detrusor contraction, the infused volume at which an involuntary
contraction in the detrusor was used as a surrogate biomarker
to assess the severity of DO (brown arrow, Figure 2). As shown
in Figure 4, significantly decreased DO was observed when
TESSLA at 30Hz was applied. When UDS was repeated without
stimulation, reversal to baseline was observed. Stimulation at
multiple sites (T11+L1+Co1) used during locomotor training in
the past (Gerasimenko et al., 2015; Sayenko et al., 2015b) did not
enable efficient bladder voiding.

At the end of the study, one subject underwent an unintubated
uroflow test. The subject was initially asked to void in the absence
of TESSLA and subsequently in the presence of TESSLA. A
voiding contraction was induced when TESSLA was turned on at
T11 at 1Hz with a VE of 36.84% and average flow rate of 4.9 ml/s

(Figure 6, Supplementary movie). The procedures were well
tolerated by all subjects with no change in blood pressure, heart
rate, skin irritation (during and after the procedures) and change
in spasticity (after the procedure). None of the subjects reported
episodes of increased incontinence during the days following
the experimental sessions. Even though urodynamic procedures
are known to trigger episodes of autonomic dysreflexia (AD)
(Giannantoni et al., 1998) due to overfilling of the bladder, care
was taken to ensure that the bladder was not overfilled and did
not induce symptoms of AD.

DISCUSSION

Previous studies have shown feasibility of using invasive ES to
selectively activate neuronal networks in experimental models.
ES over the L3 spinal segments activated the spinal EUS
bursting center in rats and promoted the switch between the
bladder storage automaticity phase to voiding with improved
coordination between detrusor and sphincter in both intact
and spinal animals (Abud et al., 2015). Previous studies have
also shown that LUT function improves with ES aimed at
restoring locomotor function after SCI (Harkema et al., 2011;
Gad et al., 2014), including improvement in continence, bowel,
and sexual function in human subjects (Hubscher et al., 2018).
While locomotor-based therapies resulted in improvements in
bladder capacity and voiding efficiency, multiple studies suggest
that fine tuning of stimulation parameters play an important
role in defining the level of functional recovery after SCI (Gad
et al., 2013; Rejc et al., 2017). Each of these above-mentioned
studies highlight the automaticity that is intrinsic to the spinal
networks controlling LUT function and the ability to activate the
appropriate neural networks (spinal micturition centers) based
on the site and pattern of stimulation. Continuously delivered
TESSLA with a partially filled bladder results in an overall
increase in detrusor pressure past a threshold while lowering
the urethral pressure to initiate voiding. This is one of the
key features of the TESSLA induced voiding, wherein TESSLA
activates the neural networks that control LUT function to
initiate voiding. Multisite stimulation that has been reported
to be most effective in enabling locomotion [T11+L1+Co1,
(Gerasimenko et al., 2015; Sayenko et al., 2015b)] were not
effective in enabling voiding. Further, it was necessary to fine-
tune stimulation parameters for each subject. Though 30Hz
stimulation resulted in increased bladder capacity (reduced DO)
and improved coordination between detrusor and sphincter
(reduced DSD), the overall voiding efficiency was similar to
baseline, suggesting the need to fine tune the spinal circuitry
based on the intended application i.e., low frequency to initiate
voiding (Gad et al., 2014) vs. high frequency to increase bladder
capacity (present data) and to enable locomotor function (Lavrov
et al., 2006; Gad et al., 2016).

Modeling (Danner et al., 2011) and experimental (Hofstoetter
et al., 2018) studies have shown that transcutaneous stimulation
(Sayenko et al., 2015a) can depolarize at least a subset of
the same neural structures as recruited by implanted epidural
electrodes (Sayenko et al., 2014). Data obtained from experiments
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FIGURE 6 | Representative Uroflow conducted on one subject in the absence and presence of TESSLA (150mA, 1Hz at T11). Note the start of voiding and flow only

after TESSLA is turned on (Supplementary movie).

with epidural stimulation and transcutaneous stimulation
demonstrate that, with increasing intensity, the stimulus
response relationship of the early (short latency) and medium
components in many muscles shares some characteristics with
the H-reflex and M-wave interactions and can recruit dorsal
afferents, interneurons, and motor neurons. The present study
shows that TESSLA can be used to stimulate the neural circuitries
in the spinal cord of human subjects with SCI and facilitate
LUT function by reducing DO, decreasing DSD, increasing
bladder capacity and enabling voiding. Each of these features
has significant clinical and functional implications. Controlling
DO and increased bladder capacity lead to fewer incontinence
episodes, thus benefitting patients’ health and self-confidence.
Decreasing DSD lowers the risks of high pressure voiding, loss of
bladder compliance, and kidney injury. Additionally, our finding
that TESSLA mediates recovery of bladder-sphincter synergy
suggests that coordination between the detrusor and the EUS can
occur at the spinal level, thus challenging the dogma that bladder-
sphincter coordination is facilitated solely by the brainstem.
TESSLAmay effect these changes by reducing pathological spinal
mechanisms that arise after a SCI, e.g., the emergence of spinal
reflex mechanisms mediated by unmyelinated vesical afferents
(C-fibers) (de Groat and Yoshimura, 2010). Finally, TESSLA
directly addresses one of the primary dysfunctions caused by SCI,
i. e., the inability to void on command.

Several neuromodulation systems have been previously
developed to improve LUT function after SCI (Gaunt and
Prochazka, 2006). Examples of such systems include the dorsal

penile/clitoral nerve, tibial nerve, and sacral nerve stimulators.
Of these, the dorsal penile nerve stimulator has been most
extensively studied in the SCI population. This device takes
advantage of a urethral guarding reflex: by stimulating a
branch of the pudendal nerve (in this case, the dorsal penile
nerve), detrusor contractions are inhibited. Dorsal penile
nerve stimulation has been assessed in several studies of SCI
patients with promising results for decreasing incontinence and
promoting a larger bladder capacity (Kirkham et al., 2001; Lee
et al., 2003). Despite these successes, the penile nerve stimulator
has several limitations, including the need for continuous
stimulation to inhibit contractions, and the practical implications
of attaching the device to the genitalia. Furthermore, in contrast
to TESSLA, dorsal penile nerve stimulation does not address
recovery of bladder sensation or promote bladder emptying.
Indeed, we are not aware of any neuromodulation techniques that
stimulate the spinal cord directly in a non-invasive manner to
facilitate LUT functional recovery after SCI.

Each of the improvements in LUT function observed with
TESSLA is consistent with the priorities set by NIBIB/NIH
at the workshop entitled “Addressing Paralysis through Spinal
Stimulation Technologies” in November, 2014 (Pettigrew et al.,
2017). The data presented here directly addresses and validates
five out of the six objectives proposed for restoring bladder
function. In addition, we hypothesize that TSCS could address
other pelvic autonomic functions such as bladder, bowel
and sexual function, discussed at the consortium. While the
discussion at the consortium focused on epidural stimulation, we
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would like to emphasize that TESSLA offers the additional unique
feature of being non-invasive.

In conclusion, TESSLA offers several advantages over current
therapies for LUT dysfunction due to SCI. First, TESSLA is
non-invasive. If the intervention is not tolerated by the subject,
it can be immediately discontinued. Second, we demonstrate
that TESSLA can modulate the spinal networks devoted to
micturition with a critical level of specificity. Third, TSCS
and training used to enable upper (Gad et al., 2018b) and
lower extremity (Gerasimenko et al., 2015) function led to
plastic changes in the spinal networks in absence of stimulation.
Similarly, TESSLA may result in plastic changes to the neural
circuitry controlling bladder filing, voiding, and sensation.
However, further studies are needed to determine impact of
TESSLA and training on LUT function in the longterm.

NEW & NOTEWORTHY

TESSLA leads to improvement and normalization of the lower
urinary tract function after spinal cord injury. TESSLA offers
several advantages over current therapies for LUT dysfunction
due to SCI. First, it is non-invasive. If the intervention is not
tolerated by the subject, it can be immediately discontinued.
Second, we demonstrate that TESSLA can modulate the activity
of the spinal cord to elicit a specific response in the lower urinary

tract. Third, TESSLA can be easily integrated with other rehab
programs that a patient may be undergoing.
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