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Accumulating evidence suggests that the neuropeptide oxytocin (OXT) can enhance
empathy although it is unclear which specific behavioral and neural aspects are
influenced, and whether the effects are modulated by culture, sex, and trait autism.
Based on previous findings in Caucasian men, we hypothesized that a single intranasal
dose of OXT would specifically enhance emotional empathy (EE) via modulatory effects
on the amygdala in an Asian (Chinese) population and explored the modulatory role
of sex and trait autism on the effects. We first conducted a double-blind, randomized
between-subject design experiment using a modified version of the multifaceted
empathy task to determine whether OXT’s facilitation of EE can be replicated in
Chinese men (n = 60). To further explore neural mechanisms behind and potential
sex differences, functional MRI and skin conductance measures were acquired in an
independent experiment incorporating men and women (n = 72). OXT enhanced EE
across experiments and sex, an effect that was accompanied by reduced amygdala
activity and increased skin conductance responses. On the network level OXT enhanced
functional coupling of the right amygdala with the insula and posterior cingulate cortex
for positive valence stimuli but attenuated coupling for negative valence stimuli. The
effect of OXT on amygdala functional connectivity with the insula was modulated by trait
autism. Overall, our findings provide further support for the role of OXT in facilitating EE
and demonstrate that effects are independent of culture and sex and involve modulatory
effects on the amygdala and its interactions with other key empathy regions.

Keywords: amygdala, autism, cognitive empathy, culture, emotional empathy, oxytocin

INTRODUCTION

Empathy is a key social-cognitive capacity that facilitates interpersonal functioning by allowing us
to recognize, understand, and respond appropriately to mental and affective states experienced by
others (Decety and Jackson, 2004; Dziobek et al., 2008; Reniers et al., 2010). Impaired empathy is a
core deficit in psychiatric disorders characterized by interpersonal dysfunctions, including autism
(Dziobek et al., 2008), schizophrenia (Shamay-Tsoory et al., 2007; Lee et al., 2011; Rosenfeld et al.,
2011), and personality disorders (Herpertz and Bertsch, 2014).
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Empathy is a multidimensional construct, entailing cognitive
processes of perspective-taking, to make inferences about
others’ mental states (cognitive empathy, CE), as well as
emotional processes reflecting a direct affective reaction
involving understanding, sharing, and responding appropriately
to others’ feelings (emotional empathy, EE) (Shamay-Tsoory
et al., 2009; Shamay-Tsoory, 2011; Bernhardt and Singer, 2012).
EE has been further divided into a direct component (direct
emotional empathy, EED), referring to explicit emotional
evaluation and empathic concern, and an indirect component
(indirect emotional empathy, EEI), referring to a more general
physiological arousal response to both person and context
(Dziobek et al., 2008). Although the cognitive and emotional
components of empathy represent partly dissociable systems
(Shamay-Tsoory et al., 2009), integrative approaches propose
that the experience of empathy evolves as a dynamic interplay
between them requiring an explicit representation of the
specific affective state of the other person, thereby making
CE a prerequisite for EE (Decety and Jackson, 2004; Hillis,
2014). On the neural level the functional organization of
empathy is partially mirrored in shared and separable anatomical
representations (Lamm et al., 2007, 2011; Schulte-Ruther et al.,
2007; Singer and Lamm, 2009; Bernhardt and Singer, 2012; Leigh
et al., 2013), with the bilateral insula, posterior cingulate cortex
(PCC), and anterior cingulate cortex (ACC) contributing to
both (Fan et al., 2011), and the amygdala contributing to the
emotional component of empathy (Cox et al., 2012; Leigh et al.,
2013).

Converging evidence suggests that the hypothalamic
neuropeptide oxytocin (OXT) facilitates empathy (Rosenfeld
et al., 2011; Striepens et al., 2011; Riem, 2012). Genetic
approaches have consistently revealed associations between
individual variations in the OXT receptor gene and levels of
trait empathy in Caucasian (Rodrigues et al., 2009; Smith et al.,
2014) and Chinese populations (Wu et al., 2012), with more
recent studies suggesting that the specific associations evolve in
interaction with other factors, particularly culture (Luo et al.,
2015b; Montag et al., 2017) and sex (Weisman et al., 2015).
Studies investigating the behavioral effects of intranasal OXT
administration on CE have reported enhanced accuracy in the
reading the mind in the eyes test (RMET) (Domes et al., 2007b)
and a paradigm requiring participants to infer the intensity of
positive or negative emotions expressed by subjects portrayed
in videos (Bartz et al., 2010). However, findings in the domain
of CE have been variable, with OXT effects in the RMET being
either restricted to difficult items (Feeser et al., 2015) or unable
to be reproduced at all even when taking into account stimulus
difficulty and valence (Radke and de Bruijn, 2015). Other
studies have also reported that effects were more pronounced
in individuals with poor baseline performance (Riem et al.,
2014) or high trait autism (Bartz et al., 2010). Studies that aimed
specifically at determining effects of OXT on EE focused on
empathy for pain, an evolutionary conserved primary emotional
component (Decety, 2011; Panksepp and Panksepp, 2013),
and found no effect on pain empathy toward a partner (Singer
et al., 2008), although an enhanced pain empathic response
toward members of an out-group (Shamay-Tsoory et al., 2013).

In contrast, another study in men using the multifaceted
empathy test (MET) (Dziobek et al., 2008), which assesses
both CE and EE, observed that OXT specifically enhanced
both EED and EEI, but not CE (Hurlemann et al., 2010). This
latter study additionally demonstrated selective EE deficits
in amygdala lesion patients and therefore suggested that the
amygdala may mediate the EE enhancing effects of OXT.
Although several neuroimaging studies have demonstrated
modulatory effects of intranasally administered OXT on the
core neural components of the empathy network, including the
insula, ACC, and amygdala and their functional interactions,
across different task paradigms (Bakermans-Kranenburg and
van IJzendoorn, 2013; Wigton et al., 2015; Herpertz and Bertsch,
2016), to date only two studies have directly explored the
neural mechanisms underlying OXT’s empathy enhancing
effects. The first reported that OXT increased activation in
the superior temporal gyrus and insula during the RMET task
(Riem et al., 2014), whereas the second reported reductions in
left insula activity during pain empathic processing (Bos et al.,
2015).

In summary, although the empathy enhancing effects
of OXT are central to its proposed social-cognitive and
therapeutic properties, it remains unclear whether it selectively
enhances CE or EE, and which specific neural substrates
are involved. To systematically address these questions, we
employed two independent pharmacological between-subject
placebo (PLC) controlled experiments in healthy Chinese
individuals investigating the effects of intranasal OXT on CE and
EE and the underlying neural basis of this effects during the MET
(Dziobek et al., 2008).

Previous studies on the empathy enhancing potential
of intranasal OXT are entirely based on observations in
Caucasian populations. However, there is accumulating evidence
from OXT-administration studies either employing comparable
experimental protocols in Caucasian and Chinese subjects
(Hurlemann et al., 2010; Hu et al., 2015) or examining
moderating effects of key cultural orientation differences such as
a collectivistic orientation (Pfundmair et al., 2014; Xu et al., 2017),
suggesting culture-dependent social-cognitive effects of OXT. To
this end, the first experiment aimed to replicate findings in a male
Caucasian sample showing that OXT enhances EE but not CE
(Hurlemann et al., 2010) in a male Chinese sample. In a second
independent sample, male and female Chinese participants
performed the same MET paradigm during functional magnetic
resonance imaging (fMRI) to determine the neural substrates
involved. Analyses on the neural level focused on the insula,
amygdala, and ACC as core empathy regions (Lamm et al.,
2007, 2011; Schulte-Ruther et al., 2007; Singer and Lamm, 2009;
Bernhardt and Singer, 2012; Leigh et al., 2013). Given that the
amygdala has been specifically (Cox et al., 2012; Leigh et al., 2013)
and critically (Hurlemann et al., 2010) associated with emotional
facets of empathy, we expected that OXT’s enhancement of EE
would be accompanied by altered regional activity and network
level connectivity of the amygdala. Previous studies reported
increased as well as decreased amygdala activity and connectivity
following OXT (Domes et al., 2007a; Striepens et al., 2012; Hu
et al., 2015; Wigton et al., 2015; Tully et al., 2018) therefore
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no directed hypothesis with respect to OXT’s neural effect was
formulated.

Based on a growing number of findings suggesting
sex-dependent effects of OXT on social cognition (Chen
et al., 2016; Gao et al., 2016; Luo et al., 2017), the second
experiment additionally explored whether OXT differentially
affects empathic processing in men and women. In line with
a previous study reporting that sex does not affect OXT’s
modulation of empathy (Shamay-Tsoory et al., 2013), we
hypothesized that OXT facilitation of EE would generalize
across sexes. Finally, in the context of increasing interest in
the therapeutic application of OXT as a potential treatment to
improve social cognitive deficits, including empathy, in autism
spectrum disorders (Young and Barrett, 2015), and in line with
previous studies in healthy subjects (Bartz et al., 2010; Scheele
et al., 2014; Xu et al., 2015), the modulatory role of trait autism
(assessed by the Autism Spectrum Quotient questionnaire, ASQ,
Baron-Cohen et al., 2001) was explored.

MATERIALS AND METHODS

Participants
To fully replicate the previous study on Caucasian participants
(Hurlemann et al., 2010), only males were recruited in the
first experiment but both males and females were enrolled
in the second experiment to explore potential sex-dependent
effects of OXT on empathy. Experiment 1 (Exp 1) included 60
participants (M ± SD, mean age = 22.42 ± 2.23 years, all male)
and Experiment 2 (Exp 2) included an independent sample of
72 participants (34 females, mean age = 21.18 ± 1.95 years,
38 males, mean age = 22.61 ± 2.01 years). Both experiments
incorporated a double-blind, between-participant design, with
participants being randomly assigned to receive either OXT
or PLC nasal-spray, resulting in n = 30 (Exp 1) and n = 36
(Exp 2, female = 17) participants treated with OXT. The
experimental groups in both experiments were of comparable
age (Exp 1, p = 0.53, T58 = 0.63; Exp 2, p = 0.66, T70 = −0.44),
education (Exp 1, p = 0.66, T58 = 0.44; Exp 2, p = 0.63,
T70 = −0.49) and, in Exp 2, of equivalent sex distribution
(chi-square < 0.001, df = 1, p = 1). Exclusion criteria for
all participants were past or current physical, neurological, or
psychiatric disorders, regular or current use of medication or
tobacco.

Participants were required to abstain from alcohol, caffeine,
or nicotine for at least 12 h before the experiment. None of
the females in Exp 2 were taking oral contraceptives or were
tested during their menstrual period. Menstrual cycle phase was
determined using validated procedures as described in Penton-
Voak et al. (1999). The proportion of females estimated to be
in their follicular or luteal phases did not differ significantly
between the treatment groups (chi-square = 0.12, df = 1, p = 0.73).
In Exp 1, one participant (in the OXT group) and in Exp 2,
three participants (in the PLC group) failed to understand task
instructions and were consequently excluded from all further
analysis, leading to a total of n = 59 participants in Exp 1 and
n = 69 participants in Exp 2.

Before the experiment, written informed consent was obtained
from all participants. The study was approved by the local
ethics committee of the University of Electronic Science and
Technology of China and all procedures and the informed
consent for study participation were in accordance with the latest
revision of the declaration of Helsinki.

Experimental Protocol
To control for potential confounding variables, all participants
initially completed the following questionnaires: Becks
Depression Inventory (BDI; Beck et al., 1961), WLEIS-C
Emotional Intelligence Scale (Wleis-C; Wong and Law, 2002),
State Trait Anxiety Inventory (STAI; Spielberger et al., 1970),
Empathy Quotient (EQ; Baron-Cohen and Wheelwright, 2004),
and Positive and Negative Affect Scale (PANAS; Watson et al.,
1988). To examine associations with trait autism, the ASQ
questionnaire (Baron-Cohen et al., 2001) was administered.
Intranasal treatment (OXT nasal spray, Sichuan Meike Pharmacy
Co., Ltd., China, or PLC nasal spray with identical ingredients
except OXT) was administered in line with recommendations
for the intranasal administration of OXT in humans (Guastella
et al., 2013) and 45 min before the start of the experimental
paradigm. In Exp 1, three puffs per nostril (at 30 s intervals)
were administered (24 IU) and in Exp 2, five puffs per nostril
(40 IU). Both doses are in the typical range employed by other
studies (Striepens et al., 2011; Guastella et al., 2013) with the
rationale for increasing the dose in Exp 2 being to explore
dose-dependent behavioral effects of OXT. In a previous study
we found equivalent behavioral and neural effects of 24 and 48 IU
OXT doses (Zhao et al., 2017). However, it should be noted that
findings from some other studies investigating dose-dependent
effects of intranasal OXT have suggested an inverted-U-shaped
dose–response curve (Cardoso et al., 2013; Quintana et al., 2016,
2017; Spengler et al., 2017) and thus a stronger enhancement of
EE with 24 IU relative to 40 IU is conceivable. In post experiment
interviews, participants were unable to guess better than chance
whether they had received the OXT nasal spray, confirming
successful blinding.

Experimental Paradigm
In line with a previous study on male Caucasian participants
(Hurlemann et al., 2010), empathy was assessed using the
MET (Dziobek et al., 2008; Hurlemann et al., 2010; Domes
et al., 2013; Edele et al., 2013; Wingenfeld et al., 2014), which
assesses both EE and CE components using ecologically valid
photo-based stimuli of either negative or positive valence. To
account for potential confounding effects of OXT on in-group
versus out-group empathy (De Dreu and Kret, 2016) and a
cultural empathy bias (Cao et al., 2015; Luo et al., 2015a),
the original Caucasian MET stimuli were exchanged with
corresponding pictures displaying Chinese protagonists. The
Chinese stimuli were initially evaluated in an independent sample
(Supplementary Materials) and the final set of Chinese stimuli
(30 positive, 30 negative valence) closely resembled the Caucasian
stimuli depicting daily life scenarios and conveying emotional
mental states via facial expression, body posture, and contextual
cues. To assess CE, participants were instructed to infer the

Frontiers in Neuroscience | www.frontiersin.org 3 July 2018 | Volume 12 | Article 512

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00512 July 29, 2018 Time: 15:56 # 4

Geng et al. Oxytocin Enhancement of Emotional Empathy and the Amygdala

emotional state of the protagonist in each scene and choose the
corresponding answer from four options listed. The four options
presented similar but distinct emotional states to ensure at least
70% accuracy for each stimulus picture. For EED, participants
were required to rate how they felt for the protagonist in the
depicted scene (1–9 scale, 1 = not at all, 9 = very strong), for EEI
participants were required to rate how much they were aroused
by the scene (1–9 scale, 1 = very calm, 9 = very aroused). Details
of the paradigm are visually presented in Figure 1.

The different components of empathy were presented in a
mixed event/block-design. Following a 3 s instruction cue and
a jittered inter-trial interval of 3.9 s (2.3–5.9 s), 10 stimuli per
block were each presented for 3 s followed by either a choice of
the emotion depicted for the CE condition (displayed for 4 s) or
a rating scale (1–9) for the EED and EEI conditions (displayed
for 5 s). Six blocks were presented for each condition, resulting
in a total of 18 blocks. The order of blocks was counterbalanced
across the experimental conditions, and the fMRI experiment was
divided into six runs, each containing one block per empathy
component. During fMRI (Exp 2) electrodermal activity was
simultaneously acquired as an index of autonomic sympathetic
activity (Stern et al., 2001) (technical details on the electrodermal
data acquisition are provided in the Supplementary Materials).
To allow baseline recovery of the electrodermal signal a mean

inter-trial interval of 5 s (4–6 s) and a mean interval separating
stimulus presentation and behavioral response of 4 s (3–5 s) was
adopted for the fMRI experiment.

fMRI Data Acquisition
The fMRI data in Exp 2 were collected using a GE (General
Electric Medical System, Milwaukee, WI, United States) 3.0T
Discovery 750 MRI scanner. fMRI time series were acquired
using a T2∗-weighted echo planar imaging pulse sequence
(repetition time, 2000 ms; echo time, 30 ms; slices, 39; thickness,
3.4 mm; gap, 0.6 mm; field of view, 240 × 240 mm2; resolution,
64 × 64; flip angle, 90◦). Additionally, a high resolution
T1-weighted structural image was acquired using a 3D spoiled
gradient recalled (SPGR) sequence (repetition time, 6 ms; echo
time, 2 ms; flip angle 9◦; field of view, 256 × 256 mm2; acquisition
matrix, 256 × 256; thickness, 1 mm without gap) to exclude
participants with apparent brain pathologies and to improve
normalization of the fMRI data.

fMRI Data Processing
Functional magnetic resonance imaging data were analyzed using
SPM12 (Wellcome Trust Center of Neuroimaging, University
College London, London, United Kingdom). The first five
volumes were discarded to allow T1 equilibration and images

FIGURE 1 | Revised MET paradigm used in the fMRI experiment. Three blocks for CE, EED, and EEI were presented and in a balanced order. In each block, after 3 s
of cue presentation, a jittered fixation (4–6 s) followed. Stimuli were shown for 3 s followed by another jittered fixation (3–5 s) and then a 5 s rating phase in order to
separate the viewing and rating phases for fMRI analysis. Each block lasted for 173 s. There was a total of six runs with each run including three blocks, one block
for CE, one for EED, and one for EEI.
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were realigned to the first image to correct for head motion.
Tissue segmentation, bias-correction, and skull-stripping were
done for the high-resolution structural images. The functional
time series were co-registered with the skull-stripped anatomical
scan and normalized to MNI space with a voxel size of
3 × 3 × 3 mm. Normalized images were then spatially smoothed
using a Gaussian kernel with full-width at half-maximum
(FWHM) of 8 mm. On the first level, event-related responses
were modeled and subsequently convolved with the standard
hemodynamic response function (HRF). The first level design
matrix included valence- (positive, negative) and empathy type-
(CE, EED, EEI) specific regressors for the viewing phases as
main experimental conditions. In addition, regressors for the cue
presentation, valence-, and empathy type-specific regressors for
the rating phases, and for viewing and rating phases of incorrect
trials as well as the six movement regressors were included. The
experimental contrasts were next submitted to a second level
random effects analysis.

To evaluate empathy-type specific main and interaction
effects of treatment and valence, repeated-measured ANOVAs
were employed in a flexible-factorial design. Based on our
regional hypothesis and the core empathy network (Hurlemann
et al., 2010; Bernhardt and Singer, 2012; Bakermans-Kranenburg
and van IJzendoorn, 2013; Leigh et al., 2013; Hillis, 2014;
Wigton et al., 2015; Shamay-Tsoory and Abu-Akel, 2016), the
analyses focused on the bilateral amygdala, insula, and ACC
which were structurally defined using 60% probability maps
from the Harvard-Oxford (sub)cortical atlas. For the regionally
focused analysis approach condition-specific parameter estimates
were extracted from these regions of interest (ROI) using
the Marsbar toolbox (Brett et al., 2002) and subjected to
empathy type-specific ANOVAs with the between-participant
factor treatment (OXT, PLC) and the within-participant factor
valence (positive, negative) in SPSS (Statistical Package for the
Social Sciences, Version 22). P-values for the post hoc tests
of the ROI analysis were Bonferroni-corrected (P < 0.05). An
exploratory voxel-wise whole-brain analysis in SPM that served
to determine contributions of brain regions outside of the
predefined network of interest was thresholded at P < 0.05,
corrected using the family-wise error (FWE) approach.

To investigate the effects of OXT on the network level,
a generalized form of psychophysiological interaction
analysis (gPPI1; McLaren et al., 2012) was conducted using
regions showing significant OXT effects in the BOLD level
analysis as seeds and implementing an empathy-type specific
voxel-wise whole-brain ANOVA approach including the
between-participant factor treatment (OXT, PLC) and the
within-participant factor valence (positive, negative) thresholded
at P < 0.05, FWE-corrected at the cluster level. In line with
recent recommendations for the control of false-positives in
cluster-based correction approaches an initial cluster forming
threshold of P < 0.001 was applied to data with a resolution
of 3 × 3 × 3 mm (Eklund et al., 2016; Slotnick, 2017).
Parameter estimates were extracted from the significant regions
to disentangle the specific effects in post hoc comparisons.

1http://brainmap.wisc.edu/PPI

Finally, associations between neural indices and trait autism
(ASQ scores) were conducted in SPSS using Pearson correlation
analysis.

RESULTS

In both experiments, there were no significant differences in trait
and mood questionnaire scores between OXT and PLC treatment
groups (Supplementary Table S1 for Exp 1, Supplementary Table
S2 for Exp 2). In line with previous studies in Chinese populations
(Melchers et al., 2015; Montag et al., 2017), no significant sex
differences in ASQ and EQ scores were observed in Exp 2
(Supplementary Table S3).

Behavioral Results
Based on previous conceptualizations of empathy, proposing
that CE is a prerequisite for EE (Decety and Jackson, 2004;
Hillis, 2014), for EED and EEI measures only trials for which
subjects successfully recognized the emotions displayed by the
protagonist were analyzed [for a similar approach see Luo et al.
(2015a)]. To this end, correctly recognized trials were initially
determined based on the CE performance, with only correct trials
subsequently entering the analyses for the EED and EEI facets.

There were no significant differences in CE accuracy between
the two treatment groups in both experiments (Exp 1, OXT,
77.53 ± 6.02%, PLC, 78.94 ± 5.78%, T57 = 0.92, P = 0.36;
Exp 2, OXT, 80.10 ± 6.18%, PLC, 81.57 ± 5.83%, T67 = 1.02,
P = 0.31). In Exp 1, there was a main effect of treatment
[F(1,57) = 6.46, P = 0.01, η2

p = 0.10] for EED indicating that OXT
generally enhanced EED (Figure 2A). There was no significant
treatment × valence interaction [F(1,57) = 0.96, P = 0.33,
η2

p = 0.02]. Analysis of EEI did not reveal a treatment main effect
[F(1,57) = 2.19, P = 0.14, η2

p = 0.04] or valence × treatment
interaction effect [F(1,57) = 3.16, P = 0.08, η2

p = 0.05].
Consistent with the findings for EED in Exp 1, Exp 2

also yielded a significant main effect of treatment on EED
[F(1,67) = 5.81, P = 0.02, η2

p = 0.08] with higher ratings
following OXT compared to PLC (Figure 2B). There was also
a significant valence × treatment interaction [F(1,67) = 4.18,
P = 0.05, η2

p = 0.06] with more pronounced effects of OXT
on negative compared to positive valence stimuli [positive:
F(1,67) = 1.68, P = 0.2, η2

p = 0.02; negative: F(1, 67) = 9.96,
P = 0.002, η2

p = 0.13]. For EEI there was also a significant main
effect of treatment [F(1,67) = 4.84, P = 0.03, η2

p = 0.07] but
no treatment × valence interaction [F(1,67) = 2.02, P = 0.16,
η2

p = 0.03). For CE, there were neither significant main effects
nor interactions [F(1,65) = 0.80, P = 0.37, η2

p = 0.01). In Exp
2, no significant main or interaction effects involving sex were
observed (all Ps > 0.18) arguing against sex-dependent effects of
OXT on empathy.

Associations Between Behavior and Trait
Autism
In Exp 1, there was a trend toward a negative correlation between
the ASQ score and the total EED and EEI scores in the OXT
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FIGURE 2 | Behavioral results for Exp 1 (A) and Exp 2 (B). (A) In Exp 1 (24 IU administration), OXT significantly increased EED ratings. To allow for a better
comparison with Exp 2, effects of OXT on positive and negative EED trials, as well as on EEI are also shown. (B) In Exp 2 (40 IU administration), OXT increased both
EED and EEI ratings; an effect of OXT on negative EED drove the significant treatment by valence interaction. (∗P < 0.05).

group (ASQ Total: EED r = −0.47, P = 0.09; EEI r = −0.37,
P = 0.19) but not the PLC group (EED r = 0.319, P = 0.18; EEI
r = 0.17, P = 0.48). The correlation significantly differed between
the PLC and OXT groups for EED (Fisher’s z = −2.13, P = 0.03)
although not for EEI (Fisher’s z = −1.43, P = 0.15). In Exp 2, there
was a similar pattern of correlation differences between EED and
EEI scores and total ASQ scores, although these associations did
not reach statistical significance other than for EED under OXT
(EED – PLC r = 0.03, P = 0.85, OXT r = −0.34, P = 0.04, Fisher’s
z = 1.53, P = 0.13; EEI – PLC r = 0.03, P = 0.85; OXT r = −0.28,
P = 0.09, Fisher’s z = 1.29, P = 0.20). Regression plots are shown in
Figure 3 and suggest that OXT is producing its main behavioral
effects in participants with lower autism traits.

Dose-Dependent Effects Between
Experiments 1 and 2 (24 vs. 40 IU)
Dose effects were explored by combining the data from
male participants in Exp 1 (24 IU) and Exp 2 (40 IU). To
initially explore potential effects of the different experimental
environments (Exp 1, 24 IU, behavioral testing room; Exp 2,
40 IU, inside the MRI-scanner) on empathy per se, a first analysis
focused on the PLC-treated subjects. A repeated ANOVA with
environment (behavioral vs. MRI room) as a between-subject
factor and valence as a within-subject factor revealed a significant
environment main effect for both EE facets, indicating elevated
EE ratings in the MRI room [main effects: EED: P = 0.003,
F(1,47) = 10.19, η2

p = 0.18; EEI: P = 0.02, F(1,47) = 5.74,

η2
p = 0.11, both interactions with valence > 0.38, non-significant,

Figure 4], but no effects on CE [main effect: P = 0.15,
F(1,47) = 2.19, η2

p = 0.05; interaction: P = 0.9, F(1,47) = 0.02,
η2

p < 0.001]. These findings suggest that the MRI-environment
per se increased EE, an effect possibly related to elevated levels
of stress during the MRI assessments, which would be in line
with a previous study reporting that stress-induction specifically
increased EE, but not CE in the MET (Wolf et al., 2015). The
environmental differences and potential interactions with OXT
preclude the interpretation of dose-related differences between
the experiments.

Oxytocin Effects on SCR
One participant was excluded from SCR analysis due to low skin
impedance and thus a total of 68 participants from Exp 2 were
included. Analyses of the SCR data paralleled the analyses of
the empathy ratings, using ANOVAs with the between-subject
factors treatment (OXT, PLC) and sex (male, female), and the
within-subject factor valence. There was a marginal main effect
of treatment on SCR during EED trials and significant during
EEI trials [EED: F(1,66) = 3.77, P = 0.06, η2

p = 0.05; EEI:
F(1,66) = 4.50, P = 0.04, η2

p = 0.06], but not during CE trials
[F(1,66) = 2.14, P = 0.15, η2

p = 0.03]. This was due to SCR
responses being increased in the OXT group during EE and EEI
trials (Figure 5). There were no significant main effects of valence
or treatment × valence or treatment × sex interactions for CE,
EE, or EEI trials (all Ps > 0.2).
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FIGURE 3 | Regression plots for ASQ score and EED and EEI ratings. Exp 1 (A) and Exp 2 (B) in OXT and PLC groups.

FIGURE 4 | (A) Direct emotional empathy (EED) and (B) indirect emotional empathy (EEI) ratings in the placebo (PLC) groups. Emotional empathy differences
between Exp 1 and Exp 2 in the PLC-treated subjects. Examining the PLC-treated male subjects from the two experiments revealed that EE was significantly
increased in the MRI environment (Exp 2) compared to the behavioral testing room (Exp 1).

Oxytocin Effects on Neural Activity
In view of the absence of sex-dependent effects in the behavioral
analysis, and to increase the statistical power to determine OXT
effects on the neural level, the data from male and female
participants were pooled for the fMRI analyses. Four further
participants were excluded from the fMRI analysis due to
excessive head motion (head motion > 3 mm). The neural

mechanisms underlying the behavioral effects of OXT were
initially explored in the different priori ROIs (amygdala, insula,
and ACC) using separate repeated measures ANOVAs for the
three empathy (CE, EE, and EEI) conditions. Main treatment
effects were only observed in the amygdala (Figure 6A) for
EED [left amygdala: F(1,63) = 6.55, P = 0.01, η2

p = 0.09; right
amygdala: F(1,63) = 5.18, P = 0.03, η2

p = 0.08]. There were no
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FIGURE 5 | Effects of oxytocin (OXT) on the SCR during (A) direct emotional empathy, EED, and (B) indirect emotional empathy, EEI. In Exp 2, OXT increased the
SCR during both EED (P = 0.06) and EEI (P < 0.05). ∗ Indicates P < 0.05.

significant main effects for CE or EEI or any treatment × valence
interactions for CE, EED, or EEI. An exploratory whole
brain analysis revealed no regions that showed significant
treatment-dependent changes under CE, EED, or EEI (all
PFDR_corrected > 0.05) outside of the prior defined ROIs.

Oxytocin Effects on Functional
Connectivity
Repeated measures ANOVA models in SPM that included the
between-subject factors treatment (OXT, PLC) and sex (male,
female) and the within-subject factor valence (positive, negative)
revealed a significant Treatment × Valence interaction effect for
EED-associated functional coupling of the right amygdala with
the bilateral insula and the bilateral PCC (left insula peak located
at x/y/z, −33/6/−15, PFWE = 0.02, cluster size = 143 voxels; right
insula peak located at 45/18/−12, PFWE = 0.03, cluster size = 121
voxels; left PCC peak located at −30/−33/30, PFWE = 0.003,
cluster size = 213 voxels; right PCC peak located at 21/−36/33,
PFWE = 0.01, cluster size = 149 voxels; coordinates given in
MNI-space). Extraction of parameter estimates further revealed
that OXT increased functional connectivity for positive valence
stimuli whereas it decreased connectivity for negative valence
ones [left insula: positive, F(1,61) = 10.52, P = 0.002, η2

p = 0.15,
negative, F(1,61) = 3.86, P = 0.05, η2

p = 0.06; right insula: positive,
F(1,61) = 3.34, P = 0.07, η2

p = 0.05, negative, F(1,61) = 5.53,
P = 0.02, η2

p = 0.08; left PCC: positive, F(1,61) = 4.34, P = 0.04,
η2

p = 0.07, negative, F(1,61) = 5.67, P = 0.02, η2
p = 0.09; right

PCC: positive, F(1,61) = 8.00, P = 0.006, η2
p = 0.12, negative,

F(1,61) = 5.48, P = 0.02, η2
p = 0.08] (Figure 7).

Associations Between Neural and SCR
Effects of OXT and Behavioral and
Autism Trait Scores
There was a significant positive correlation between EED scores
and bilateral amygdala responses in the PLC group (left r = 0.49,

P = 0.004; right r = 0.35, P = 0.04) which was absent in the
OXT group (left r = 0.005, P = 0.98; right r = −0.007, P = 0.97).
The correlation difference between the PLC and OXT groups was
significant for the left (Fisher’s Z = 2.05, P = 0.04) but not the
right (Fisher’s Z = 1.43, P = 0.15) amygdala (Figure 6B). There
was no correlation between left or right amygdala responses with
total ASQ scores.

For the functional connections showing OXT effects for EED
in terms of a treatment × valence interaction, coupling strength
between the right amygdala and left insula during positive valence
EED trials was positively correlated with the total ASQ in the
PLC group (total ASQ – r = 0.40, P = 0.02) but not in the
OXT group (total ASQ – r = −0.22, P = 0.22, Fisher’s Z = 2.50,
P = 0.01; Figure 8A). OXT particularly appears to increase the
strength of right amygdala functional connections with the insula
in individuals with lower ASQ scores, although only for positive
valence EED. The strength of link between the right amygdala
and left PCC during negative valence EED trials was positively
correlated with the total ASQ score in the PLC group but not
the OXT, although the difference between the groups was not
significant (total ASQ – PLC r = 0.36, P = 0.04; OXT r = 0.15,
P = 0.41; Fisher’s Z = 0.85, P = 0.39; Figure 8B). There were
no significant correlations between SCR values and ASQ scores
during either EED or EEI trials (all Ps > 0.41).

DISCUSSION

The present study confirmed in two independent samples that
intranasal OXT specifically facilitates EE but not CE as assessed
by the MET paradigm in Chinese participants, thereby replicating
previous findings in Caucasian participants (Hurlemann et al.,
2010). Our findings also demonstrated for the first time that the
OXT-induced enhancement of EED is associated with decreased
bilateral amygdala reactivity and enhanced functional coupling of
the right amygdala with the insula and PCC for positive valence
stimuli but attenuated coupling for negative valence stimuli.
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FIGURE 6 | Effects of OXT on bilateral amygdala responses. (A) Region of interest analysis results for left and right amygdala responses during EED trials.
(B) Regression plots show correlations between left and right amygdala responses and EED scores in OXT and PLC groups. ∗P < 0.05.

These behavioral and neural effects were not modulated by
subject sex, suggesting a generalization across men and women.
Finally, an exploratory analysis of associations with trait autism
revealed that both behavioral and neural effects of OXT were
modulated to some extent by trait autism scores.

Although many studies have reported cultural differences
between Asian and Caucasian participants in the context of
OXT receptor polymorphisms and empathy (Kim et al., 2010;
Luo et al., 2015b; Jessica et al., 2016), we did not find any
substantive difference with respect to the effects of intranasal
OXT on empathy processing as assessed by MET. Thus, in both
cultures, OXT enhanced EE but not CE (Hurlemann et al.,
2010) for both valences, although in our second experiment
we found stronger effects for negative valence stimuli. Effects
of the scanning environment on EE ratings per se precluded
the direct evaluation of dose–response effects between the two

experiments; however, OXT specifically increased EE in both
suggesting that its effects generalize across 24 and 40 IU doses,
in line with our previous finding (Zhao et al., 2017). In general,
the magnitude of the reported behavioral OXT effect on both
EED and EEI reported in Caucasian participants was however
somewhat stronger compared to both 24 and 40 IU doses
administered in our study, although different MET stimuli were
used.

In agreement with other studies, there were no sex-differences
in EE, trait empathy (Wu et al., 2012) or trait autism (Kawamura
et al., 2011; Montag et al., 2017) scores in our Chinese study
cohort, whereas in Caucasian participants we found that females
scored significantly higher than males for both positive and
negative valence stimuli (Hurlemann et al., 2010). Thus, it is
conceivable that in Caucasian females the effects of OXT in the
MET might not be as pronounced as in males. The absence of
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FIGURE 7 | Effects of OXT effect on right amygdala functional connectivity. Effects of treatment on functional connectivity of the right amygdala, indicating
valence-dependent effects of OXT on the coupling of the right amygdala with the left (A) and right (B) insula, as well as the left (C) and right (D) PCC (∗P < 0.05)
(Pos, Positive; Neg, Negative).

an effect of OXT on CE in the MET contrasts with reports using
other paradigms, notably the RMET (Domes et al., 2007b; Feeser
et al., 2015). However, the robustness of these findings has been
questioned by another study which failed to replicate them even
when taking into account both item difficulty and valence (Radke
and de Bruijn, 2015). Moreover, there are also notable differences
between the MET and RMET with the images in the MET
including more complex natural scenes and emotions conveyed
by multiple cues (face, body posture, and context) whereas in
the RMET emotions are only interpreted from pictures of eye
regions and are also often more subtle. Thus, OXT can facilitate
CE in some contexts, particularly with cues restricted to eyes,
but not in others where multiple cues are present. Additionally,
and in contrast to previous studies, we measured SCR responses
during trials involving the three empathy components and OXT
only increased the SCR in EE and not CE trials. Thus, OXT
enhancement of EE is paralleled by increased physiological

arousal not only in EEI trials (where participants are asked to
score how aroused they are by the stimulus picture) but also in
EED trials (where they are scoring the strength of their feelings
toward to protagonist in the picture).

In line with the specific, and critical contribution of the
amygdala to emotional, rather than cognitive aspects of empathy
(Hurlemann et al., 2010), OXT’s enhancement of EE was
accompanied by a reduction of associated amygdala activity.
Exploratory analyses revealed that EED scores were positively
associated with the magnitude of amygdala responses during
positive valence trials in the PLC group, whereas this association
was absent under OXT, possibly reflecting an enhancement of
amygdala processing efficiency. While some previous studies
found that OXT specifically reduced amygdala responses to
negative emotional stimuli (Kirsch et al., 2005; Gamer et al.,
2010), the suppression of EED-associated amygdala activity
was observed irrespective of valence. A similar pattern of

Frontiers in Neuroscience | www.frontiersin.org 10 July 2018 | Volume 12 | Article 512

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00512 July 29, 2018 Time: 15:56 # 11

Geng et al. Oxytocin Enhancement of Emotional Empathy and the Amygdala

FIGURE 8 | Regression plots for correlations of ASQ scores with amygdala responses and functional connectivity during EE trials in OXT and PLC groups.
(A) Correlation between right amygdala–left PCC functional connectivity during negative EED trials and total ASQ score. (B) Correlation of right amygdala functional
connectivity with left insula cortex during positive EE trials and total ASQ score. In all cases, significant positive correlations during PLC administration are absent in
the OXT group.

OXT-induced valence-independent suppression of amygdala
activity has previously been suggested to reflect reduced
uncertainty of a social stimulus which in turn motivates approach
behavior (Domes et al., 2007a). In line with this interpretation,
the valence-independent EED-associated amygdala suppression
may reflect that OXT’s approach-facilitating properties (Arakawa
et al., 2010) promote EE regardless of whether the emotions
expressed by the protagonist are positive or negative, which is
also in line with a rodent study reporting an overall reduction
of amygdala EEG power following OXT (Sobota et al., 2015).
Other studies have found that OXT’s modulation of amygdala
responses dependent upon sex (Gao et al., 2016; Luo et al., 2017)
and it is generally considered that the salience of cues as well as
their context may play an important role in determining OXT’s
effects (Shamay-Tsoory and Abu-Akel, 2016). In the present
study, neither sex nor valence influenced amygdala reactivity.
This possibly reflects the fact that both salience and context are
broadly similar for EE responses in the two sexes.

Oxytocin also differentially altered the functional connectivity
between the right amygdala and bilateral insula in a
valence-dependent manner. In EED trials, the strength of
the functional connectivity between the right amygdala and
insula following OXT was significantly increased during positive
valence stimuli but decreased during negative ones. A few
previous studies have also reported OXT effects on functional
connectivity between the insula and amygdala (Rilling et al.,
2012; Striepens et al., 2012; Hu et al., 2015; Gao et al., 2016) and
these two regions are key hubs of the brain salience network
(Uddin, 2015). Thus, in the current context OXT may have
acted to increase the salience of both positive and negative
valence stimuli during EED trials by differentially altering the
functional connectivity between the amygdala and insula. Rilling
et al. (2012) have also previously suggested that the stronger the
functional coupling between amygdala and insula, the more the
amygdala is able to elicit subjective feeling states in response to
salient social stimuli.

The effect of OXT on increasing functional connectivity
between the right amygdala and bilateral PCC for positive
valence stimuli and decreasing it for negative ones in EED
trials may similarly reflect a modulatory influence on salience
processing. A previous study has reported that OXT enhanced
functional connectivity between amygdala and PCC during
exposure to infant laughter (Riem et al., 2012), suggesting that it
increased the incentive salience of infant laughter. In our current
study, the consistent patterns of functional connectivity changes
elicited by OXT for positive and negative valence stimuli for
amygdala functional connectivity with the insula and PCC may
indicate that these three regions comprise an integrated network
mediating valence-dependent OXT effects.

Both the behavioral and neural effects of OXT were modified
to some extent by trait autism scores, as measured by the ASQ. In
both experiments OXT tended to produce a negative correlation
between EE and ASQ scores, whereas this correlation was absent
in the PLC group. However, this effect of OXT only achieved
significance in Exp 1, which included only male participants,
and indicates that increased EE scores were more evident in
individuals with lower ASQ scores. For the neural associations,
functional connectivity between the amygdala and insula was
positively associated with total ASQ scores for positive valence
EE trials in the PLC group, but this was absent in the OXT
group. This indicates that OXT effects on functional connections
between the right amygdala and left insula (for positive valence
stimuli) were also strongest in individuals with lower ASQ scores.
Thus overall, while both behavioral and neural OXT effects on
EE were modified by ASQ scores, the extent to which these
findings represent support for possible therapeutic use in ASD
remains unclear. Indeed, a recent study on OXT enhancement of
behavioral and neural responses to affective touch also reported
stronger effects in individuals with lower ASQ scores (Scheele
et al., 2014).

There are several limitations which should be acknowledged
in the current study. Firstly, we were unable to directly compare
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behavioral and neural responses during the MET task in
Caucasian as well Chinese participants, so we cannot totally
exclude the possibility that some cultural differences in response
to OXT during empathic processing may exist. Secondly, we only
investigated effects using the MET paradigm and it is possible
that OXT effects on CE as well as EE would have been found
using other paradigms. Thirdly, no endogenous levels of OXT
were assessed in the present study. Comparing the PLC-treated
subjects between EXP 1 and EXP 2 suggests that the scanner
environment per se may have had an influence on EE ratings,
possibly due to elevated stress levels in the MRI environment.
Given that previous studies reported endogenous OXT release in
response to stress (Lang et al., 1983; Jong et al., 2015) we cannot
completely rule out interactions between differential endogenous
OXT levels in EXP 1 and EXP 2 and treatment. Lastly, the
absence of sex-differences in OXT effects in the current study
might have been contributed to by our Chinese male and female
participants exhibiting similar EE scores, in contrast to Caucasian
participants (Hurlemann et al., 2010), and also similar ASQ
scores.

In summary, in the current study we have shown that in
the MET paradigm, OXT enhances EE but not CE in Chinese
participants, similar to Caucasian ones, and additionally that
this occurs in female as well as male participants. Furthermore,
we have shown for the first time that this EE effect of OXT is
associated with decreased amygdala responses and differentially
altered functional connectivity between the amygdala and insula
and PCC for positive and negative valence stimuli. Finally, we

have shown that both behavioral and neural effects of OXT
are modified to some extent by trait autism scores, although
behavioral and functional connectivity effects were strongest in
individuals with lower scores.
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