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Axons are electrically excitable, cable-like neuronal processes that relay information

between neurons within the nervous system and between neurons and peripheral target

tissues. In the central and peripheral nervous systems,most axons over a critical diameter

are enwrapped by myelin, which reduces internodal membrane capacitance and

facilitates rapid conduction of electrical impulses. The spirally wrapped myelin sheath,

which is an evolutionary specialisation of vertebrates, is produced by oligodendrocytes

and Schwann cells; in most mammals myelination occurs during postnatal development

and after axons have established connection with their targets. Myelin covers the vast

majority of the axonal surface, influencing the axon’s physical shape, the localisation

of molecules on its membrane and the composition of the extracellular fluid (in the

periaxonal space) that immerses it. Moreover, myelinating cells play a fundamental role in

axonal support, at least in part by providing metabolic substrates to the underlying axon

to fuel its energy requirements. The unique architecture of the myelinated axon, which is

crucial to its function as a conduit over long distances, renders it particularly susceptible

to injury and confers specific survival and maintenance requirements. In this review we

will describe the normal morphology, ultrastructure and function of myelinated axons,

and discuss how these change following disease, injury or experimental perturbation,

with a particular focus on the role the myelinating cell plays in shaping and supporting

the axon.

Keywords: oligodendrocyte, Schwann cell, cytoskeleton, axonal transport, energy, neuroinflammation,

morphology

INTRODUCTION

Neurons are highly polarized cells, with a long axon and shorter dendrites. Axons, which are the
focus of this review, are unique among cellular processes, being capable of transmitting electrical
impulses (spiking) and occupying, in many cases, an inordinately disproportionate amount of the
neuron’s volume. The axon’s electrical excitability stems from the fact that axolemma (bolded terms
are defined in Table 1) is rich in voltage-gated ion channels and ion pumps (Dumenieu et al.,
2017). Extrapolation to humans, of serially reconstructed EM data from the highly branched basal
cholinergic neurons of the forebrain in mice, suggests that single neurons can have a total axon
length of 100m (Wu et al., 2014). This extraordinary cellular asymmetry is initiated during early
development when neuronal polarisation is established (Schelski and Bradke, 2017). All subsequent
growth and maintenance of the axon is enabled by bidirectional axonal transport comprising
molecular motors and microtubule tracks that convey materials between the cell body and the axon
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TABLE 1 | Definitions.

Axolemma The axon’s plasma membrane

Axoplasm The axon’s cytoplasm

Compact myelin Concentric layers around the axon of double-layered oligodendroglial or Schwann cell plasma membrane, closely apposed at both intracellular and

extracellular surfaces. See Figures 1A,B.

g-ratio A measure of myelin sheath thickness, defined as the ratio of the diameter of the fiber (axon plus myelin) to the diameter of the axon alone, which is

always smaller than 1. It is calculated by measuring the circumference of each on nerve cross-sections, and converting areas to diameters,

assuming the circumferences are circular.

Internode Refers to the myelinated segment of the axon; adjacent internodes are separated by a node of Ranvier. Figure 1D

Juxtaparanode The internodal region closest to the paranode, which harbors fast voltage-gated potassium channels. Figure 1D

Node of Ranvier Short non-myelinated axonal region that serves the generation of action potentials; morphologically a gap flanked by myelinated “internodes.”

Nodes are usually ∼1µm in length and rich in voltage gated sodium channels. Figure 1D

Non-compact

myelin

The part of the myelinating cell process where membranes do not compact. Consists largely of tubing around the periphery of the process as well

as transient openings of previously compacted myelin in some CNS fibers, and Schmidt-Lanterman incisures in the PNS. See Figures 1, 3, 4. Also

referred to as “myelinic channels.”

Paranode The regions at either end of the internode where the non-compacted, paranodal loops of the myelin sheath about the axon Figure 1D

Septate junction Intercellular junctions found in invertebrate epithelial cells that appear ladder-like by electron microscopy.

Spheroid An abnormal focal swelling of the axon; mainly observed in the CNS. Often the axonal cytoskeletal elements are disorganized and axonal organelles

are enriched, as observed by electron microscopy. Spheroids can also be visualized by light microscopy using respective antigen markers such as

amyloid precursor protein (APP), when its transport along the axon is impaired.

terminus. In electron micrographs, axons are easily distinguished
from other cellular processes because of their unique cytoskeletal
organization and, often, because they are surrounded by a myelin
sheath (Figure 1).

ORGANISATION AND MORPHOLOGY OF
MYELINATED FIBRES

The Ultrastructure of the Myelinated Axon
Recent advances in imaging modalities and in image processing
have contributed enormously to our understanding of the three-
dimensional composition of fibre tracts. For example, electron
microscopic volume imaging, including electron tomography of
fine ultrastructural details; focussed ion beam-scanning electron
microscopy (FIB-SEM); and serial block-face imaging (SBF) of
larger volumes, provide an increasingly complete picture of the
axon-myelin unit and its neighbouring cells [see for example,
Snaidero et al. (2014)].

This is not to detract from the fact that conventional
transmission electron microscopy (EM) has been instrumental
in elucidating the relationship between the axon and its myelin
sheath as well as the subcellular components of each, in normal
versus pathological or experimental conditions (reviewed in
Boullerne, 2016). Nonetheless, EM requires expertise and caution
in tissue preparation and image interpretation. Conventional
processing of tissue samples involving chemical fixation in
aqueous solution, dehydration and plastic embedding, can
generate considerable artefacts; mitochondria and the lipid-rich
compact myelin being particularly susceptible to inadequate
fixation. Consequently, “changes” in either must be interpreted in
relation to control material handled in parallel. Cryopreparation,
combining high-pressure-freezing and freeze-substitution (HPF-
FS), has become a commonplace alternative (Möbius et al., 2016)
and whilst less easily obtained, cryopreparations generate useful

reference samples for myelin and axon phenotypes that might
otherwise be masked by artefacts of conventional preparation,
in particular those caused by tissue shrinkage associated with
dehydration.

Electron microscopy combined with state-of-the-art
fluorescence super resolution imaging have illuminated
ultrastructural details of the axonal cytoskeleton. In the adult, the
axonal cytoskeleton comprises actin filaments, microtubules with
microtubule associated proteins, and neurofilaments. Briefly,
actin filaments, which have been observed recently in axons using
fluorescence super-resolution imaging, are arranged as bundles
along the axon and as periodically spaced rings underneath the
axolemma, likely providing elasticity and stability, respectively
(reviewed by Kevenaar and Hoogenraad, 2015; Papandreou and
Leterrier, 2018). Neurofilaments and microtubules are about
100µm long in mature axons. They are aligned with the axon’s
long axis and can be distinguished in electron micrographs
of its cross section, being 90–100 and 230–260 Å in diameter,
respectively (Peters and Vaughn, 1967; Figure 1). Neurofilament
heavy, medium and light chain triplets, in combination with
α-internexin in the CNS or peripherin in the PNS, fashion a
semi-rigid structure, providing temporary docking sites for
vesicular organelles and integrating the membrane cytoskeleton
and transmembrane adhesion molecules with the axon’s interior
(reviewed in Kirkcaldie and Dwyer, 2017; Yuan et al., 2017).
Microtubules, which are uniformly orientated with the plus-end
distally (reviewed in Rao and Baas, 2018), act as scaffolds for
axonal transport (Kapitein and Hoogenraad, 2011; see Axonal
transport). Cross-bridging proteins, such as spectrin, bullous
pemphigoid antigen, plectin and microtubule associated proteins
link neurofilaments, microtubules and actin (reviewed in Yuan
et al., 2017). At the node of Ranvier microtubules are more
abundant and neurofilaments less highly phosphorylated and
more closely spaced compared to the internode, consistent
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FIGURE 1 | Ultrastructure of myelinated axons in the CNS and PNS. (A, upper) In the CNS, myelinated axons are densely packed within white matter (here: mouse

optic nerve) and the myelin sheaths of neighboring fibers often directly touch. At high magnification axonal cytoskeletal elements are visible: microtubules (arrows) and

neurofilaments (arrowheads). As indicated in the schematic, mitochondria are closely associated with microtubules (M, mitochondria; IT, inner tongue; OT, outer

tongue). (A, lower) In the PNS, the Schwann cell plasma membrane is covered with a basal lamina and the myelinated fibers are separated by connective tissue. Small

caliber axons are not myelinated, but organized in so-called Remak bundles (R) formed by non-myelinating Schwann cells. At high magnification, mitochondria and

cytoskeletal elements can be observed. (B) Schematic representation of a myelinated CNS fiber: The plasma membrane of the myelinating glial cell is depicted in

green. The major dense line (depicted in grey) results from the apposition of the cytoplasmic surfaces of the plasma membrane. (C) Electron micrograph of a PNS

node of Ranvier and (D, upper) schematic representation of the elements of a node: paranodal loops of the myelin sheath (green), Nav1.6 channels (red), Kv1

channels (blue), neurofilaments (arrowheads), microtubules (open arrowheads), mitochondria (M), which are transported along microtubules. N, node; PN, paranode;

JPN, juxta paranode; IN, internode. (D, lower) Schematic representation of non-myelinated axon with uniform distribution of Nav1.6 channels along the axolemma.

with a nodal narrowing of the axon’s diameter (Figure 1) that is
particularly pronounced in the PNS (Reles and Friede, 1991).

The axoplasm also contains membrane-bound organelles;
mitochondria being the most obvious in electron micrographs of
the healthy axon. They are typically 0.1–0.3µm in diameter, up to
10µm in length, and oriented parallel to the axon’s long-axis. In
contrast to the PNS, they are not enriched at the node of Ranvier
or paranode in CNS axons (Edgar et al., 2008) where they occupy

a constant fraction (1.5%) of the volume of axons >0.7µm
diameter (Perge et al., 2009), suggesting energy requirements are
linearly related to axonal size. Axons also contain synaptic vesicle
precursors and dense core vesicles, autophagosomes, signalling
endosomes, late endosomes and lysosomes, amyloid precursor
protein, BDNF vesicles, smooth endoplasmic reticulum and the
machinery for localised protein synthesis (reviewed in Maday
et al., 2014; Lopez-Leal et al., 2016; Spaulding and Burgess, 2017;
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Wu et al., 2017), which usually only become apparent following
injury and regeneration (Lampert, 1967; Tsukita and Ishikawa,
1980; Court et al., 2011; Figure 2).

The myelin sheath comprises concentric wraps of the
myelinating cell process around the axon, such that the lateral
edges of the outermost layer abut the straddling nodes of

Ranvier, and successively inner layers terminate increasingly
distally from the node (depicted in Figures 1C,D). In compact

myelin, an ∼2 nm space (the intraperiod space) exists between
the extracellular surfaces of the wrapping glial cell process whilst
its intracellular surfaces are effectively fused (forming the major
dense line). Together, the major dense lines and the intraperiod
spaces give compact myelin its characteristic ultrastructural
appearance (Figure 3A). In mature CNS myelin, a single channel
of cytoplasm remains around the perimeter of the glial cell
process, and live imaging of Lucifer yellow filled oligodendrocytes
in ex vivo spinal cord slices suggests that additional transient
openings are present through the compact myelin (Velumian
et al., 2011). Together, these cytoplasm-filled spaces constitute
the non-compact myelin or “myelinic channel” system. In the
PNS, this includes Schmidt-Lanterman incisures (SLI), which
connect the Schwann cell abaxonal cytoplasmwith the periaxonal
cytoplasm (Ghabriel and Allt, 1981).

The myelinic channel, which we suggest plays an important
role in glial-mediated axonal maintenance (see Mechanisms of
injury: axonal pathology caused by oligodenroglial defects), is
best understood if the myelin sheath is “virtually unwrapped”
(Figure 3B). It provides continuity between the cell soma and
the distal-most part of the myelin sheath at the glial-axonal
junction (Ransom et al., 1991), and contains septin filaments
(Buser et al., 2009; Patzig et al., 2016), microtubules, vesicles
(the last two illustrated in Figure 3C) and multivesicular bodies.
Ion channels, glutamate receptors and metabolic transporters
(e.g., monocarboxylate transporter 1) are located on its adaxonal
surface (Rinholm et al., 2011; Lee et al., 2012b; Nijland et al., 2014;
Domenech-Estevez et al., 2015; Saab et al., 2016). The myelin
sheath is separated from the axolemma by the periaxonal space,
an ∼15 nm wide space (Peters, 1966) filled with extracellular
fluid that reaches it through a spiralling pathway between the
paranodal loops (reviewed in Rosenbluth, 2009). Taken together,
the myelin sheath comprises a tightly wrapped double-layered
cell process that is connected to its cell body via a system of
fluid-filled channels.

The Myelination of Axons Was Critical in
the Evolution of Higher Species
In the vertebrate central nervous system (CNS), myelinated
axons define white matter tracts, including the corpus callosum,
optic nerves, and spinal cord dorsal and ventral columns, which
together account for ∼40% of CNS volume in humans (Morell,
1984); a higher proportion than in other species, reflecting the
fact that “connectional elaboration” (= the expansion of neuronal
connectivity) was key in human brain evolution (Schoenemann
et al., 2005). In the peripheral nervous system (PNS), myelinated
axon bundles constitute peripheral nerves, such as the sciatic
nerve and the sural nerve, which link the CNS to peripheral

targets. The optic nerve, being a CNS white matter tract, is
erroneously named. One of the key differences between CNS and
PNS axons is that in the adult, the former do not regenerate after
injury.

The evolution of a rapidly functioning, yet complex nervous
system was the prerequisite for development of cognitive
function in higher vertebrate species. Acceleration of nerve
conduction velocity can be achieved through two basic
mechanisms (Hartline and Colman, 2007a). Expansion of axonal
caliber, whilst effective in invertebrates with only a few nerve
fibers, such as the giant axon of the squid, and the Mauthner
axon in lower vertebrates, is not viable in higher vertebrates
with large number of axons and consequent space restrictions.
Here, glial cells adapted to insulate the axon with a multi-
lamellar, concentrically wrapped membrane, termed the myelin
sheath (Hartline and Colman, 2007; Nave and Werner, 2014).
In vertebrates, myelin emerged first in cartilaginous fish and
is functionally homologous with, but morphologically distinct
from, myelin-like glial ensheathments in annelids and crustacea,
(Hartline and Colman, 2007; Zalc et al., 2008). Non-myelinating
axon-ensheathing cells exist in virtually all nervous systems
(Schweigreiter et al., 2006).

In adult vertebrate CNS, axons larger than the ∼0.2µm
diameter “threshold” for myelination (Lee et al., 2012a; Goebbels
et al., 2017) are surrounded by compact myelin, which
is produced by oligodendrocytes. Oligodendrocyte precursors
(OPCs), being present throughout life, can restore myelin sheaths
following demyelination (Zawadzka et al., 2010) and potentially
contribute to myelin turnover (Xiao et al., 2016). In the PNS,
Schwann cells myelinate axons above a threshold size of ∼1µm
diameter (Voyvodic, 1989), whilst non-myelinating Schwann
cells ensheath multiple small calibre axons within so-called
“Remak bundles”.

Myelinated Axons and Associated Cells
Constitute CNS White Matter and PNS
Nerves
Within a tract or nerve, axons are packed densely and (in general)
aligned in parallel. This arrangement admits the application
of diffusion tensor imaging, a magnetic resonance technique
used in larger brains to map fibre tracts and identify white
matter changes. Axonal densities vary from one tract to another
depending largely on axonal diameter and myelination status;
for example, from ∼70 to ∼380 axons per 100 µm2 in cross-
sections of the hippocampal commissure and basal telencephalic
commissures of the adult rhesus monkey (LaMantia and Rakic,
1990). Estimates suggest that in mice, the optic nerve and corpus
callosum respectively, contain ∼50,000 (Edgar et al., 2010) and
300,000 (Tomasch and Macmillan, 1957) axons in total; in
humans the corresponding values are ∼1 and ∼800 million
(Koppel and Innocenti, 1983; Mikelberg et al., 1989).

Fibre tracts comprise other important cellular elements
including microglia or macrophages, which provide immune
surveillance in the CNS and PNS, respectively (Perry and
Gordon, 1988; Klein and Martini, 2016), and astrocytes in the
CNS, the processes of which often surround axons (Luse, 1956).
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FIGURE 2 | Axonal organelle accumulations after traumatic injury or interruption of axonal transport. (A) Early description of axonal pathology after traumatic spinal

cord injury in the rat, based on electron microscopic observations. (1) After transection the axonal stump swells and accumulates mitochondria, vesicles and dense

bodies. (2) In a degenerative stage the organelles disintegrate. (3) A regenerative axon is characterized by a growth cone with multiple organelles. (4) A dystrophic

axonal enlargement, caused by demyelinating disease or vitamin E deficiency is characterized by abundant filaments and organelles such as mitochondria, dense

bodies, layered membrane loops, and cytoplasmic dense material. Reproduced from Lampert (1967), with permission. (B) Electron micrographs of focal swellings and

organelle accumulations in CNS axons (upper: cross section, lower: longitudinal section), here derived from white matter of adult Plp1 null mice. Note that organelle

accumulations are predominantly located in the juxtaparanodal region (lower). (C) Electron micrographs of axonal changes in the PNS after interruption of axonal

transport in the mouse saphenous nerve by cooling. At the distal side of the transport block, retrogradely transported axonal elements accumulate along the

internode. These are, among others, multivesicular bodies (Mv), lamellated bodies (Lb) which intermingle with microtubules (T), and neurofilaments (Upper: cross

section, Lower: longitudinal section). Reproduced from Tsukita and Ishikawa (1980) with permission.

Blood vessels, which perfuse fibre tracts, are lined by endothelial
cells and associated with pericytes, smooth muscle cells and
fibroblast-like cells. In humans, but not rodents, a number of
neuronal cell bodies reside in the CNS white matter (Suarez-Sola
et al., 2009).

Axonal Dimensions
Neurons have a single axon and these vary greatly in length
as well as in ramification, as indicated before (Wu et al., 2014;
Economo et al., 2016). In larger animals, axons of projection
neurons can reachmanymeters in length (Wu et al., 2014;Wedel,
2018). This is particularly remarkable considering mammalian

axons are <20µm in diameter and their neuronal cell bodies are
only some tens of microns across. In both the CNS and PNS, a
range of diameters exists within and between tracts/nerves such
that axons of a given length can differ in diameter ∼100-fold
and thus 10,000-fold by volume. Measured diameters range from
<0.1 to >10µm in the CNS and from ∼0.1 to ∼20µm in the
PNS, in mice (reviewed in Susuki, 2010; Edgar and Griffiths,
2013). Individual PNS nerves generally contain a wide range of
axonal diameters and whilst this is also the case in the spinal
cord lateral and ventral (anterior in human) columns, some CNS
tracts, such as the corpus callosum, optic nerve and spinal cord
dorsal (posterior in human) columns, contain predominantly
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FIGURE 3 | (A) Electron micrograph showing the multilayered myelin sheath of a CNS axon in cross section. Note the regular periodicity of compact myelin, which is

composed of the major dense line, reflecting the fused intracellular glial surfaces (white dots), and the 2 nm wide intraperiod space between the extracellular surfaces

of adjacent wraps (blue dots). Arrows point to radial components. (B) In mature CNS, a single cytoplasmic channel is present around the perimeter of the glial cell

process (light green), which is best understood, if the myelin is virtually unwrapped (schematically demonstrated for one internodal segment). The cytoplasmic channel

connects the glial cell soma with the most distal part of the myelin sheath and contains organelles and cytoskeletal elements, as shown in C. (C) Electron micrograph

of CNS paranodal loops, abutting the axon. These contain microtubules (arrows) and vesicles (arrowheads). (A,C were reproduced from Edgar and Griffiths, 2013, in

Diffusion MRI, From Quantitative Measurement to in vivo Neuroanatomy; published by Elsevier).

small diameter axons. Physically, the most critical determinant
of the calibre of a mature axon is the phosphorylation status of
its medium neurofilaments (NFM; see The axonal cytoskeleton;
reviewed by Kirkcaldie and Dwyer, 2017).

What is the reason for the range of diameters? Although
conduction velocity increases with axonal diameter, the outcome
is likely inconsequential in shorter axons and it has been
speculated that information rate, which is dependent on firing
rate, and consequently with axonal volume and energy use, is
the crucial determinant of axonal diameter; with evolutionary
pressure toward thin diameters due to space and energy
constraints (Perge et al., 2012). Nonetheless, axonal diameter
is not absolutely constant along the axon’s length. In addition
to consistent narrowing at the node and paranode (see The
axonal cytoskeleton), the diameter of an individual axon
fluctuates over its length (Perge et al., 2012) probably as a
transient response to the movement of ions (Trigo and Smith,
2015).

Axon Initial Segment
The axon initial segment (AIS) is a specialized, non-myelinated
region at the very proximal end of the myelinated axon at which
action potentials are initiated. At the AIS, the axolemma is
densely populated with ion channels including Nav channels
and neuronal KCNQ potassium channels (reviewed in Dumenieu
et al., 2017). Thus, over its 10–60µm length, the AIS is
similar in several respects to the node of Ranvier, including
cytoskeletal arrangements. The AIS ofmature CNS neurons helps
maintain neuronal polarisation by acting as a selective sieve that
restricts the movement of proteins from the somatodendritic
compartment into the axon (Franssen et al., 2015).

Components of Nodal/Paranodal
Specialisations (CNS/PNS)
Distal to the AIS and at both ends of a myelin sheath
(Figures 1C,D, 3B), the paranodal loops (part of the myelinic
channel system) tightly appose the axon and the two are
tethered by septate-like junctions, formed by Neurofascin 155
on the glial side and Contactin and Caspr on the axonal
side (Charles et al., 2002). The node of Ranvier is the
small amyelinated space between the outermost paranodal
loops of adjacent myelin sheaths, whilst the juxtaparanode
lies between the innermost paranodal loop and the internode
proper (Figures 1C,D). In both the adult CNS and PNS, Nav1.6
Na+ channels are located at the node of Ranvier and Kv1.1,
Kv1.2 K+ channels are localised to the juxtaparanodal region;
although others are also present (Dumenieu et al., 2017). Various
anchoring molecules including β IV spectrin and Ankyrin G
as well as the paranodal-axonal transverse bands (forming
septate-like junctions) restricts electrical activity to the nodal
compartment and hinder lateral diffusion of these and other
axonal membrane proteins (Rosenbluth, 2009). For detailed
reviews see Rasband and Peles (2015) and Dumenieu et al.
(2017). A recent study suggests that adjustment of node of
Ranvier length might represent a rapid and energy-efficient
mechanism for tuning the arrival time of information to its
target, by altering conduction speed (Arancibia-Carcamo et al.,
2017).

Although CNS and PNS nodal/paranodal structures are
similar in several respects, important morphological differences
include the covering of the nodal space. In the PNS, Schwann
cells form the basal lamina that bridges the node, and Schwann
cell microvilli contact the nodal area. In the CNS, some nodes are
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covered by perinodal astrocytes or OPC processes (reviewed in
Rasband and Peles, 2015).

AXO-GLIAL SIGNALLING, AXONAL
MAINTENANCE, AND ENERGY
METABOLISM

Cell Autonomous and Bi-Directional
Signalling Regulate Axon and Myelin
Dimensions
Distal to the AIS, the axon and the cells that myelinate it
form a “symbiotic” unit. Each one uses both cell autonomous
and bi-directional signaling mechanisms to initiate myelination
and finely tune nodal and internodal (see Components of
nodal/paranodal specialisations) dimensions to ensure the timely
arrival of action potentials at the nerve terminus (Rushton, 1951;
Stanford, 1987). Several recent studies have providedmechanistic
insight to the molecular and cyto-architectural changes that
take place in the myelinating cell during axonal engagement
and wrapping, and this literature has been extensively reviewed
elsewhere (Bauer et al., 2009; Snaidero and Simons, 2014; Hughes
and Appel, 2016; Tricaud, 2017).

In the CNS, a neuronal “switch”, the PI3K–AKT1–mTOR
pathway, may be sufficient to trigger radial axonal growth,
recruitment of OPCs and progressive myelination, as suggested
from the phenotype of PTEN-deficient granule cell neurons and
their (ectopically) myelinated parallel fiber axons (Goebbels et al.,
2017). The wrapping of the oligodendrocyte process around the
axon (the final number of wraps determines the thickness of
the myelin sheath) and the extension of myelin along its length
(determining internodal length) are intrinsically determined by
glia growth, but modulated by the diameter of the axon they wrap
(Bechler et al., 2015). Recently it was suggested that axons effect
precise regulation of myelin formation by dictating the targeting
of mRNAs to specific subcellular locations within themyelinating
cell. Indeed, localised protein synthesis in OPCs is triggered by
axonal action potentials (Wake et al., 2011). Correspondingly,
electrically active axons are preferentially myelinated and neural
activity probably also promotes myelin plasticity in the adult
(reviewed in Almeida and Lyons, 2017; Bechler et al., 2018).
Thus, whereas myelination is largely driven intrinsically in
oligodendrocytes (Lee et al., 2012a), it can be modulated by
extrinsic factors including electrical activity of axons, acting
via oligodendroglial calcium transients (Baraban et al., 2018;
Krasnow et al., 2018), the glutamatergic stimulation of glucose
uptake (Saab et al., 2016) and other extracellular signalling
molecules (Lundgaard et al., 2013; Emery and Lu, 2015).

Notably, axonal ensheathment, radial myelin growth and
myelin elongation are controlled by different mechanisms in
the PNS. Prior to myelination, Schwann cells separate single
axons into a stable one-to-one relationship in a process called
“axonal sorting”. The established axon-myelin unit then grows
in size, reaching up to 1mm or more in internodal length
(Hildebrand et al., 1994). Recently, a role for the Hippo pathway
and YAP/TAZ in the integration of mechanical signals and
myelination emerged in Schwann cells and has been linked
to longitudinal myelin growth during development (Fernando

et al., 2016; Poitelon et al., 2016). The g-ratio, which is a
measure of the relationship between axonal diameter and myelin
sheath thickness, is relatively constant for CNS and PNS axons
of all diameters (Donaldson and Hoke, 1905). In the PNS, a
threshold level of neuregulin on axons is required for myelin
initiation and the total level of neuregulin on the axon’s surface
dictates the thickness of the myelin sheath (Michailov et al.,
2004; Taveggia et al., 2005). Neuregulin1 downstream signaling
involves PI3K/AKT and MEK/ERK pathway activation, both of
which have been shown to be crucial for myelination in the PNS
(Taveggia, 2016). In addition to the essential role of neuregulin1
for Schwann cell development and myelination, numerous other
extrinsic and intrinsic signaling cues have been shown to regulate
myelin sheath formation in the PNS, including ADAM secretases,
Notch signaling and Nectin proteins (Pereira et al., 2012; Monk
et al., 2015; Taveggia, 2016).

Reciprocally, oligodendrocytes and Schwann cells contribute
to axonal outcomes such as the initial clustering and
maintenance of sodium and potassium channels at the node

of Ranvier and juxtaparanode, respectively (see Components
of nodal/paranodal specialisations and Figure 1). Myelin
also locally increases axonal calibre by modulating axonal
neurofilament transport, as demonstrated by dynamic imaging
in vitro (Uchida et al., 2013; Monsma et al., 2014), and
phosphorylation and spacing (see The axonal cytoskeleton;
Yuan et al., 2017), as evidenced by electron microscopic
analysis of myelin-deficient shiverer mutant mice; although the
responsible signalling mechanisms are not well understood. A
stabilizing effect of mature myelin on the neuronal cytoskeleton
is mediated in part by the myelin associated glycoprotein
(MAG) which requires two axonal receptor families: sialoglycans
(particularly the gangliosides GD1a and GT1b) and members
of the Nogo receptor (NgR) family (Yin et al., 1998). Myelin
and/or myelinating cells also influence the density of axonal
mitochondria, such that non-myelinated axons and the axon
initial segment (AIS) have a higher density of mitochondria
than myelinated internodes (Bristow et al., 2002; Andrews et al.,
2006).

Axonal Transport
Following the establishment of nodal/paranodal specialisations,
nodal ion channels turn over slowly and are replenished by
motor protein driven transport (Zhang et al., 2012). Neurons,
being extremely polarised, are very dependent upon intracellular
transport for the delivery and removal of proteins and organelles.
ATP-dependent motor proteins utilise microtubules to transport
these cargoes. Members of the extended kinesin superfamily,
including kinesin-1, kinesin-2, and kinesin-3, transport their
cargoes anterogradely (i.e., towards the microtubule plus-
end) whilst dynein-1, in complex with its activator dynactin,
is responsible for most retrograde (microtubule minus–end
directed) transport. Until relatively recently, the movement
of cargoes in myelinated axons in vivo was inferred from
biochemical studies using radioactive tracers to label newly
synthesised proteins, or from live imaging of cargoes in
non-myelinated axons in culture, reviewed in Brauckmann
(2004). Recently however, live imaging of the movement
of mitochondria, peroxisomes or signalling endosomes in
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myelinated axons in vivo, has been achieved (Sorbara et al., 2014;
Sleigh et al., 2017).

Classically, axonal transport is divided into “fast” and “slow”
according to the bulk speeds of cargo movement. For example,
vesicles and mitochondria move fast at a rate of ∼1µm s−1,
whereas cytoskeletal components translocate slowly at speeds of
∼1mm per day; the difference being due to longer intermittent
“stationery” phases of the cytoskeletal elements (Roy et al.,
2000; Wang et al., 2000; Wang and Brown, 2002). Axonal
transport is a highly regulated process, which is still poorly
understood; motor proteins must recognise and bind specific
cargoes, deliver these to the appropriate sites (e.g., the node

of Ranvier, synapse, internode), change directions at axonal
branch points, and offload cargo according to need. Regulation
occurs, at least in part, through organelle-associated scaffolding
proteins that bind to regulatory proteins, including kinases and
GTPases, (reviewed in Fu and Holzbaur, 2014). Not surprisingly,
transport is susceptible to perturbation following changes to
motors, their regulators (Morfini et al., 2009), tracks, fuel
supply and/or cargoes themselves, and manifests as organelle
filled axonal swellings, neurofilament-filled swellings, thinning
of the axon and/or axonal degeneration. Of note, demyelinating
conditions were shown to impact anterograde axonal transport
in the PNS (De Waegh et al., 1992), but the analysis of specific
oligodendrocyte defects later revealed that the modulation of
fast and slow transport in the CNS might be a glial function
independent of myelin (Kirkpatrick et al., 2001; Edgar et al.,
2004).

Energy Use and Supply
Axonal transport is an energy-dependent process that contributes
to the brain’s total energy consumption. The human brain, which
occupies ∼2% of the body’s mass, consumes ∼20% of its resting
energy production (reviewed in Engl and Attwell, 2015) and
white matter is estimated to consume around one third of the
energy of grey matter (Sokoloff et al., 1977). A large proportion
of the white matter’s energy consumption is used by neurons
to pump out sodium ions using energy-dependent Na+-K+-
ATPases on the internodal axolemma, (reviewed in Engl and
Attwell, 2015). In axons, the turnover of actin and microtubules
(Engl et al., 2017), the phosphorylation of neurofilaments and
the movement of cargo-bearing motor proteins (see Axonal
transport) represent additional energy-consuming functions.

Molecular motors utilise 1 molecule of ATP per 8 nm step
(reviewed in Maday et al., 2014). However, dyneins are less
efficient than kinesins because they take more backward steps.
It has been estimated that a single vesicle traversing a 1m long
human motor neuron from neuromuscular junction back to
the soma or vice versa would require a minimum of 7.5 ×

108 ATP or ∼1.25 × 108 ATP molecules, respectively (Maday
et al., 2014). At an average rate of 1µm s−1, this represents 7.5
× 102 or 1.25 × 102 ATP s−1. Based on 2 motile organelles
per 10µm axonal length (the maximum length of an axonal
mitochondrion), 50% moving anterogradely and 50% moving
retrogradely, transport would utilise ∼8.75 × 107 ATP s−1 per
1m long axon. This equates to ∼6.29 × 10−5 g of glucose
per 24 h for a human sciatic nerve containing 1,000,000 axons.

Importantly, these calculations are based on a very rough
approximation of organelle numbers from our own electron
microscopy images; assume only 1–2 motors simultaneously
hydrolysing ATP per organelle; and no “tug-of-war” or “switch”
events (Maday et al., 2014). In comparison, an estimated 1.54 ×

109 molecules of ATP s−1 per cortical neuron in the rodent brain
is used in action potential generation and propagation (Attwell
and Laughlin, 2001).

Whilst glucose is the main substrate for feeding the TCA
cycle and for ATP production in the nervous system (Hui et al.,
2017), it has been demonstrated experimentally, ex vivo and
in vivo, that pyruvate or lactate can sustain neuronal function,
even over several hours of high level activity (Brown et al.,
2001; Wyss et al., 2011; Trevisiol et al., 2017). What are the
implications? Pyruvate and lactate are the 3-carbon products of
glycolysis; lactate classically being generated from pyruvate to
maintain NAD+, and thus sustain glycolysis when oxygen levels
are low. However, some cells synthesise most of their ATP by
glycolysis even when oxygen is plentiful (Vander Heiden et al.,
2009), especially in situations where cell growth is involved, such
as development or cancer. Nonetheless, glycolysis yields only 2
molecules of ATP per 6-carbon glucosemolecule and it is thought
that most mammalian cells depend additionally on oxidative
phosphorylation (OXPHOS; yielding ∼36 molecules of ATP per
glucose) to meet their energy requirements. Indeed, neurons fail
to survive if OXPHOS is prevented genetically (Fukui et al.,
2007; Funfschilling et al., 2012). Therefore the observation that
astrocytes and post-myelination oligodendrocytes could survive
as completely “glycolytic” cells (Funfschilling et al., 2012; Supplie
et al., 2017) came as a surprise; although the suggestion that
astrocytes (which can store glucose as glycogen) supply lactate
to neurons to support their synaptic functions metabolically
and when glucose supplies are low, is well-established (reviewed
in Barros and Weber, 2018). More recently we proposed that
glycolytic oligodendrocytes could similarly fuel ATP synthesis
in axonal mitochondria with lactate (Funfschilling et al., 2012).
Indeed, the monocarboxylate transporters MCT-1 and MCT-
2 (which transport monocarboxylates including pyruvate and
lactate) are appropriately located on the adaxonal glial cell
membrane and on the axolemma, respectively (summarised
schematically in Figure 4D, Funfschilling et al., 2012), and
normal levels of MCT-1 in oligodendrocytes are required to
maintain axonal integrity in the CNS (Lee et al., 2012b).

Why would myelinating glia act as local fuelling stations for
axonal mitochondria? Possible answers are that axons require
much more energy than glia and that the barrier-like properties
of the myelin sheath, which play such an important role in
axonal insulation, likely hamper axonal glucose uptake from the
extracellular space (Nave, 2010b).

If indeed glucose is prevented from reaching the myelinated
axon, then the ATP to fuel axonal energy requirements
should come from the oxidative phosphorylation of glial cell
glycolysis products. However, a 2013 study in Drosophila larvae
reported that the glycolytic enzyme glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) is localised to axonal transport vesicles
(via a huntingtin-dependent mechanism), and that vesicular
transport is supported by glycolytic ATP generation (Zala
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FIGURE 4 | Morphological characteristics of white matter in mouse “myelin mutants”. (A) Normal myelinated optic nerve axons. (B) In the shiverer mouse,

oligodendrocytes lacking myelin basic protein (MBP) are not able to form compact myelin, though a few loose myelin-like wraps are observed. Note the increased

oligodendrocytic processes (asterisk). AS: Astrocyte process. (C,D) In contrast, the CNPnull mouse produces compact myelin but develops pronounced axonal

swellings (asterisks in C) and enlarged inner tongues (arrowheads in D).

et al., 2013). Subsequently, the same authors found that a
mouse forebrain fraction enriched in neuronally-derived motile
vesicles was associated with 8 of 10 glycolytic enzymes and
could synthesise ATP in vitro when appropriate substrates were
added (Hinckelmann et al., 2016). These data suggest that, in
some neurons, the transport of vesicles can be autonomous
in terms of ATP synthesis. However, subsequent studies in
Drosophila, using cell-specific gene silencing (Volkenhoff et al.,
2015), confirmed also the principle of division of labour between
neurons (requiring OXPHOS but no glycolysis) and glycolytic
glial cells (requiring glycolysis but not OXPHOS) and revealed
a remarkable evolutionary conservation of metabolic support.

GENERAL PATHOLOGY AND
MECHANISMS OF AXONAL INJURY

The unique architectural features and metabolic requirements
of myelinated fibers make their axons particularly susceptible
to injury from a range of diverse causes; including physical
trauma, oxygen and glucose deprivation, inflammation and the
consequence of gene mutations. Axonal degeneration is also an

early feature of classical neurodegenerative diseases associated
with characteristic pathologies of neuronal somata, such as
Alzheimer’s.

Axonal injury, with or without frank axonal transection can
(but does not inevitably) lead to neuronal dysfunction, depending
amongst other things, on the site of injury relative to axonal
branch points. Clinical signs and symptoms thus reflect both the
white matter tract affected and the location of injury within the
tract, as observed in spinal cord injury. Below we summarize
what we have learned about general mechanisms of axonal injury
and degeneration from human and animal studies, but note
that the mechanisms described are not necessarily distinct. For
example, dying back axonopathies can also involve Wallerian-
like mechanisms (Coleman, 2005).

Mechanisms of Injury: Wallerian
Degeneration
Wallerian degeneration (WD) was described over 150 years ago
by August Waller (1850), and represents the degeneration of
the axon distal to injury and the subsequent clearance of axonal
debris. Classically, WD is induced by physical axotomy (nerve
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cut) of a fiber tract, as for example in spinal cord injury and
peripheral nerve trauma, but genetic evidence shows that a
Wallerian-like mechanism also occurs in response to other forms
of axonal injury such as “dying back” degeneration in peripheral
neuropathies, and potentially in CNS axonal dystrophies in
humans, as suggested from studies in mouse models (reviewed
in Coleman, 2005; Conforti et al., 2014). Notably, although
the rates of WD in PNS and CNS are similar, the clearance
of debris by resident microglia in the CNS can take months
to years, compared with a few days in the PNS (Perry et al.,
1987; and reviewed in Vargas and Barres, 2007). In the PNS,
Schwann cells contribute to the removal of myelin debris via a
form of selective autophagy (Gomez-Sanchez et al., 2015; Jang
et al., 2016). Efficient debris removal constitutes a prerequisite
for subsequent regeneration in both the PNS and CNS and
the failure of axonal regeneration after injury in the CNS has
been linked to the presence of myelin-associated inhibitors of
axonal regrowth at the injury site (reviewed in Vargas and Barres,
2007).

WD involves the remarkable process of active subcellular
self-destruction. It is tightly regulated; involving a first latent
phase (around 1.5–2 days post-axotomy in rodents) in which
axons remain morphologically and metabolically intact and a
second phase involving final breakdown of structural proteins
and axonal fragmentation (reviewed in Gerdts et al., 2016).
This second step is accompanied by reactive glial changes and
immune cell activation (Beuche and Friede, 1984; Scheidt and
Friede, 1987). In the PNS, these changes, especially the injury-
response of Schwann cells, are the prerequisite of successful
repair (Arthur-Farraj et al., 2012).

The Wallerian degeneration slow (Wlds) mouse was
discovered serendipitously ∼30 years ago (Perry et al., 1990)
yet, despite the plethora of studies aimed at elucidating it, the
mechanism of delayed axonal degeneration is still not fully
understood (reviewed in Gerdts et al., 2016). TheWldsmutation
comprises a tandem triplication resulting in the fusion of two
genes (Coleman et al., 1998), the product of which is a novel
chimeric protein composed of the NAD+ biosynthetic enzyme
nicotinamide mononucleotide adenylyltransferase (NMNAT1)
and a fragment of the ubiquitin ligase, Ube4b (Mack et al., 2001).
NMNAT1 activity and a short N-terminal sequence are together
required for the Wallerian degeneration slow effect (Avery et al.,
2009; Conforti et al., 2009); most likely the extraneous NMNAT1
compensates for another NMNAT enzyme (NMNAT2) in
the distal axon. NMNAT2 traffics anterogradely from the cell
body into the distal axon, thus its depletion after injury (being
unable to reach the axon distal to the injury and having a short
half-life) is thought to initiate axonal self-destruction (Gilley
and Coleman, 2010). Of note, a genetic knockout of Nmnat2
is embryonic lethal, however, the phenotype is rescued in vivo
upon generation of a double knockout of Nmnat2 and Sarm1
(Gilley et al., 2015) resulting in a normal, healthy lifespan (Gilley
et al., 2017). Together, these observations led to the hypothesis
that axonal depletion of NMNAT2 activates the intracellular,
pro-degenerating protein SARM1 either (i) by increasing levels
of NMN (the substrate for NMNAT, Di et al., 2015, 2017) and/or
(ii) by decreasing NAD+ in a feed-forward mechanism (Gerdts

et al., 2015; Sasaki et al., 2016), initiating axonal self-destruction
(Osterloh et al., 2012; Gerdts et al., 2015). Of note, SARM1 has
recently shown to possess an intrinsic NAD+ cleavage activity,
which promotes axonal NAD+ depletion and subsequent axonal
degeneration (Essuman et al., 2017). A complex interplay
with other signaling cascades such as MAPK and JNK also
contribute to the initiation phase (for more extensive reviews,
see Conforti et al., 2014; Gerdts et al., 2016). For instance,
the DLK/MAP3K12 gene has been shown to promote axonal
degeneration downstream of jun kinase signaling (Miller et al.,
2009; Yang et al., 2015). Moreover, MAPK signaling has been
implicated in the turnover of NMNAT2, with MAPK limiting
axonal NMNAT2 levels, thereby promoting axonal breakdown
(Walker et al., 2017). The transition between this early phase
and the subsequent “execution phase” is thought to mark the
point at which axons become committed to degenerate (Conforti
et al., 2014). It is now established that increased intra-axonal
calcium together with calpain (a calcium-dependent protease)
activation is crucial in the execution phase, leading to, amongst
other things, neurofilament proteolysis and destabilization of
microtubules (Zhai et al., 2003; Conforti et al., 2014; Loreto
et al., 2015; Gerdts et al., 2016). Nonetheless, inhibition of
calpain activation does not fully prevent the latter, indicating that
additional Ca2+-dependent mechanisms contribute (Conforti
et al., 2014). Notably, other mechanisms and organelles are likely
to be involved. Indeed, overexpression of the mitochondrial
NMNAT3 isoform protects axons from Wallerian degeneration
(Yahata et al., 2009), and swelling and accumulation of axonal
mitochondria at the paranodes represent early axonal changes
in injury and disease models (for example, see Spencer and
Schaumberg, 1977a; Edgar et al., 2004, and reviewed in Groh and
Martini, 2017).

Mechanisms of Injury: Dying Back
Axonopathy
Dying back axonopathy is a neuropathological feature of
a heterogenous group of toxic injuries and genetic defects,
and generally involves long axons of the peripheral nerves
and spinal cord. It is seen, for example, in Charcot-Marie-
Tooth neuropathy, hereditary spastic paraplegia, giant axonal
neuropathy (GAN), adrenomyeloneuropathy (AMN) and
organophosphorus compound-induced delayed neurotoxicity
(OPIDN). The last three have not been extensively reviewed
elsewhere and are described briefly in Box1–3. The geometry
of the susceptible axonal populations and the limitations
of histological evaluation probably contributed to the
misconception that, in contrast to WD, degeneration in
the dying back disorders progresses retrogradely from the
axonal terminus. Rather, it is likely that degeneration appears
retrogradely progressing because at the level of the whole tract
(comprising many axons), it is most prevalent distally (see
Figure 1 of Coleman, 2005). Indeed, early ultrastructural studies
on hexacarbone induced neurotoxicity in rats, demonstrated
that although a retrograde temporal spread of axonal swellings
occurred, axonal degeneration was not initiated at the axon
terminal nor spread centripetally along individual fibers
(Spencer and Schaumberg, 1977a,b). Nevertheless, axonal
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BOX 1 | Organophosphorus (OP) compound-induced delayed neurotoxicity.

OPIDN is an example of a pure axonal dying back neuropathy with a chemically induced degeneration of long, large-diameter sensorimotor axons in spinal cord

and peripheral nerves, resulting in sensory loss and paralysis. In humans and susceptible animals, causes include occupational and accidental exposures to OP

compounds (Smith and Spalding, 1959). Indeed, “Jake leg palsy”, is attributed to consumption of tri-ortho-cresyl phosphate (TOCP)-adulterated Jamaican ginger

extract during the Prohibition-era in the United States. Mechanistically, OP compounds inhibit serine esterases, including neuropathy target esterase (NTE), by

organophosphorylation of the active site (Makhaeva et al., 2013). Support for a role of this enzyme and its biochemical cascade in the molecular pathogenesis of

OPIDN came from identification of mutations in NTE in autosomal recessive motor neuron degeneration (NTE-MND; Rainier et al., 2008). Nonetheless, themechanisms

linking exposure to a neuropathic OP compound and the onset of OPIDN shortly after, are still poorly understood.

BOX 2 | Giant axonal neuropathy.

Giant axonal neuropathy (GAN; OMIM 256850) is an interesting example of a genetically-determined progressive axonopathy that, like OPIDN, affects both sensory

and motor nerves in the PNS and CNS. GAN is a rare autosomal-recessive neurodegenerative disorder caused by mutations in the GAN gene (Bomont et al., 2000),

which encodes gigaxonin, a BTB-KELCH family member. GAN is characterized histologically by large axonal swellings filled with axonal intermediate filament (IF). Using

dorsal root ganglia cultures, Israeli et al. (2016) demonstrated that gigaxonin is required for ubiquitin-proteasomal degradation of neuronal intermediate filaments (IF)

and that IF accumulation impairs mitochondrial movement leading to metabolic and oxidative stress, implicating axonal energy insufficiency in this disorder. Symptom

onset usually occurs in childhood and most patients die in the second or third decade (reviewed in Kang et al., 2016).

BOX 3 | Adrenomyeloneuropathy (AMN).

Adrenomyeloneuropathy (AMN) is caused by mutations in the X-linked gene for adenosine triphosphate binding cassette transporter (ABCD1) (Mosser et al., 1993).

This peroxisomal membrane protein is required for the import of very long-chain acyl CoA esters into peroxisomes for fatty acid β oxidation (van Roermund et al., 2008).

Symptom onset usually occurs in the 3rd decade and can present with or without cerebral involvement (see below). Neurological symptoms include a progressive

ataxic gait and spastic paraparesis and most probably reflect the degeneration of long spinal cord axons (Pujol et al., 2002). AMN is modelled in Abcd1 mutant

mice, but the molecular mechanisms that link oligodendrocyte dysfunctions in β-oxidation to axonal degeneration remain to be established. A role of lipid-derived

inflammatory mediators has been proposed (Kassmann and Nave, 2008; Ruiz et al., 2015) for both AMN and the allelic disorder X-linked adrenoleukodystrophy

(X-ALD), a rapidly progressive inflammatory demyelinating disorder with onset in childhood or early adolescence (Kemp et al., 2012).

degeneration in these diseases seems length-dependent, pointing
to a particular vulnerability of the long axons, possibly related to
metabolic dysfunction or transport defects.

Mechanisms of Injury: Focal Axonal
Degeneration and Inflammation-Induced
Axonal Dysfunction
Inflammation is a primary event in multiple sclerosis (MS),
neuromyelitis optica (NMO) and Guillane-Barré syndrome
(GBS; a peripheral neuropathy). GBS is characterised, based
on electrophysiological assessment, as primarily “demyelinating”
or “axonal” and is triggered by a wide range of preceding
infections, notably Campylobacter. Recent work suggests that the
acute peripheral neuropathy triggered by Zika virus infection
(Cao-Lormeau et al., 2016) might also be due to a GBS-like
autoimmune response (see Box 4). MS, which is the best known
inflammatory demyelinating disorder of the CNS, involves
progressive axonal degeneration. Indeed, axonal and/or neuronal
degeneration likely account for permanent neurological disability
in secondary progressive MS. The causes of axonal injury in MS
are still not known, and possibly include loss of trophic/metabolic
support from oligodendrocytes, direct T-cell mediated injury,
and energy insufficiency caused by soluble inflammatory factors
(reviewed in Franklin et al., 2012).

Experimental evidence for inflammation-induced axonal
dysfunction came from the widely used animal model of MS,
“experimental autoimmune encephalomyelitis” (EAE). EAE is

an induced autoimmune reaction against (usually) CNS myelin
components, such as myelin oligodendrocyte glycoprotein
(MOG). As a tool for understanding axonal injury in human MS,
EAE models have important limitations, not least that EAE is a
CD4+ve T cell mediated pathology, whereas the aetiology of MS
more likely involves CD8+ve T cells, though it is still not known
and may be heterogeneous in nature (Trapp and Nave, 2008; Stys
et al., 2012).

In MOG-induced EAE, Nikic et al. (2011) demonstrated
axonal changes they termed “focal axonal degeneration” (FAD).
Using live imaging in vivo, they showed that FAD, which
begins with focal axonal swelling, either progressed to axonal
fragmentation or resolved. Similarly, in a mouse model of
Pelizaeus Merzbacher disease (PMD), defined by a primary
oligodendropathy, focal axonal swellings can occur on otherwise
intact (non-transected) myelinated axons (Edgar et al., 2010;
see Mechanisms of injury: axonal pathology downstream of
oligodendroglial defects), raising the possibility of a temporal
window for therapeutic intervention. FAD can be initiated by
high levels of reactive oxygen and reactive nitrogen species
(ROS and RNS) alone, implicating macrophages in its evolution
in EAE, and likely also in MS, where morphologically similar
changes can be observed in acute lesions (Nikic et al., 2011).

This raises the question whether axons undergoing the
early pre-fragmentation stage of FAD can support electrical
conduction. Certainly, nitric oxide can block neural conduction
in rat spinal roots (Redford et al., 1997) and axonal depolarisation
and neurological signs correlate with axonal mitochondrial
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BOX 4 | Zika virus infection.

Zika virus is a neurotropic arbovirus of the family Flaviviridae that recently received considerable attention due to its links to microcephaly and, less sensationally, to

GBS (Cao-Lormeau et al., 2016). In Ifnar1 knockout mouse spinal cord and dorsal root ganglia-derived cultures (Cumberworth et al., 2017) as well as in a patient

who died of Zika-GBS (Dirlikov et al., 2018), PNS neurons and Schwann cells appear rather refractory to infection. However, infection of dorsal root ganglia neurons

in Ifnar1 knockout mice in vivo was reported recently (Oh et al., 2017). Differences in the experimental studies may be due to viral strain-specific effects, although

dissimilarity in glycosylation of the viral coat protein, related to the cell type in which the virus was propagated pre-administration, is an another confounding factor

(Alain Kohl, personal communication). In contrast, CNS glia are highly susceptible in vitro, consistent with white matter pathology in pre-term and newborn infants with

congenital Zika virus infection (Chimelli et al., 2017). Whether Zika-GBS has an autoimmune etiology (Uncini et al., 2017) or is due to a direct viral neuropathogenic

mechanism remains to be determined.

dysfunction and precede demyelination, in mice with MOG
EAE (Sadeghian et al., 2016), supporting the suggestion
that neuroinflammation per se can contribute to neurological
dysfunction in MS and other neuroinflammatory disorders.
Mechanistically, this is likely related to axonal energy deficits,
as nitric oxide and reactive oxygen species can damage
mitochondrial respiratory chain complexes (reviewed in Smith
and Lassmann, 2002). Indeed, a deficiency in complex IV
function in axons (Mahad et al., 2009) and neuronal cell bodies
(reviewed in Campbell and Mahad, 2018) in MS has been
reported, although the causes and consequences in the disease
context are as yet unproven.

Evidence for a role for the adaptive immune system
in axonal injury originated from the analysis of mouse
models of genetically determined CNS and PNS disorders
with secondary immune reactions. Here, a role for T-
lymphocytes in secondary axonal injury was demonstrated.by
crossbreeding V(D)J recombination activation (Rag1) knockout
mice, which lack mature T and B lymphocytes, to a model
of the leukodystrophy PMD, caused by overexpression of
the proteolipid PLP1 gene (see Mechanisms of injury: axonal
pathology downstream of oligodendroglial defects), in which
axonal changes were reduced when lymphocytes were depleted.
Similar observations were made in heterozygous myelin protein
zero (Mpz) knockout and homozygous gap junction protein
b (Gjb1) knockout mice; models of progressive demyelinating
forms of the inherited peripheral neuropathies, Charcot Marie
Tooth disease (CMT; Kobsar et al., 2003 and reviewed in
Groh and Martini, 2017). Mechanistically, early localised axonal
changes in these mutants seem to be exacerbated by T
cells “attacking” the paranodal myelin (reviewed in Groh
and Martini, 2017). Nonetheless, immune cells protect myelin
and axons in Mpz deficient mice, a genetic model of a
severe dysmyelinating peripheral neuropathy, Dejerine–Sottas
syndrome (DSS; Berghoff et al., 2005). Hence, the role of the
adaptive immune system seems to be dependent on disease-
specific mechanisms, probably including myelin integrity and the
response of the innate immune system (Berghoff et al., 2005).

Mechanisms of Injury: Axonal Pathology
Caused by Oligodendroglial Defects
In humans, mutations in the PLP1 gene including null, point and
duplication/triplication changes, cause allelic leukodystrophies
with a broad range of clinical severity, from spastic paraplegia
type 2 (SPG2) to the connatal forms of PMD. All of these
diseases were first identified by and later successfully modelled in

Plp1 mutant and Plp1 overexpressing mice (Nave and Griffiths,
2004; Gruenenfelder et al., 2011). PLP and its isoform DM20 are
expressed in oligodendrocytes and located in the compactmyelin.
The view that the survival of myelinated CNS axons is linked to
the performance of surrounding glial cells initially emerged from
studies of Plp1 knockout mouse models (Griffiths et al., 1998).

However, defects in myelin biosynthesis and maintenance
do not inevitably lead to axonal degeneration. For example, in
the spontaneously occurring Long-Evans shaker (les) rat and
the shiverer mouse, which both lack a functional myelin basic
protein (Mbp) gene (Roach et al., 1985; O’Connor et al., 1999),
CNS axons are severely de- or dysmyelinated (Figures 4A,B),
but degenerative axonal changes are lacking (Rosenbluth, 1980;
Griffiths et al., 1998; Edgar et al., 2004; Smith et al., 2013),
presumably owing to unimpaired communication between
axons and engulfing oligodendroglial processes (summarised
in Figure 5). Nevertheless, shiverer axons do have a reduced
calibre and retain an “immature” cytoskeleton (Brady et al.,
1999; Kirkpatrick et al., 2001). Thus, shiverer elucidates the
profound influence the myelinating oligodendrocyte exerts on
the axonal cytoskeleton and on radial axonal growth (see Cell
autonomous and bi-directional signalling regulate axonal and
glial dimensions). Of note, the PNS of shiverer mice is fully
myelinated (Privat et al., 1979; Kirschner and Ganser, 1980),
possibly due to overlapping functions of MBP with myelin
protein zero (MPZ) and peripheral myelin protein 2 (PMP2) in
peripheral myelin (Martini et al., 1995).

De- and dysmyelination are associated with the
(re)distribution of sodium channels along the axolemma,
thus maintaining axonal conduction (Utzschneider et al., 1993;
Waxman et al., 2004). However, the resultant non-saltatory
action potential propagation increases energy consumption,
and accordingly, increased numbers of mitochondria have been
observed in shiverer axons (Andrews et al., 2006) and in human
MS tissue (Zambonin et al., 2011).

In contrast to shiverer, mice deficient in PLP or CNP
(2′,3′-cyclic nucleotide 3′-phosphodiesterase) synthesise normal
amounts of myelin, but develop a pronounced axonal pathology
(Figures 2B, 4C,D). Taking advantage of the X-linked nature
of the Plp1 gene and female heterozygotes harbouring a
mosaic of wild type and PLP-deficient myelin (the latter with
subtle defects in compaction), we demonstrated that secondary
axonal changes, such as organelle-filled focal swellings, are
localised to the internodes formed by the PLP-deficient myelin
(Edgar et al., 2004). This demonstrates that oligodendroglial
support of axonal integrity is a very local function. Late
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FIGURE 5 | Oligodendrocytes support axons. (A) In the CNS, oligodendrocytes (green) provide axons with the insulating myelin sheath (green: myelinated

internodes). Moreover, oligodendrocytes support axonal integrity and function independent of myelination per se (for details see main text). Astrocytes (blue) not only

contact blood vessels but additionally interact with axons and oligodendrocytes and contribute to brain homeostasis. Oligodendrocyte precursor cells (not illustrated)

are also present in the mature CNS and are the main cellular source for new oligodendrocytes after injury and in remyelination. (B) Oligodendrocyte dysfunction leads

to a perturbed axon-glia interaction which ultimately impairs axonal health. As the myelinic channel system is likely acting as a route by which oligodendrocytes supply

metabolites to the myelinated axons, any perturbation of this system could potentially impact axonal integrity, resulting for example in focal axonal swelling and distal

axonal degeneration.

onset length-dependent axonal degeneration in this mutant is
likely a consequence of these early focal changes and organelle
transport stasis (Edgar et al., 2004). That the axonal changes
are secondary to the glial-cell defect was confirmed by cell
transplantation experiments (Edgar et al., 2004) and using
a novel oligodendroglia specific Plp1 gene knockout model

(Lüders et al., 2017). Axon degeneration is also the cause
of progressive spasticity in the corresponding human PLP1
null patients with SPG2 (Garbern et al., 2002); belonging
to the family of disorders termed the hereditary spastic
paraplegias. In mice, the absence of PLP from myelin causes a
secondary loss of SIRT2, a nicotinamide adenine dinucleotide
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(NAD)-dependent deacetylase, which is normally abundant
in myelinic channels (Werner et al., 2007). The function of
SIRT2 in myelin is not understood, but as a sensor of the
NAD/NADH ratio in the myelin compartment, its activity is
likely regulated by oligodendrocyte glycolysis and the generation
of lactate.

Similarly, Cnp1 knockout mice (Lappe-Siefke et al., 2003),
lacking a membrane-associated protein of non-compacted
myelin, are fully myelinated but focal axonal swellings and
degeneration of axons are observed simultaneously, commencing
after postnatal day 5 (P5), in all investigated white matter
tracts (Edgar et al., 2009). The encoded 2

′

,3
′

-cyclic nucleotide
phosphodiesterase (CNP) most likely not serving as an
enzyme, interacts with actin to antagonise MBP in myelin
membrane compaction (Snaidero et al., 2017). Thus, abnormal
MBP-dependent closures of the myelinic channels likely
result in the observed swellings at the inner tongue, that
are predicted to perturb axon-glia communication (Lappe-
Siefke et al., 2003; Edgar et al., 2009; Snaidero et al.,
2017).

These and other observations have led us to hypothesise that
the myelinic channel system is crucial to the function of the
oligodendrocyte in axonal support, likely acting as the route
through which the oligodendrocyte supplies metabolites to the
myelinated axon and delivers membrane proteins to the adaxonal
myelin surface (Figure 5).

In the Plp1 transgenic line #72 (Readhead et al., 1994), axonal
swellings and axonal transport defects correlate with active
demyelination andmicroglial/macrophage activation in the optic
nerve. In contrast, completely demyelinated axons remain intact,
suggesting injuredmyelin and/or neuroinflammation is relatively
more detrimental than the absence of myelin per se (Edgar
et al., 2010). Indeed, axonal injury can occur beneath “not-
yet” demyelinated axons in inflammatory demyelinating models
(Nikic et al., 2011; Pohl et al., 2011; Oluich et al., 2012). This
supports our suggestion that axons shielded from nutrients in
the extracellular milieu, are susceptible to injury if even minor
damage to myelinic channels leaves oligodendrocytes unable to
fuel the axon’s energy requirements.

Further evidence for a role of oligodendrocytes in
axonal support comes from mice lacking the Pex5 gene
(encoding the peroxisomal biogenesis factor and targeting
signal type-I receptor) in myelinating glia. In this model,
the absence of oligodendroglial peroxisomes does not
interfere with myelination but underlies a progressive
clinical phenotype caused by subcortical demyelination,
inflammation and widespread axonal degeneration (Kassmann
et al., 2007).

Primary oligodendrocyte death also elicits axonal changes.
The diphtheria-toxin mediated ablation of oligodendrocytes
in mice leads to secondary focal axonal changes and a
reduction in axonal densities (Ghosh et al., 2011; Pohl et al.,
2011; Oluich et al., 2012). The significant temporal delay
between oligodendrocyte cell death and axonal demise can
probably be explained by the initial preservation of myelin
sheaths, including their content of glycolytic enzymes and
metabolite transporters (Saab et al., 2016). Axonal changes in

this model are independent of the adaptive immune system,
as evidenced by crossbreeding to Rag1 deficient mice (Pohl
et al., 2011), however a late-onset secondary T cell response
with fatal demyelination has been reported (Traka et al.,
2016).

Mechanisms of Injury: Axonal Pathology
Caused by Schwann Cell Defects
Peripheral neuropathies are a heterogeneous group of diseases
and result from inflammatory, toxic and metabolic conditions
in addition to genetic defects. The last are referred to as
Charcot-Marie-Tooth diseases (CMT) and can be subdivided
into forms that primarily affect the Schwann cells (CMT
type 1) or the axon (CMT type 2). Evidence for axonal
support by Schwann cells emerged from murine mutants and
transgenics for the peripheral myelin protein (Pmp22) gene
(encoding the peripheral myelin protein of 22kDA; PMP22),
which model CMT1A. A Pmp22 point mutation defines the
Trembler mouse (Suter et al., 1992), which is characterized by
hypomyelination, demyelination, reduced axonal calibre, axonal
cytoskeletal changes, and alterations in slow axonal transport (De
Waegh and Brady, 1990; Kirkpatrick and Brady, 1994). Schwann
cell–axon interactions are perturbed at paranodal glial-axonal
junctions in Trembler (Robertson et al., 1997) and associated
with a redistribution of axonal ion channels (Rosenbluth and
Bobrowski-Khoury, 2014). Interestingly, nerve graft experiments
demonstrated that axonal changes are spatially restricted to
segments myelinated by “mutant” Schwann cells (De Waegh
et al., 1992). Transgenic overexpression of Pmp22 also induces
dys- and demyelination and, in this case, a slowly progressive,
distally pronounced, axonal loss (Sereda et al., 1996; Fledrich
et al., 2014), providing a bona fide model of human Charcot-
Marie-Tooth disease type 1A (CMT1A). In contrast to PMP22
overexpression in CMT1A disease, a heterozygous deletion of
the PMP22 gene causes hereditary neuropathy with liability
to pressure palsies (HNPP) (Nicholson et al., 1994; Adlkofer
et al., 1995; Li et al., 2007). HNPP is characterized by focal
hypermyelination of peripheral nerves, and the application of
mechanical compression induces a conduction block in affected
patients as well as in respective animal models (Adlkofer et al.,
1995; Li et al., 2007; Bai et al., 2010). Consistent with this,
other CMT forms with increased myelin outfoldings, such as
CMT4B, demonstrate a reduced nerve conduction velocity as
well as a decreased compound muscle action potential (Previtali
et al., 2007; Ng et al., 2013). However, the precise molecular
mechanisms of disease progression and functional failure in
CMT diseases remain only partially understood, and it is most
likely that all human dysmyelinating neuropathies share a
defect of Schwann cell-axon communication that is ultimately
responsible for axonal conduction blocks, degeneration and a
progressive clinical phenotype (Nave et al., 2007).

The role of the “mutant” glial cell versus altered myelin
in PMP22-related axonal changes could not be uncoupled in
these demyelinating models. Rather, it was the observation that
axonal changes occur on axons with relatively (Mag and Plp1
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knockout mice) or completely (Cnp1 knockout mice) normal-
appearing compact myelin that provided evidence that glial
cells, independent of myelin, support axonal health (Nave,
2010a; and see Mechanisms of injury: axonal pathology caused
by oligodenroglial defects). Mice lacking the myelin-associated
glycoprotein (Mag) gene, assemble CNS and PNS myelin
that harbours very minor morphological changes at the inner
wrap, but have reduced axon calibre associated with altered
neurofilament spacing and phosphorylation in the PNS (Yin
et al., 1998; Pan et al., 2005). A progressive degenerative
response including paranodal myelin tomaculi and axonal loss
subsequently ensues (Yin et al., 1998; Pan et al., 2005).

Just as oligodendrocytes likely provide metabolic support
for axons (see Energy supply and use), so there is evidence
that Schwann cells play a similar role in the PNS. Beirowski
et al. (2014) demonstrated that knocking out the gene encoding
the ubiquitously expressed liver kinase B1 (LKB1), specifically
in adult Schwann cells, did not affect myelin morphology but
led to axonal loss, most specifically of small sensory axons in
Remak bundles (C fibres). LKB1 is a key regulator of energy
homeostasis, suggesting axonal degeneration in this model could
pertain to axonal energy insufficiency; however the phenotype
is complex and its interpretation is not straightforward. More
recently, using mice lacking the nutrient sensing protein O-
GlcNAc transferase (OGT) in Schwann cells, the same group
demonstrated that Schwann cell OGT is required for the
maintenance of normal myelin and to prevent axonal loss
(Kim et al., 2016). Notably, mice lacking the myelin protein
Periaxin (a model for DSS), which is O-GlcNAcyated, develop
a very similar phenotype (Gillespie et al., 2000; Court et al.,
2004) to the conditional OGT knockout mice (Kim et al.,
2016). Recently, using the compound action potential as a
readout of ex-vivo sciatic nerve function, Rich and Brown (2018)
provided evidence that non-myelinated C fibres and myelinated
A fibres in the same sciatic nerve preparation, have distinct
metabolic profiles. The authors showed that when fructose
is supplied as the sole energy source, C fibres can utilise it
directly whereas A fibres benefit through receipt of lactate from
Schwann cells. Together, these data are compatible with the
hypothesis that myelinating cells provide metabolic support to
axons encased in compact myelin, to abrogate the consequences
of their being sequestered from extracellular glucose (Nave,
2010b).

CONCLUSIONS AND IMPLICATIONS FOR
HUMAN DISEASES

In summary, we have provided an overview of the unique
physical and functional properties of (myelinated) axons, with
an emphasis on how these might contribute to the axon’s
vulnerability to injury in a variety of diseases and traumas. In
particular, its relative isolation (in terms of distance) from its cell
body, dependence on long-distance axonal transport, and high
energy demands resulting largely from “spiking”, probably all
render axons susceptible to injury from a variety of insults.

In some cases, such as SPG10, which is due to a
mutation in KIF5A (encoding a motor protein of axonal
transport), the reason why axons are vulnerable seems evident.
However, the particular susceptibility of motor neuron axons
in some complex disorders such as familial amyotrophic
lateral sclerosis (fALS), in which the mutated gene (SOD1;
superoxide dismutase 1) is expressed in all neural cell types,
remains an enigma; although multiple mechanisms have been
implicated.

In MS, a “high grade” inflammatory demyelinating disorder,
axonal injury probably also entails multiple mechanisms
(see Mechanisms of injury: Focal axonal degeneration and
inflammation-induced axonal dysfunction) and many aspects
remain poorly understood, including the direct role for
lymphocytes themselves. In classical axonal and demyelinating
GBS, which also fall into this category, antibody-mediated
complement activation and downstream calpain-dependent
proteolysis is now generally considered the most likely effector
of axonal demise (Willison et al., 2016). In the “low grade”
inflammatory disorder AMN, axonal degeneration happens
in a length dependent fashion (Box 2), but as in fALS, the
mutated ABCD1 gene is expressed in virtually all cell types
and the underlying reasons for the axonal phenotype remain
poorly understood. Insight into the effectors of this and other
genetically-determined length-dependent axonopathies might
come from understanding how axons are injured in the
neurotoxic disorders like OPIDN (Box 1). With respect to
axonopathies secondary to mutations in genes whose products
are expressed in oligodendrocytes and/or Schwann cells, there
is increasing evidence that axonal degeneration reflects a failure
of the myelinating cell to provide metabolic support to the
axon. Indeed axonal energy insufficiency might represent a
common pathway in multiple neurodegenerative disorders;
either due to failure of metabolic support from neighbouring
glia; to ischemia as in stroke; or as a consequence of
failure of OXPHOS due to nitric oxide (and potentially other
factors) mediated injury to axonal mitochondria (summarised in
Figure 5B).

Intriguingly, in rat and mouse models of axonopathies,
the obvious restriction imposed on the physical length of
axons compared to humans and larger species, does not
reduce their susceptibility to “length-dependent degeneration”,
as for example in mouse models of SPG2 and CMT. Thus,
actual physical length is not the defining factor. Rather,
length-dependent degeneration in rodents is compatible with
energy insufficiency being causally related to axonal demise,
because presumably, energy provision is proportionally less
in these small species, rendering their “long” axons just as
susceptible as in larger species consuming a much greater calorie
load.

Finally, axonal degeneration and/or dysfunction might not be
the only axonally-related factors that contribute to neurological
symptoms. Recently, we and others demonstrated reduced axonal
calibre in mouse models of two complex neuropsychological
disorders (Rett and Angelman syndromes; Box 5), which
could potentially contribute to symptoms. Thus a variety of
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BOX 5 | Rett and Angelman syndromes.

Rett and Angelman syndromes comprise part of the spectrum of neurologic disorders previously considered associated with autism (Jedele, 2007). Both present,

after a short period of normal development, with global developmental delay, severe speech and communication deficits, progressive microcephaly, seizures, autistic

behavior and a characteristic movement disorder. Angelman syndrome is due to loss of function of the maternally inherited ubiquitin protein ligase E3A (UBE3A) allele,

while Rett syndrome is due in the majority of cases to loss of function mutation in the X-linked methyl-CpG- binding protein 2 (MECP2) gene. Remarkably, clinical

features occur in the absence of evident neurodegeneration, and activation of a silenced Mecp2 allele, even with a radically truncated MeCP2 protein, in adult mice

reverses neurological and morphological changes, suggesting MeCP2 might be required for maintenance of neuronal function, rather than for normal development

(Guy et al., 2007; Tillotson et al., 2017). Female mice heterozygous for a Mecp2 null allele develop normally but subsequently exhibit a stiff, uncoordinated gait,

tremor, breathing difficulties and hindlimb clasping. Although there is no evidence of axonal degeneration in the PNS of adult Mecp2+/− mice, the mean diameter of

sciatic nerve axons is significantly reduced and myelin is slightly thinner than normal (Bahey et al., 2017). Similarly, in a mouse model of Angelman syndrome, reduced

axonal diameter and white matter abnormalities underlie impaired brain growth and microcephaly (Judson et al., 2017). Similar subtle morphological changes could,

in principle, contribute to the neurological signs in Rett and Angelman syndromes.

axonal changes, from reduced calibre, through mitochondrial
dysfunction and focal swelling to transection, can probably
all contribute to neurological symptoms in neurodegenerative
diseases or injuries with primary or secondary involvement of
axons.
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