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The overwhelming majority of dominant mutations causing early onset familial
Alzheimer’s disease (EOfAD) occur in only three genes, PSEN1, PSEN2, and APP. An
effect-in-common of these mutations is alteration of production of the APP-derived
peptide, amyloid β (Aβ). It is this key fact that underlies the authority of the Amyloid
Hypothesis that has informed Alzheimer’s disease research for over two decades. Any
challenge to this authority must offer an alternative explanation for the relationship
between the PSEN genes and APP. In this paper, we explore one possible alternative
relationship – the dysregulation of cellular iron homeostasis as a common effect
of EOfAD mutations in these genes. This idea is attractive since it provides clear
connections between EOfAD mutations and major characteristics of Alzheimer’s disease
such as dysfunctional mitochondria, vascular risk factors/hypoxia, energy metabolism,
and inflammation. We combine our ideas with observations by others to describe a
“Stress Threshold Change of State” model of Alzheimer’s disease that may begin to
explain the existence of both EOfAD and late onset sporadic (LOsAD) forms of the
disease. Directing research to investigate the role of dysregulation of iron homeostasis
in EOfAD may be a profitable way forward in our struggle to understand this form of
dementia.

Keywords: iron homeostasis, trafficking, familial Alzheimer’s disease, neurodegeneration, mutation, secretase,
PRESENILIN, AMYLOID BETA A4 PRESCURSOR PROTEIN

IRON, INFLAMMATION, AND NEURODEGENERATION

Iron is the most abundant element in our planet and the most abundant transition metal in
the human body (Emsley, 1998). It has been a central component of energy metabolism since
the dawn of life, over one billion years before oxygenation of the Earth’s atmosphere drove the
evolution of energy production by oxidative phosphorylation (Sheftel et al., 2012). Iron has been
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used medicinally for thousands of years before elucidation of its
role in biology began with its discovery as a component of our
blood [announced in 1746 (Busacchi, 1958; Sheftel et al., 2012)].

The most reactive form of iron, ferrous iron, Fe2+, was
abundant in the biosphere before oxygen formation by
cyanobacteria depleted it to form less soluble ferric (Fe3+)
oxide. It is Fe2+ that is required to form the iron–sulfur
complexes that are essential for aerobic respiration by bacteria
and, consequently, for the function of mitochondria in our
eukaryotic cells. However, the exploitation of Fe2+ in redox
reactions involves the unavoidable generation of oxidative and
nitrosative stress that must be properly managed lest it damage
mitochondria, damage their antioxidant controls, and generate
additional stress in a positive feedback loop (Leandro et al., 2015).
Levels of bioavailable iron are tightly regulated by balancing
of iron storage and iron acquisition through mechanisms that
are exquisitely sensitive to iron requirements. Iron is normally
acquired from the diet by absorption across enterocytes,
transported around the body chaperoned by TRANSFERRIN,
internalized by iron-requiring cells via TRANSFERRIN
RECEPTOR (TFRC)-mediated endocytosis [and other pathways
(Mills et al., 2010; Prus and Fibach, 2011)], and released from
the endolysosomal compartment into the cytosol for cellular
use. Excess iron is stored in numerous ways: in the cytosolic
iron storage protein complex, FERRITIN; within mitochondria
in MITOCHONDRIAL FERRITIN (FTMT, Levi et al., 2001);
and in protein/chemical complexes such as hemosiderin (Iancu,
2011) and neuromelanin (Double et al., 2003) apparently in the
lysosomal pathway (Iancu, 2011; Plum et al., 2016). Some cell
types such as enterocytes, macrophages and hepatocytes have
evolved increased iron storage capacity (Linder, 2013). Iron is
also exported from cells via the protein SOLUTE CARRIER
FAMILY 40 (IRON-REGULATED TRANSPORTER), MEMBER
1 (SLC40A1, better known as FERROPORTIN 1 or FPN1)
(Donovan et al., 2000). FPN1 acts in conjunction with an iron
oxidase (to convert Fe2+ to Fe3+) such as HEPHAESTIN (in
intestinal epithelial cells absorbing iron in the gut) (Vulpe et al.,
1999) or the homologous protein CERULOPLASMIN (in most
other cell types) (Takahashi et al., 1984; Wang and Wang, 2018).
The intracellular trafficking of iron within neurons will be
discussed in more detail later.

Iron, in particular Fe2+, is so important for bacterial growth
that denying its availability to bacteria is central to our innate
immune defense against infection. In response to infection, an
antibacterial peptide hormone, HEPCIDIN ANTIMICROBIAL
PEPTIDE (HAMP), is produced (Pigeon et al., 2001). HAMP
signaling drives internalization and degradation of FPN1
(Wang S.M. et al., 2010; Wessling-Resnick, 2010). This prevents
dietary iron from exiting enterocytes into the circulation, and
stored iron from exiting macrophages and other cells that
have evolved to store it. This underlies the anemia associated
with acute and chronic disease (Roy and Andrews, 2005). The
iron storage capacity in mammalian systems is increased by
upregulation of FERRITIN (Konijn and Hershko, 1977; Rogers,
1996), and FTMT (Yang et al., 2015). Another important protein
that is a part of the mammalian innate immune system is the
iron-binding protein LACTOTRANSFERRIN (LTF) that shows

structural homology to TRANSFERRIN and has anti-microbial
and anti-inflammatory activities (reviewed by Bonaccorsi di
Patti et al., 2018). Of course, in defending against bacteria, the
sequestration of iron also affects the functionality of our own
mitochondria so that, during inflammation, cells may rely more
heavily on energy generation by glycolysis (Gaber et al., 2017).

Inflammation is recognized as a key, unifying characteristic
of all forms of neurodegeneration (Richards et al., 2016) so it
is unsurprising that iron appears to play key roles in many
neurodegenerative diseases. Some examples of this are to be
provided but the main aim of this paper is to examine the
role iron may play in the most common form of dementia,
Alzheimer’s disease.

ALZHEIMER’S DISEASE

The current criteria for the pathological diagnosis of Alzheimer’s
disease are used to compose an “ABC” score. The “A” describes
the extent of Aβ peptide immunostaining (Thal et al., 2002) while
“B” is derived from argyrophilic neurofibrillary tangles (NFTs,
composed largely of hyperphosphorylated MICROTUBULE-
ASSOCIATED PROTEIN TAU, MAPT) (Braak and Braak, 1991)
and “C” from argyrophilic neuritic plaques (Mirra et al., 1991).
Intermediate or high ABC scores are regarded as consistent
with Alzheimer’s disease (Montine et al., 2012). Aβ is first seen
throughout the ventral neocortex before spreading to the medial
temporal lobe structures. In contrast, NFTs are first observed
in the transentorhinal cortex before spreading throughout the
hippocampal formation and neocortex with relative sparing of
primary cortices (Braak and Braak, 1991). Unlike the linear
course of events of Aβ aggregation followed by effects on MAPT
that is described by the “Amyloid Hypothesis” (Hardy and Selkoe,
2002) there tends not to be a temporal or physical overlap of
NFTs and Aβ in the cortex (Nelson et al., 2009). Indeed, it is the
spread of NFTs rather than of Aβ plaques that is correlated with
the severity and duration of Alzheimer’s disease (Arriagada et al.,
1992). However, most neuritic plaques and some diffuse plaques
are tau positive (Dickson and Vickers, 2001) while neuropil
threads (composed of MAPT) are commonly seen among plaques
suggesting that the overlap of Aβ and MAPT pathologies is more
extensive that commonly appreciated when all types of MAPT
pathology are considered.

Past and more recent research suggests that changes in iron
trafficking and accumulation may be important in LOsAD.
Two decades ago, Drs. Mark Smith and George Perry showed
iron accumulation associated with the histological hallmarks of
Alzheimer’s disease; Aβ plaques and NFTs (Smith et al., 1997)
while Kennard et al. (1996) found that serum levels of the iron
binding protein MELANOMA-ASSOCIATED ANTIGEN p97
(MFI2) were distinctly higher in individuals with Alzheimer’s
disease compared to cognitively normal controls. More recently,
the degree of iron accumulation in the brain has been seen to
correlate with the degree of plaque and NFT pathology (van
Duijn et al., 2017). While intracellular aggregation of Aβ may
well contribute to plaque formation (Friedrich et al., 2010)
and the rate of formation of an individual plaque is debated
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(Burgold et al., 2011; Hefendehl et al., 2011), the likelihood that
microhemorrhages contribute to plaque formation is supported
by their heme and fibrinogen content and their spatial correlation
with blood vessels (Cullen et al., 2005, 2006). Since heme is rich
in iron, an increasing brain Aβ plaque load would be expected to
increase overall brain iron content.

Analysis of the iron storage complex FERRITIN shows great
diagnostic and predictive potential for Alzheimer’s disease. In
particular, FERRITIN levels in cerebrospinal fluid (an indicator
of iron storage capacity) are very significantly higher in carriers
of the major LOsAD risk allele, the ε4 allele of the gene
APOE (APOE4), and predict conversion from mild cognitive
impairment (MCI) to Alzheimer’s disease (Ayton et al., 2015).
Also, levels of FERRITIN in plasma correlate strongly with
Aβ levels in the neocortex (as assessed by positron emission
tomography) so that analyzing plasma FERRITIN may assist in
identifying people at high risk for Alzheimer’s disease (Goozee
et al., 2017).

UNCERTAINTY REGARDING THE
MECHANISTIC ROLE OF Aβ IN
ALZHEIMER’S DISEASE

As of June 2018, a search in PubMed for the term “Alzheimer’s
disease” finds over 105,000 papers (excluding reviews).
Nevertheless, there is still no consensus on the pathological
mechanism underlying this disease. Indeed, the very definition
of the disease itself is disputed (Herrup, 2015; De La Torre, 2016;
Iturria-Medina et al., 2016; Whitehouse and George, 2016).

The past two decades have seen great enthusiasm for
the Amyloid Hypothesis of Alzheimer’s disease that posits
a pathological role for the Aβ peptide cleaved from the
AMYLOID BETA A4 PRECURSOR PROTEIN (APP). The
Amyloid Hypothesis is an irrefutable tenet for many in the
Alzheimer’s disease research community since changes in Aβ

production appear to be the only common mechanism linking the
few loci where mutations causing early onset familial Alzheimer’s
disease (EOfAD) are found. However, the mode of Aβ’s purported
toxicity remains to be clearly defined and recent prominent
review papers have admitted to serious incongruities between
observations of Aβ deposition in the brain and the progress
of the disease (Herrup, 2015; De Strooper and Karran, 2016).
It is thus uncertain whether Aβ, accumulation of which is
currently a required element in the definition of Alzheimer’s
disease (McKhann et al., 2011) is a causative agent, a protective
mechanism, or an ‘innocent bystander’ in the pathological
process. [It is also worth reflecting on the fact that a naïve, most
parsimonious interpretation of the presence of iron in the plaques
and NFTs of Alzheimer’s disease brains (Smith et al., 1997) – that
resembles so clearly the silver staining used by Alois Alzheimer
himself to identify these histological landmarks (Alzheimer et al.,
1995) – is that iron is the common causative agent rather than
the Aβ peptide somehow driving both plaque and NFT formation
and then these coincidentally both binding iron.]

The dominant mutations causing EOfAD are now recognized
to occur in four genes, APP, PRESENILIN 1 (PSEN1),

PRESENILIN 2 (PSEN2), and (more recently) SORTILIN-
RELATED RECEPTOR 1 (SORL1). Readers can refer to a
number of excellent reviews and research papers describing these
mutations (Tanzi, 2012; Guerreiro and Hardy, 2014; Verheijen
et al., 2016). Mutations in SORL1 are thought to influence the
production and secretion of Aβ by mechanisms that are not
yet clearly defined (reviewed by, Yin et al., 2015). However,
the involvement of APP and the PSENs in production of
Aβ is considered clear: the PSENs form the catalytic core of
γ-secretase complexes that cleave a transmembrane fragment
of APP to release Aβ (Figure 1). [Intriguingly, SORL1 is
also a substrate of γ-secretase (Bohm et al., 2006)]. EOfAD
mutations in APP are thought to affect either the production
rate and/or form of Aβ while EOfAD mutations in the PSENs
have been thought to enhance the production of the longer
forms of Aβ, in particular the 42 amino acid residue form,
Aβ42, relative to the predominant, 40 amino acid residue form,
Aβ40 (Chavez-Gutierrez et al., 2012; Szaruga et al., 2015).
However, this idea remains controversial since many of these
mutations may decrease total γ-secretase activity and reduce
overall Aβ production (Jayne et al., 2016; Sun et al., 2017),
casting doubt on a causative role for Aβ in Alzheimer’s disease
pathology.

The PSENs are polyfunctional proteins (reviewed by, Duggan
and McCarthy, 2016; Jayne et al., 2016; Otto et al., 2016).
When cleaved within their “cytosolic loop” domain they
apparently become catalytically active in γ-secretase complexes.
However, before cleavage, PSEN holoproteins are involved
in other cellular activities. The best defined of these is
the role of PSEN1 as a chaperone for presentation of
the protein ATPase, H+ TRANSPORTING, LYSOSOMAL,
V0 SUBUNIT A1 (ATP6V0A1) for N-glycosylation by the
Sec61alpha/oligosaccharyltransferase complex (Lee J.H. et al.,
2010; Lee et al., 2015). Correct N-glycosylation of ATP6V0A1
is required for its targeting to lysosomes (Lee J.H. et al.,
2010) where it functions as a subunit of the vacuolar
ATPase (v-ATPase) complex required for lysosomal acidification.
Thus, EOfAD mutations in PSEN1 appear to decrease the
acidity, and reduce the activity, of lysosomes (Lee J.H. et al.,
2010). This effect on lysosomes is specific to the holoprotein
function since γ-secretase inhibition, or loss of the essential
γ-secretase complex component NICASTRIN, do not affect
lysosomal acidification (Lee J.H. et al., 2010). Furthermore,
EOfAD mutations have never been discovered in the genes
encoding the other components of γ-secretase complexes, while
mutations in three of the four genes encoding components
of γ-secretase complexes (including a frame-shift mutation
in PSEN1) cause the skin disease acne inversa and not
EOfAD (Wang B. et al., 2010; Li et al., 2011; Liu et al.,
2011). Also, intriguingly, another Alzheimer’s disease-related
phenomenon that appears to be relatively insensitive to
changes in γ-secretase activity is the increased apposition
between the endoplasmic reticulum (ER) and mitochondria
seen in fibroblasts from both PSEN EOfAD and LOsAD
patients (Area-Gomez et al., 2012) [but the apposition is
sensitive to β-secretase inhibition (Pera et al., 2017)]. This is
important since the PSEN proteins and γ-secretase activity are
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FIGURE 1 | Multiple functions of APP in neurons. After its translation, APP can function in neurons to bind FPN1 and enhance the export of excess Fe2+. Some
APP is cleaved by α-secretase or (mainly under stress) by β-secretase complexes, the latter producing the antimicrobial and antioxidant peptide Aβ. The secreted
extracellular domains cleaved from APP by α–secretase (sAPPα) or β-secretase (sAPPβ) adopt different structures and activities. Like APP, sAPPα is able to increase
the expression of FPN1 at the cell surface. sAPPα can also inhibit the activity of β-secretase. Translation of APP mRNA is suppressed by binding of IRP1 to an iron
responsive element (IRE) (Rogers et al., 2002) when synthesis of Fe–S clusters is deficient. Under inflammatory stress and/or hypoxia, APP transcription is
upregulated by oxidative stress, and APP translation is stimulated by binding of IL1 at a translation enhancer site (TEH) (Rogers et al., 1999) and by an internal
ribosome entry site (IRES, Beaudoin et al., 2008) that permits translation in defiance of the unfolded protein response. The increased APP protein either increases
iron export for sequestration by other cells or is diverted intracellularly to cleavage for production of Aβ and other APP proteolytic products. Plasma membrane APP
may also be internalized for cleavage, probably due to interactions with SORTILIN and NGFR (p75) (Yang et al., 2013; Saadipour et al., 2017). β′ and α cleavage
sites are indicated. It is not known what domains of α- and β-secretase interact with γ-secretase. Indeed, the functional existence of such complexes appears
inconsistent with other data on the subcellular localization of these enzyme activities (e.g., see Pera et al., 2017). Note that the BACE1 protein that provides
β-secretase activity was recently shown to be involved in intracellular Cu2+ homeostasis (Liebsch et al., 2017).

highly concentrated in this apposition structure known as the
mitochondria-associated membranes (MAM; Area-Gomez et al.,
2009, 2012).

In a review paper published in 2016, some of us examined
the evidence for the involvement of γ-secretase activity in
Alzheimer’s disease (Jayne et al., 2016). We found that the genetic
data from disease-causing mutations in the PSENs and other
components of γ-secretase complexes supported an alternative
idea. We proposed that EOfAD mutations in the PSENs promote
Alzheimer’s disease through their effect on holoprotein function.
Indeed, their dominant action may be due to the formation of
holoprotein multimers whereby mutant holoproteins bind to,
and interfere with, the action of wild type PSENs. In that paper,

we conceded that this idea could not explain some reported
EOfAD-related phenomena. In particular, the role of APP in
this alternative view was not obvious and we had no alternative
explanation for the remarkable reported correlation between the
concentration ratio of Aβ40 relative to Aβ42 and the mean age of
onset of EOfAD for different mutations in PSEN1 (Duering et al.,
2005).

In late 2016, Sun et al. (2017) published their comprehensive
analysis of γ-secretase activity and Aβ formation for 138 different
EOfAD mutations of PSEN1. They found that different EOfAD
mutations can either increase or decrease γ-secretase activity and
that the correlation of the Aβ40/Aβ42 ratio with the mean ages
of onset of EOfAD mutations of PSEN1 is illusory. Furthermore,
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Arimon et al. (2015) showed that changes in the ratio of Aβ40
relative to Aβ42 can occur due to oxidative stress, which is a
common phenomenon in Alzheimer’s disease brains (Martins
et al., 1986; Sanabria-Castro et al., 2017). Thus, in reality, there
is currently little genetic data to support a role for γ-secretase
(and hence Aβ) in EOfAD (other than the existence of EOfAD
mutations in the γ-secretase-cleavage site of APP).

AN ALTERNATIVE LINK BETWEEN
EOfAD-ASSOCIATED MUTATIONS IN
APP AND THE PSENs

Since APP and the PSENs are linked in their common
involvement in Aβ production, an alternative hypothesis for
Alzheimer’s disease pathogenesis requires that a convincing
alternative explanation is given for the relationship between the
functions of APP and PSENs, and EOfAD pathology. While
considerable effort has been devoted to understanding the
relationship between EOfAD mutations and γ-secretase activity,
relatively little is known about the effects of these mutations on
PSEN holoprotein function or the normal functions of APP, and
whether there is any commonality in function that links them.
The genes PSEN1 and PSEN2 encode proteins with closely related
structures and similar functions so it is perhaps unsurprising that
EOfAD mutations should be found in both. However, APP is also
part of a larger protein family. It shares structural and redundant
functional activity with two other proteins, the AMYLOID BETA
A4 PRECURSOR-LIKE PROTEINS 1 and 2 (APLP1, APLP2;
structurally, APP is more similar to APLP1, Shariati and De
Strooper, 2013). Why have EOfAD mutations never been found
in the genes encoding these other proteins? What is unique about
APP that is not shared with other members of its family?

Of course, of the three APP-related proteins, only APP itself
can produce the Aβ peptide. Despite its close similarity to APP,
the protein APLP1 apparently does not require cleavage by α- or
β-secretase in order to be cleaved by γ-secretase (Schauenburg
et al., 2018). However, both APLP1 (Li and Sudhof, 2004) and
APLP2 (Pastorino et al., 2004) can be cleaved by β-secretase
(Pastorino et al., 2004), and Aβ-equivalent peptides have been
detected for these proteins (Eggert et al., 2004; Yanagida et al.,
2009) although there is little to suggest that these peptides have
pathological activity.

Another characteristic that APP does not share with the
APLP proteins is its role in neuronal iron homeostasis. APP
(and the α-secretase-cleaved secreted form of APP, sAPPα,
but not APLP2) associates with FPN1 to facilitate the iron
export function of FPN1 in the plasma membrane of neurons
(Duce et al., 2010; Wong et al., 2014). APP’s role in iron
export is so significant that it is amongst a list of other
iron-related proteins (including FPN1 and others described
later such as ACO2, FTH1, FTL, and SDHB (Kuhn, 2015))
whose expression is regulated post-transcriptionally by the
presence of ‘iron responsive elements’ (IREs) in the untranslated
regions (UTRs) of their respective mRNAs. When cellular iron
levels are depleted, “IRON-RESPONSIVE ELEMENT-BINDING
PROTEIN 1” (IRP1) (and related protein IRP2) are activated

to bind to the stem-loop structure formed by the iron response
element (IRE) motif. Whether IREs lie in the 5′ or 3′ UTR of
a particular mRNA determines whether IRP binding results in
translational silencing, or transcript stabilization, respectively. By
regulating expression of key players in iron homeostasis, IRPs act
to increase the bioavailability of iron under conditions of iron
deficiency.

In the case of APP, IRP1 binds to an IRE motif in the 5′ UTR
of APP mRNA to inhibit translation (Cho et al., 2010) and thus
inhibit iron export (Rogers et al., 2002) in iron deficiency. This
motif is not present in the 5′ UTR of APLP1 (Rogers et al., 2002)
or APLP2 (Maloney et al., 2004).

In iron replete conditions, IRP1 incorporates an iron–
sulfur cluster (ISC) to become enzymatically active as cytosolic
protein ACONITASE1 (ACO1; related to the mitochondrial
ACONITASE2 protein required by the tricarboxylic acid cycle,
TCA, for energy production) (Hentze and Argos, 1991; Rouault
et al., 1991). In this form, it is unable to bind IRE sequences.
Notably, ACO1 may possibly also be converted to IRP1 under
conditions of oxidative stress (Gehring et al., 1999), e.g., due
to either hypoxia or hyperoxia (Terraneo and Samaja, 2017).
Analysis of the subcellular localization of IRP1 shows it to be
concentrated in the ER (Patton et al., 2005), which is consistent
with the importance in Alzheimer’s disease of the MAM (see
later).

The importance of APP in iron homeostasis is demonstrated
by the structural similarity of its 5′ UTR sequence to those
of FERRITIN LIGHT CHAIN (FTL) and FERRITIN HEAVY
CHAIN 1 (FTH1) (Rogers et al., 1999), two proteins that together
form the FERRITIN molecular cages in which iron is stored as
Fe3+. Like APP, translation of the ferritin subunits is inhibited by
IRP-IRE binding (to decrease iron storage when iron levels are
depleted). Note that, unlike the 5′ UTR of FTH1 mRNA, APP
mRNA’s 5′ UTR may not bind IRP2 (Cho et al., 2010). IRP2
is structurally similar to IRP1 (Rouault et al., 1990) but lacks
aconitase activity (Guo et al., 1994; Samaniego et al., 1994) and
becomes unstable when cellular iron levels are high (Iwai et al.,
1995) (rather than becoming, like IRP1, unable to bind IREs due
to possession of an iron–sulfur cluster).

Translation of APP, FTL, and FTH1 mRNAs are also all
apparently stimulated by the binding of the pro-inflammatory
cytokines INTERLEUKIN 1 ALPHA (IL1A) or INTERLEUKIN
1 BETA (IL1B) to INTERLEUKIN translation enhancer elements
in their 5′ UTRs. In fact, in the case of FTH1, iron and
IL1B act synergistically to increase translation of FTH1 mRNA
(Thomson et al., 2005). Thus, APP, FTL, and FTH1 proteins all
participate in the acute phase inflammatory response. FTL and
FTH1 upregulation acts to sequester iron in FERRITIN making it
unavailable to invading bacteria (Wessling-Resnick, 2010; Soares
and Weiss, 2015). The upregulation of APP by inflammatory
cytokines suggests that, in inflammation, there may be a need to
export iron from the cytosol of cells that express APP, which in
the brain is specifically neurons (and not glia or astrocytes) (Guo
et al., 2012). APP’s role in the acute phase inflammatory response
is discussed later. The regulation of APP mRNA translation has
been reviewed by Ruberti et al. (2010) and some aspects of
this are illustrated in Figure 1. The translation of APP mRNA
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is also regulated by FRAGILE X MENTAL RETARDATION
PROTEIN (FMRP, encoded by gene FMR1) through its binding
to a G-quartet-like RNA motif within the APP coding sequence
(Westmark and Malter, 2007; Lee E.K. et al., 2010). Binding of
other proteins, particularly in the 3′ UTR, regulates APP mRNA
stability (e.g., Zaidi et al., 1994; Zaidi and Malter, 1995 and see
reviews Ruberti et al., 2010; Westmark and Malter, 2012).

Interestingly, the trafficking of APP to the plasma membrane
where it can interact with FPN1 is dependent on the activity
of MAPT (Lei et al., 2012, 2017). Consequently, mice
lacking MAPT expression show accumulation of iron in
the brain (Lei et al., 2012). Apparently, iron can both induce
MAPT hyperphosphorylation (Xie et al., 2012; Guo et al.,
2013) and encourage aggregation of hyperphosphorylated
MAPT (Yamamoto et al., 2002). Since MAPT becomes
hyperphosphorylated and aggregates in the neurons of
Alzheimer’s disease brains, we would expect this to reduce
the available APP on the neuronal plasma membrane and so
reduce iron export in aged neurons showing Alzheimer’s disease
pathology. (Note the potential here for a positive feedback loop
driving iron accumulation.)

Gene knockout studies in mice also point to the impact of
age on APP’s effect on iron homeostasis. While mice lacking
APP apparently show reduced body weight when young (Zheng
et al., 1995), they do not show excess brain iron accumulation
(compared to wild type) by 3 months of age. However, brain
iron accumulation is significantly increased by 12 months of age
(Needham et al., 2014). In contrast, mice lacking APLP2 show
no difference in brain iron accumulation compared to wild type
mice at any age (Needham et al., 2014). The age-dependence of
iron accumulation due to APP dysfunction in mice is consistent
with both familial and sporadic Alzheimer’s disease as adult onset
diseases in humans. Apparently, neurons (and any other cells
in which APP may function in iron export) are not critically
dependent on this function during early development. In fact,
iron accumulation is important for early brain development and
insufficient early brain iron accumulation may determine an
aberrant iron “set point” that is refractory to alteration by later
iron supplementation (Hare et al., 2013).

Like APP (and as described later in this paper), the PSENs can
be expected to play a role in iron homeostasis in neurons (and
other cells) due to their role in acidification of the endo-lysosomal
pathway (Lee J.H. et al., 2010; Lee et al., 2015). We propose that
a shared function of EOfAD-associated proteins may be normal
roles in regulation of neuronal iron homeostasis, particularly as
animals age.

CELLULAR IRON HOMEOSTASIS AND
THE EOfAD MUTATIONS OF APP

Do the characteristics of APP’s EOfAD mutations support
that APP’s role in iron homeostasis is critical for Alzheimer’s
disease pathogenesis? There are two broad categories of EOfAD
mutations affecting APP: (1) whole gene duplications and,
(2) missense mutations (see the review by Tcw and Goate,
2017). Both categories of APP EOfAD mutations preserve the

ability to produce a full-length APP protein (similar to EOfAD
mutations in the PSEN genes). Individuals with trisomy of
chromosome 21 possess three copies of the APP gene and
show early onset Alzheimer’s disease (Prasher et al., 1998).
A number of the missense mutations in APP might also be
expected to increase the stability (and effective dosage) of APP
expression. For example, mutations that inhibit cleavage of
APP by α-secretase are suggested to be pathogenic by their
enhancement of β-secretase cleavage to form Aβ rather than
the shorter, non-pathogenic p3 peptide formed by α-secretase
cleavage (Haass et al., 1994; Kaden et al., 2012). However,
these mutations should also increase the stability of full-
length APP, particularly when one remembers that cleavage of
APP by β-secretase occurs mainly at the β′ site (Figure 1)
rather than the β-site cleavage that produces Aβ during
cellular stress (Deng et al., 2013). Similarly, even though
γ-secretase cleavage of APP is thought to occur subsequent
to α-secretase or β-secretase cleavage, there is evidence that
these latter two enzymes act in complexes together with
γ-secretase (Teng et al., 2010; Chen et al., 2015; Cui et al.,
2015) suggesting that inhibition of γ-secretase might also
lead to inhibition of initial cleavage by α- or β-secretases.
Xu et al. (2016) recently showed that most EOfAD mutations
in APP decrease the efficiency of its cleavage by γ-secretase.
An effective over-expression of full-length APP would be
expected to result in excessive Fe2+ export from neurons
leading to a deficiency of cytosolic Fe2+. On the other
hand, mutations in APP that increase β-secretase cleavage
(such as the “Swedish” mutation, KM670/671NL, Citron et al.,
1992) could lead to deficient Fe2+ export and neuronal iron
accumulation.

The α-secretase-cleaved secreted form of APP, sAPPα,
can facilitate FPN1 activity in a manner similar to full-
length APP (Wong et al., 2014). This raises the important
question of the activity of the β-secretase-cleaved secreted
form, sAPPβ. An inability of sAPPβ to facilitate FPN1 activity
would support the idea that iron homeostasis is the critical
function affected by EOfAD mutations in APP. sAPPα and
sAPPβ differ by only 16 amino acid residues in length and
have largely similar functions although distinct differences in
activity have also been observed (reviewed by Ludewig and
Korte, 2016; Mockett et al., 2017). For example, expression
of sAPPα, but not sAPPβ, can rescue the viability of mice
that simultaneously lack both APP and APLP2 (Ring et al.,
2007; Li et al., 2010; Weyer et al., 2011). [This shows that
much of the activity of full-length APP can be attributed
to sAPPα (Ring et al., 2007; Weyer et al., 2011)]. sAPPα

can also facilitate long term potentiation in the hippocampus
(Taylor et al., 2008; Hick et al., 2015) in contrast to sAPPβ

(Hick et al., 2015). Chen et al. (2017) and Peters-Libeu
et al. (2015) showed that sAPPα can inhibit the activity of
β-secretase suggesting the existence of a “molecular switch”
where one secretase pathway inhibits the other. Importantly,
the latter study used small angle X-ray scattering to model
the tertiary structures of sAPPα and sAPPβ and showed
them to be very different. This was supported by fluorescence
spectroscopy data (Peters-Libeu et al., 2015). However, the
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relative abilities of sAPPα and sAPPβ to stabilize FPN1
are yet to be tested. Further complicating this issue is the
fact that, in the absence of cellular stress, most β-secretase
cleavage of APP occurs at the β′ site 10 amino acid residues
downstream of the β site (Deng et al., 2013) (Figure 2).
Nevertheless, the activity of sAPPβ′ has been largely overlooked
by researchers.

An important possible implication of the ability of sAPPα

to facilitate FPN1 activity is that increased gene dosage of
APP (e.g., due to duplication mutations or in Down syndrome)
could potentially cause excess sAPPα secretion from neurons
that might act to stabilize FPN1 on the plasma membranes
of proximal cells. Indeed, an elegant gene-trap experiment
described by Liao et al. (2012) showed that only neurons in the
developing brains of zebrafish embryos express APP but that
APP’s extracellular domain accumulates in brain vasculature.
Therefore, the potential may exist for non-autonomous cellular
dyshomeostasis of iron due to changes in the expression and
cleavage of APP in neurons. Interestingly, a common pathology
of APP duplications (Cabrejo et al., 2006) and Down syndrome
(Donahue et al., 1998; Buss et al., 2016) is intracerebral

hemorrhage suggesting that increased APP expression disrupts
the integrity of brain vasculature. Accumulation of Aβ in brain
vasculature is also very common in Alzheimer’s disease [i.e.,
cerebral amyloid angiopathy (CAA; Vinters and Gilbert, 1983;
Attems, 2005)] and probably contributes to this disruption
(Samuraki et al., 2015) with the consequent release of heme
contributing to higher iron levels in Alzheimer’s disease
brains.

A recent paper by Lopez Sanchez et al. (2017) illustrated
how different EOfAD mutations of APP might have differing,
but still detrimental, effects on iron homeostasis. Forced over-
expression of full-length wild type APP in human SH-SY5Y
neuroblastoma cells led to decreased mitochondrial respiration
and increased glycolysis (lactate production). This would be
expected since the predicted cytosolic Fe2+ deficiency caused by
APP overexpression would deprive the mitochondrial TCA and
electron transport chain of iron–sulfur clusters while stabilizing
the HIF1 transcription factor that regulates the hypoxia
response (see later). In contrast, forced over-expression of the
EOfAD “Swedish mutation” form of APP that shows enhanced
β-secretase cleavage did not decrease mitochondrial respiration

FIGURE 2 | EOfAD mutations of APP. The transmembrane domain (labeled darker gray box) and Aβ region (darker gray-shaded amino acid residues) of APP protein
are illustrated relative to the mean of mean onset ages (MMOA) of mutations (red squares) from the Alzheimer Disease & Frontotemporal Dementia Mutation
Database (Cruts et al., 2012). MMOAs for duplications of the APP gene are shown on the left hand side. There is no MMOA for the K687N mutation in the
α-secretase cleavage site but the two onset ages published (Kaden et al., 2012) are indicated by black “X”s. An arrow indicates the position of the protective A673T
mutation that reduces Aβ production (Jonsson et al., 2012). Cleavages by various secretases occur between amino acid residues colored yellow. Positions of the
possible downstream IRE (see also Figure 3) and the amino acid residues required for dimerization are also shown by labeled lighter and darker gray boxes,
respectively. A two-tailed t-test assuming unequal variances for differences between the means of all the MMOAs of whole gene duplications versus
non-γ-secretase-affecting missense mutations gives p = 0.05 suggesting that the mechanisms by which these mutation classes generate pathology may differ. We
note that this data is also consistent with the suggestion by Area-Gomez et al. (2018) that increased formation of the β-secretase-cleaved transmembrane fragment
of APP (the C99 fragment) is the critical effect of EOfAD mutations in APP. C99 accumulates in the MAM and appears to mediate the effects of PSEN activity on
MAM formation with consequences for energy metabolism (Pera et al., 2017). EOfAD mutations of APP also alter the tendency of Aβ to aggregate (Hatami et al.,
2017) but we know of no correlation between Aβ aggregation dynamics and MMOA.
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(despite increased production of Aβ42) unless β-secretase was
inhibited, in which case it had the same effect as wild type
APP. This supports that different EOfAD mutations of APP have
different effects on energy metabolism, possibly as a result of
differential effects on cytosolic Fe2+ availability. [The situation is
further complicated by the observation of Chen et al. (2017) that
iron can inhibit β-secretase activity while Bodovitz et al. (1995)
noted that high iron levels can increase α-secretase activity.] In
fact, examining the “mean of mean onset ages” (MMOA) of
different EOfAD mutations in APP from the Alzheimer Disease
& Frontotemporal Dementia Mutation Database (Cruts et al.,
2012) shows that missense mutations (excluding those thought
to affect γ-secretase cleavage) such as the Swedish mutation tend
to cause later onset ages than duplications of APP (i.e., they are
less pathogenic, Figure 2).

And how should we interpret the “Alzheimer’s disease-
protective” mutation of APP, A673T? Icelandic carriers of
this mutation show decreased risk of Alzheimer’s disease and
increased cognitive performance when elderly (Jonsson et al.,
2012). The allele is rare outside of Iceland (Kero et al., 2013; Ting
et al., 2013; Bamne et al., 2014; Mengel-From et al., 2015; Wang
L.S. et al., 2015). A673T is claimed to reduce cleavage at the β-site
to reduce Aβ synthesis (Jonsson et al., 2012). Since cleavage at
the β-site of APP is a stress response (particularly to infection –
see later) and suppression of inflammatory stress is protective
of aging vasculature (Ganjehei and Becker, 2015; Wang J. et al.,
2015), it may be that A673T acts to reduce chronic inflammatory
stress levels and preserve vascular health. Intriguingly, the
Icelandic population (particularly the rural population living
under conditions more similar to those prevailing for most of
Iceland’s millennium of settlement), shows unusually high levels
of serum FERRITIN (Jonsson et al., 1991). It is possible that an
increased rate of iron export from neural cells is protective (i.e.,
advantageous in natural selection) under such conditions.

An additional complicating factor in considering how EOfAD
mutations might affect iron homeostasis is our current limited
knowledge regarding how FPN1 and APP interact. For example,
APP can dimerize and transmembrane domain amino acid
residues critical for this (and affecting γ-secretase cleavage) are
mutated in EOfAD (Yan et al., 2017) (Figure 2). The dimerization
of APP affects its interaction with the protein SORL1 and this
influences the trafficking of APP from the ER to the plasma
membrane (Eggert et al., 2017) where FPN1 acts to export Fe2+.
The most severe EOfAD mutations in APP (those with the
earliest Alzheimer’s disease onset ages) affect the transmembrane
domain amino acid residues critical for dimerization (Figure 2).
Intriguingly, the region of APP RNA that codes for these
transmembrane amino acid residues is also predicted to fold into
a possible second, downstream IRE (Figure 3).

CELLULAR IRON HOMOEOSTASIS AND
THE PSEN PROTEINS

The probable dysregulation of cytosolic Fe2+ homeostasis due
to EOfAD mutations in APP is significant because EOfAD
mutations in the PSENs are predicted to produce similar

FIGURE 3 | The intriguing story of APP’s possible downstream IRE. The
theoretical secondary structure of the possible downstream IRE originally
published by Tanzi and Hyman (1991) shortly before the Alzheimer’s disease
field became focused on the idea that production of Aβ42 is critical to
Alzheimer’s disease pathogenesis. The amino acid residues specified by
codons are indicated by parentheses. Those amino acid residues shown in
red are mutated in EOfAD. In 1991, it was suggested that transmembrane
domain EOfAD mutations in APP might exert their pathological effect by
disrupting regulation of APP by iron (and this was before APP’s role in iron
homeostasis was known). However, the discovery in the following year of an
apparently non-pathological (but theoretically IRE-disruptive) polymorphism in
this region (Zubenko et al., 1992) (gray “A”) collapsed support for this
suggestion. Most IREs are found either in the 5′- or 3′-UTRs of mRNAs where
binding of IRPs inhibits or enhances, respectively, mRNA translation (Casey
et al., 1988; Anderson et al., 2012). The position of APP’s putative, second
IRE within transmembrane domain-coding sequences is unexpected and
there is no experimental data supporting its functional reality. Rather, binding
studies suggest that, unlike the IRE in APP’s 5′ UTR, this second, IRE-like
structure does not bind IRP1 (Cho et al., 2010). However, it is intriguing that in
the most diverged (from humans) animal known to possess an Aβ sequence,
the Coelacanth, and in most placental mammals, there are two nucleotide
differences in the area of the putative IRE and these are conservative since
they would preserve base pairing in a double helical region of this structure
(green “A” and “U,” found by inspection of genome sequences available at
ensembl.org). Other variations found are: gray “a,” an alternative nucleotide in
olive baboon and macaque; gray “C” and “G,” alternative nucleotides
observed in mouse and kangaroo rat, respectively. If real, one possibility might
be that this IRE-like structure only binds an IRP in co-operation with other
protein(s) and that it controls mRNA stability. Alternatively, the two IRE’s of
APP may interact via co-operative binding of IRPs, an idea alluded to by E. C.
Theil (Silver and Walden, 1998) and consistent with formation of an IRP1
complex that can bind two IREs (Hu and Connor, 1996) but never tested for
APP’s mRNA.

effects. The major route of iron entry into cells is via
endosomes/lysosomes. TRANSFERRIN-Fe3+ complexes bind
to TRANSFERRIN RECEPTOR on the surface of cells for
endocytosis into endosomes (reviewed in Mayle et al., 2012).
In the endosomal-lysosomal system, acidification by v-ATPase
causes release of Fe3+ from TRANSFERRIN (Pantopoulos,
2004) and then the Fe3+ is reduced to the biologically
active form, Fe2+, by SIX-TRANSMEMBRANE EPITHELIAL
ANTIGEN OF PROSTATE 3 (STEAP3) (Passer et al., 2003;
Grunewald et al., 2012). As stated earlier, PSEN1 is required for
acidification of lysosomes (and, presumably, endosomes) by
facilitating N-glycosylation of ATP6V0A1 (Figure 4).

After formation, Fe2+ is transported out of endocytic
vacuoles and into the cytosol by the protein SOLUTE CARRIER
FAMILY 11 [PROTON-COUPLED DIVALENT METAL ION
TRANSPORTER], MEMBER 2 (SLC11A2, more commonly
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known as DIVALENT METAL TRANSPORTER 1, DMT1)
(Moos and Morgan, 2004). Other proteins that can transport
Fe2+ out of lysosomes are MUCOLIPIN 1 (MCOLN1; Dong
et al., 2008, previously known as TRPML1) and SLC11A1 (Evans
et al., 2001) (previously named NRAMP1).

THE CYTOSOLIC LABILE IRON POOL,
FERRITIN, AND AUTOPHAGY

The nature of the cytosolic “labile iron pool” (simple iron ions
and iron–sulfur clusters) has not been well characterized. Due to
its highly reactive nature, free Fe2+ most likely does not occur
in cells under normal conditions. Instead, this ion may always be
chaperoned as it is distributed to the many proteins that require
it for activity. Cytosolic Fe2+ can be chaperoned by POLY(rC)-
BINDING PROTEINs (PCBPs) to, either, FERRITIN cages
(Shi et al., 2008) (where it is re-oxidized to Fe3+ for storage), or to
mitochondria [where it is imported via MITOFERRIN and other
proteins (Richardson et al., 2010)], or to cytosolic target proteins
(see recent reviews by Lane et al., 2015 and Philpott et al., 2017
and see Figure 4 and below). [2Fe-2S] iron–sulfur clusters appear
to be chaperoned in the cytosol by complexes of the proteins
GLUTAREDOXIN 3 (GLRX3) and BolA, E. COLI, HOMOLOG
OF, 2 (BOLA2, reviewed by Philpott et al., 2017).

POLY(rC)-BINDING PROTEINs not only chaperone
cytosolic Fe2+ to FERRITIN but also regulate FERRITIN

synthesis through control of FTH1 mRNA translation. PCBP1
and PCBP2 have been observed to bind to the same stem-
loop structure in the 5′ UTR of FTH1 mRNA as does IL1
(Thomson et al., 2005). The similarities between the 5′ UTRs
of FERRITIN and APP mRNAs lead us to speculate that PCBPs
may also regulate translation of APP although this is yet to be
demonstrated experimentally.

In order to utilize the cytosolic Fe3+ stored in FERRITIN
cages it must be reduced once again to Fe2+ within lysosomes
after delivery by autophagy (Mancias et al., 2014). Autophagy
of FERRITIN, or “ferritinophagy,” requires the specific cargo
receptor protein NUCLEAR RECEPTOR COACTIVATOR 4
(NCOA4) (Dowdle et al., 2014; Mancias et al., 2014), expression
of which is regulated by iron. High iron levels destabilize NCOA4
to slow the recycling of Fe3+ to Fe2+ via ferritinophagy (Mancias
et al., 2015). Notably, autophagy was recently shown to initiate at
the MAM (Hamasaki et al., 2013), a structure that also appears
to regulate mitochondrial activity [by Ca2+ release (Carreras-
Sureda et al., 2017)]. The MAM also coordinates EOfAD protein
function (Area-Gomez et al., 2009), and is involved in Aβ

production (discussed in Jayne et al., 2016), and in the initiation
of inflammation (Misawa et al., 2013). The MAM of yeast
was recently shown to be necessary for iron homeostasis (Xue
et al., 2017) although whether this is conserved in humans is
unknown. The autophagy of mitochondria, or “mitophagy,” is
also an important part of cellular iron homeostasis since these
organelles contain so much of the element. The necessity of

FIGURE 4 | Intracellular iron trafficking in neurons. A simplified description of the trafficking of iron ions within neurons, showing the importance of APP and PSEN for
these functions. PSENs (in the MAM of the ER) are required for normal N-glycosylation of ATP6V0A1 which is an essential component of the vacuolar ATPase
(v-ATPase). Failure to sufficiently acidify endosomes/lysosomes retards Fe3+ release from TRANSFERRIN/TFRC complexes and should retard recycling of Fe3+ to
Fe2+ via autophagy. This can cause iron to accumulate in cells as Fe3+. Excessive full-length APP may cause excessive FPN1 activity which would lower Fe2+ levels
in the cytosol. Activity of MAPT (tau) is required for transport of APP to the plasma membrane. See the text for further explanation.
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autophagy for recycling of inactive, stored Fe3+ into active Fe2+

means that a cell with defective autophagy or deficient lysosomal
acidification might accumulate iron to high levels while suffering
an effective deficiency of cytosolic Fe2+. A similar situation
occurs in the recessively inherited disorder mucolipidosis IV
(ML4) where loss of MCOLN1 activity results in accumulation of
Fe2+ in lysosomes with simultaneous cytosolic Fe2+ deficiency
(Dong et al., 2008). This results in degeneration of retinas,
motor impairment and intellectual disability (Dong et al.,
2008).

The APOE gene that is the major locus for variation affecting
risk of LOsAD (Tanzi, 2012) was recently shown to play a role in
the transcriptional regulation of autophagy (Parcon et al., 2017;
Theendakara et al., 2017). The Alzheimer’s disease-pathogenic
ε4 allele of APOE (APOE4) caused significantly lower levels of
particular autophagy-critical gene transcripts compared to the
non-pathogenic ε3 allele (APOE3) both in Alzheimer’s disease
brains and in a transfected astroglioma cell line (Parcon et al.,
2017).

Finally, Aβ has been shown to bind Fe2+ (Bousejra-ElGarah
et al., 2011; Boopathi and Kolandaivel, 2016). This means that
accumulation of Aβ might sequester Fe2+ and contribute to
a cytosolic deficiency, and is consistent with Aβ’s speculated
antibacterial role (see later). Indeed, this might explain why one
candidate anti-Aβ therapy has been seen to have ameliorative
effects (even if somewhat minor) on Alzheimer’s disease
progression in a phase 1b clinical trial (Sevigny et al., 2016, 2017).

THE INTIMATE RELATIONSHIP
BETWEEN IRON HOMEOSTASIS,
ENERGY METABOLISM, AND
RESPONSES TO HYPOXIA

Many proteins require Fe2+ as a cofactor, especially
mitochondrial proteins involved in the TCA (Mailloux et al.,
2007) (mitochondrial ACONITASE [ACO2], and SUCCINATE
DEHYDROGENASE COMPLEX, SUBUNIT B, IRON SULFUR
PROTEIN [SDHB]) and in the protein complexes of the electron
transport chain (reviewed by Stiban et al., 2016). Therefore,
a deficiency of cytosolic Fe2+ is expected to interfere with
normal mitochondrial function and increase oxidative stress
(Walter et al., 2002; Xu et al., 2013) while excessive cytosolic
iron accumulation is thought to cause oxidative stress via Fenton
chemistry (Winterbourn, 1995) (below). This is consistent
with the fact that aberrant mitochondrial activity is a common
phenomenon observed in Alzheimer’s disease studies (reviewed
in Silva et al., 2012).

Electron transport chains causing reduction of oxygen (O2)
exist both in mitochondria (as part of oxidative phosphorylation)
and in the MAM of the ER [involved in the oxidative protein
folding that forms disulfide bonds in proteins (Riemer et al.,
2009)]. Both processes produce considerable quantities of H2O2
that can interact, in Fenton chemistry, with either Fe2+ or Fe3+

to produce highly reactive hydroxyl (HO•) or hydroxyperoxyl
(HOO•) radicals, respectively (Wardman and Candeias, 1996).

Oxidative stress that exceeds mitochondria’s antioxidant capacity
will damage iron-containing proteins leading to additional
iron release in a potential positive feedback loop. This
further decreases mitochondrial function and cells’ capacity for
production of energy by oxidative phosphorylation (Mandelker,
2008).

The critical dependence of mitochondria on both iron
and oxygen for energy production is demonstrated by the
intimate coupling of cellular responses to iron or oxygen
deficiency. The concentration of Fe2+ is central to controlling
the stability of the protein HYPOXIA-INDUCIBLE FACTOR 1,
ALPHA SUBUNIT (HIF1α) that, together with its partner ARYL
HYDROCARBON RECEPTOR NUCLEAR TRANSLOCATOR
(ARNT, also known as HIF1β) forms the transcription factor
HIF1, a master regulator of cellular responses to hypoxia. Low
cytosolic Fe2+ concentrations lead to stabilization of HIF1α by
inhibiting the activity of EGLN proteins (“EGL9, C. ELEGANS,
HOMOLOG OF,” previously designated as the PHD proteins).
EGLNs are Fe2+-dependent prolyl hydroxylases that act on
HIF1α to stimulate its degradation (Bishop and Ratcliffe, 2015).
Significantly, because HIF1 activity is sensitive to changes in
cytosolic Fe2+ availability, this transcription factor also plays a
role in cellular iron homeostasis by regulating the expression of
numerous genes/proteins involved in iron trafficking including
TRANSFERRIN, TRANSFERRIN RECEPTOR, SLC11A2, and
FPN1 (see review by Lane et al., 2015).

The involvement of HIF1 in Fe2+ homeostasis is additionally
significant since the EOfAD genes all show strong upregulation
by hypoxia (Moussavi Nik et al., 2012 and references therein)
and there is a great deal of circumstantial evidence implicating
hypoxia as an important component in LOsAD (Raz et al.,
2016). However, the PSENs are not simply targets of HIF1
regulation. Instead, they seem to be central to the activity of HIF1.
Using immortalized mouse fibroblasts, De Gasperi et al. (2010)
showed that Psen1 binds Hif1α and is required for normal Hif1α

stabilization. Intriguingly, Hif1α stability can also be regulated by
insulin (De Gasperi et al., 2010) providing a possible link between
cytosolic Fe2+ and type II diabetes, a recognized risk factor for
Alzheimer’s disease (Jayaraman and Pike, 2014). Dramatic, age-
dependent changes in the ability to stabilize Hif1α under hypoxia
have been seen in rat brains (Ndubuizu et al., 2009) while Liu et al.
(2008) observed low levels of HIF1α in LOsAD brains compared
to aged controls.

HIF1 plays a central role in regulation of energy metabolism
since this transcription factor directly induces transcription
of PYRUVATE DEHYDROGENASE KINASE, ISOENZYME 1
(PDK1) (Kim et al., 2006). The PDK1 protein phosphorylates
the PYRUVATE DEHYDROGENASE COMPLEX, ALPHA-1
subunit (PDHA1) of the PYRUVATE DEHYDROGENASE
COMPLEX thereby inhibiting the conversion of pyruvate to
acetyl-CoA. This means that, under hypoxia, more of a cell’s
glucose budget is directed away from the TCA and oxidative
phosphorylation and into ATP production by the less efficient
(but more rapid) process of anaerobic glycolysis. This maintains
cellular ATP levels while protecting cells from the high levels of
reactive oxygen species (ROS) that are generated by oxidative
phosphorylation performed under low oxygen (Zhang et al.,
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2008). Deficient cytosolic Fe2+ levels would also be expected
to stabilize HIF1α and skew cellular energy metabolism toward
glycolysis, in essence imitating hypoxic stress. Here, we see
a possible overlap with LOsAD since changes in vasculature
are observed earlier than Aβ accumulation in development of
LOsAD (Iturria-Medina et al., 2016) and it is well established that
blood flow in Alzheimer’s disease brains is decreased (Farkas and
Luiten, 2001; Marlatt et al., 2008; Nicolakakis and Hamel, 2011;
Daulatzai, 2017).

AN OVERLOAD OF CELLULAR IRON
CAN DISGUISE A CYTOSOLIC Fe2+

DEFICIENCY

Because of iron’s central cellular role in energy metabolism, it
is unsurprising that many neurological and neurodegenerative
conditions show iron dysregulation (see recent excellent reviews,
Mills et al., 2010; Lane et al., 2015; Meyer et al., 2015; Gozzelino
and Arosio, 2016). The accumulation of iron with age appears
to be a universal phenomenon in animals (Massie et al., 1985)
and most neurodegenerative disorders apparently involve excess
iron in the brain. Excess iron can promote Fenton chemistry
that causes oxidative stress by production of hydroxyl radicals
(Greenough et al., 2013). Significantly, oxidative stress is thought
to stabilize HIF1α by inhibiting EGLN activity (Page et al., 2008).
Therefore, iron accumulation should disturb the balance between
glycolysis and oxidative phosphorylation, especially if age/pre-
existing metabolic stress inhibits the production of antioxidants
(Zhu et al., 2006).

Because the subcellular location and form of iron is critical
to its function, it is possible to have a cytosolic deficiency
of Fe2+ while accumulating abnormally high levels of iron in
the endolysosomal compartment. As mentioned previously, this
occurs in the neurodegenerative condition Mucolipidosis IV
when loss of function of MCOLN1 inhibits transport of Fe2+

into the cytosol from endosomes and lysosomes (Dong et al.,
2008). Similarly, we can predict that a failure to sufficiently acidify
endolysosomes and lysosomes (such as due to EOfAD mutations
in the PSEN genes) should inhibit importation of Fe2+ into the
cytosol as well as the recycling of cytosolic Fe3+ stored within
FERRITIN cages to Fe2+ via autophagy (and the recycling of
iron in mitochondria via mitophagy). Indeed, this may occur
in a juvenile onset form of autosomal recessive hereditary
parkinsonism, Kufor-Rakeb syndrome, where loss of function
of ATPase, TYPE 13A2 (ATP13A2) results in iron accumulation
and neurodegeneration (Dehay et al., 2012; Usenovic et al.,
2012; Meyer et al., 2015). There are many parallels between
the pathologies of Alzheimer’s disease and Parkinson disease
(PD) including effects on mitochondrial function and energy
metabolism (Calderone et al., 2016). Indeed, there are striking
parallels between APP and the major locus for familial PD,
SYNUCLEIN, ALPHA (SNCA). Both genes encode proteins that
contribute to protein inclusions in neurodegenerative disease,
both show localization in the MAM (Area-Gomez et al., 2009;
Guardia-Laguarta et al., 2014), and both have transcripts with
5′ UTR IREs that inhibit translation when iron levels are low

(Febbraro et al., 2012). In fact, the SNCA protein appears to act as
a ferrireductase that can convert Fe3+ to Fe2+ in the presence of
Cu2+ and NADH (Davies et al., 2011) and it may also be involved
in the uptake of TRANSFERRIN-bound Fe3+ (Baksi et al., 2016).

Iron accumulates in the brain with age (Pirpamer et al.,
2016) and this accumulation may be enhanced in Alzheimer’s
disease brains (Schrag et al., 2011). However, this may disguise
an effective Fe2+ deficiency in the cytosol and mitochondria.
The failure of autophagic flux observed in both LOsAD brains
(Nixon et al., 2005; Nixon, 2007) and in fibroblasts from
individuals with EOfAD due to PSEN1 mutations (Lee J.H. et al.,
2010) implies an inability to recycle iron held within defective
mitochondria and/or stored in FERRITIN. Likewise, mutations
causing overexpression of full-length APP or sAPPα could cause
excessive Fe2+ export even as Fe3+ accumulates due to ineffective
autophagy and this will degrade mitochondrial performance
leading to oxidative stress and decreased energy production.

Energy production is the central and most important cellular
activity that makes possible all other activities. Falling energy
production probably explains the increased tendency for proteins
to aggregate with age (Cohen et al., 2006) [since cellular ATP
levels decrease with age and ATP was recently shown to act
as a hydrotrope that increases the general solubility of proteins
(Patel et al., 2017)]. Failing cellular energy production will also
affect the production of the reducing agent NADPH required
for the conversion of Fe3+ to Fe2+ in lysosomes. Failing cellular
energy production also means decreased production of the ATP
required for synthesis of glutathione and other antioxidants. The
accumulation of iron in an environment subject to oxidative
stress (such as the aging brain) is potentially hazardous since
ROS may disrupt iron-bearing proteins to release more iron in
a positive feedback loop (Mills et al., 2010).

NON-NEURONAL CELLS PLAY
IMPORTANT ROLES IN BRAIN IRON
HOMEOSTASIS

Another important factor to consider in understanding the role
of iron homeostasis in Alzheimer’s disease is the roles that
non-neuronal cell types play in iron trafficking and storage
(reviewed in Belaidi and Bush, 2016). The arguments presented
in this paper are centered on iron homeostasis in neurons.
However, the highest concentrations of iron in the adult brain
appear to be in oligodendrocytes (Connor et al., 1990) and it
is known that iron deficiency has marked effects on myelin
formation (Beard et al., 2003). Also, microglia [that are markedly
dystrophic in Alzheimer’s disease (Streit et al., 2009) and are
regarded as macrophages of the brain] show many-fold higher
iron content than neurons or astrocytes (Urrutia et al., 2013).
Interestingly astrocytes have emerged as a source of HAMP,
when stimulated by inflammatory mediators secreted from
activated glial cells (You et al., 2017). Furthermore, inflammatory
triggers (lipopolysaccharide, cytokines TNFα and IL-6), have
differential effects on iron sequestration, and on the expression
of genes encoding FPN1 and HAMP, in neurons, astrocytes,
and microglia (Urrutia et al., 2013). Understanding how EOfAD
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mutations affect iron homeostasis in, and between, different
neural cell types will be critical to understanding the role of iron
homeostasis in Alzheimer’s disease and requires much additional
investigation.

A “STRESS THRESHOLD CHANGE OF
STATE” INTO ALZHEIMER’S DISEASE?

Can the many functions and interactions of the EOfAD genes
and iron be crystalized into an explanation of the development
of Alzheimer’s disease? We suggest that one unifying mechanistic
scheme may involve an interplay between aging vasculature,
hypoxia, iron, and energy production. Increasing hypoxia is a
characteristic of normal aging in brains as indicated by rising
levels of transcription of HIF1α and HIF1-responsive genes with
age (Lu et al., 2004). This increasing hypoxia should increasingly
skew metabolism toward glycolysis. However, at some point
the aging brain can undergo a shift into a hypometabolic,
dysfunctional state as seen in functional MRI analyses (Ashraf
et al., 2015) and as evidenced by transcriptome-level comparisons
of tissue from normal aged brains, MCI brains and brains
from individuals with Alzheimer’s disease (Berchtold et al.,
2014). We suggest the possibility that EOfAD mutation-driven
cytosolic Fe2+ dysregulation may cause premature utilization
of a proportion of the brain’s glycolytic capacity that would
otherwise serve to cope with the rising hypoxia caused by
the natural decline in function of cerebral vasculature with
age. Eventually, a trigger such as an infection (Mawanda
and Wallace, 2013), heart failure (Cermakova et al., 2015) or
acute hypoxia event (Chen et al., 2014) may force the brain
over a stress threshold causing a change of state into the
levels of inflammation and hypometabolism that characterize
Alzheimer’s disease. This stress threshold is exceeded sooner
in the pre-stressed brains of EOfAD mutation carriers than
in non-carriers, leading to an earlier onset of Alzheimer’s
disease. The idea of a “discontinuous cellular change of state”
(Herrup, 2010) into overt Alzheimer’s disease (described here as
a “stress threshold change of state”) has also been suggested by
others (discussed in Herrup, 2010). We summarize this idea in
Figure 5.

An appealing aspect of the idea of iron dysregulation
contributing to the stress that ultimately triggers a transition
into Alzheimer’s disease is that it might explain the minimal
overlap between the EOfAD mutant loci and the LOsAD risk
loci. This lack of overlap has led some to question whether
EOfAD and LOsAD represent the same disease (Jayne et al.,
2016) although both forms of Alzheimer’s disease show similar
disease progression once symptoms become overt (Masters
et al., 2015). We see that the EOfAD mutations might
initially create metabolic stress by disrupting iron homeostasis
leaving EOfAD brains with less capacity to adjust to the
rising hypoxia caused by age-related vascular changes. The
LOsAD risk loci broadly appear to affect autophagy/endolysomal
function or inflammation and so either contribute to a milder
form of iron “dyshomeostasis” (and reduce cells’ ability to
cope with the effects of energy deficiency such as protein

aggregation) or reduce the threshold at which inflammation
becomes chronic and self-destructive (Richards et al., 2016).
Possibly, the change of state into hypometabolism in brains
with profound Alzheimer’s disease is a last-ditch attempt by
cells to avoid death in the face of critically high oxidative stress
levels.

Notably, a metabolic inversion similar to the Alzheimer’s
disease stress threshold change of state model above has been
described for the monogenetic neurodegenerative condition,
Huntington’s disease, in a review by Browne and Beal (2004). This
hypothesis proposes that early increases in glucose utilization
observed in presymptomatic mouse models and in some human
studies, may be a widespread cellular response to perturbation
of normal Huntingtin protein function, while decreased glucose
utilization observed in the striatum in later stages of the disease
may be due to specific cellular dysfunction (Browne and Beal,
2004). There is a long history of observations of cellular iron
dysregulation when the HUNTINGTIN (HTT) gene is mutated
(Muller and Leavitt, 2014), and wild-type huntingtin is required
for normal distribution of iron, and/or expression of iron-related
gene products, in the embryos of mice (Dragatsis et al., 1998) and
zebrafish (Lumsden et al., 2007), in adult mouse brain (Dietrich
et al., 2017) and in mouse embryonic stem cells (Hilditch-
Maguire et al., 2000; Jacobsen et al., 2011).

APP – AN EXPRESSION CONUNDRUM

An encouraging aspect of refocusing EOfAD analysis around
changes in iron homeostasis is that it requires us to give greater
attention to APP’s role in stress responses. Hypoxia causes
oxidative stress that upregulates expression of APP, BACE1, and
the PSENs (Sun et al., 2006; Wang et al., 2006; Zhang et al.,
2007; Guglielmotto et al., 2009; Moussavi Nik et al., 2012, 2015;
Villa et al., 2014) and can, thereby, greatly increase production
of Aβ that can function as an antioxidant (Kontush, 2001;
Kontush et al., 2001; Smith et al., 2002; Nadal et al., 2008;
Baruch-Suchodolsky and Fischer, 2009) [although accumulated
Aβ possibly generates ROS in the presence of Fe2+ via the
Fenton reaction (Sutherland et al., 2013; Cheignon et al., 2017)].
Accumulating evidence also supports a role for Aβ as an
antimicrobial peptide (Soscia et al., 2010; Kumar et al., 2016a,b).
Aβ was reported to suppress the growth of Candida albicans and
a variety of bacterial species at concentrations equal to, or lower
than, another characterized human antimicrobial peptide, LL37,
and depletion of Aβ from Alzheimer’s disease brain homogenates
reduces the latter’s ability to inhibit growth of C. albicans (Soscia
et al., 2010). An antimicrobial function for Aβ would explain
its high structural conservation in most species of the tetrapod
evolutionary lineage (Sharman et al., 2013; Moore et al., 2014).

That Aβ exhibits antioxidant and antimicrobial characteristics
is consistent with the fact that inflammatory processes produce
oxidative stress as a means of killing pathogens (Mittal et al.,
2014). However, this also presents a conundrum: as mentioned
previously, a rapid cellular and systemic (acute phase) response
to bacterial infection is to sequester iron into cells and away from
invading bacteria so as to inhibit their metabolism and growth
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FIGURE 5 | A model of Alzheimer’s disease development encompassing both EOfAD and LOsAD genetics. An early onset age of Alzheimer’s disease may occur
due to metabolic stress on the brain, possibly due to iron dysregulation. This, in its effects, resembles hypoxic stress and supplements the gradually rising hypoxic
stress normally driven by vascular aging so that a stress tolerance (homeostasis capacity) threshold is exceeded sooner, after which the brain shifts into a
hypometabolic state, possibly in order to delay further damage due to rising oxidative stress. The timing and extent of this process will vary across different brain
regions depending on basal metabolic load, glycolytic capacity, oxygen supply, etc.

(see, Urrutia et al., 2013 and reviewed in Soares and Weiss, 2015;
Gozzelino and Arosio, 2016). While this explains why IL1 drives
increased translation of the FERRITIN proteins to store iron as
inactive Fe3+ (as described earlier), oxidative stress also increases
APP transcription while IL1 increases APP translation. Increased
full-length APP might be expected to stabilize FPN1 and promote
iron export from, specifically, neurons in opposition to the action
of HAMP (that drives FPN1 internalization and degradation
(Nemeth et al., 2004; Ding et al., 2011)). Could it be that expulsion
of “free” cytosolic iron from neurons via increased expression of
APP promotes brain survival in the face of infection by allowing
absorption of the iron by adjacent non-neuronal cells better
equipped to sequester it? Simultaneously, increased cleavage of
APP by β-secretase (encoded by BACE) may be important for
diverting some of this increased APP protein into Aβ production
for this peptide’s antioxidant and iron-sequestering capacity
(Figure 1). Or does the increased β-secretase cleavage of APP
due to inflammatory stress overwhelm the increase in APP
transcription and translation to reduce levels of full-length APP
and reduce iron export from neurons? Clearly, we need a much
more detailed understanding of the relationship between iron
homeostasis and the production of APP and Aβ at the cellular
level during inflammatory responses in the brain.

A potential weakness in the idea of iron-dysregulation as
unifying the effects of EOfAD mutations in APP and the PSEN
genes, is that the various EOfAD mutations in APP are not

all expected to produce the same effect on iron homeostasis.
Some EOfAD mutations in APP (e.g., duplications and possibly
those decreasing α-secretase cleavage) are expected to produce
neuronal Fe2+ deficiency while others (e.g., those increasing
β-secretase cleavage) might produce Fe2+ overload by decreasing
normal APP function. However, the same criticism can be leveled
at the Amyloid Hypothesis where the effects of γ-secretase
site mutations are explained as causing changes in Aβ species
length distribution while no explanation is clear for how APP
duplication or mutations affecting the frequency of cleavage
at the β-site can cause this. However, Arimon et al. (2015)
showed that changes in Aβ length occur due to the effects
of oxidative stress on the functioning of γ-secretase, while
both cytosolic Fe2+ deficiency and overload would be expected
to cause increased oxidative stress through interference with
normal mitochondrial function. Thus, iron-dysregulation-driven
oxidative stress potentially explains the common observation of
changes in Aβ species length where the Amyloid Hypothesis
cannot. We must note that most, if not all, of the EOfAD
mutations in APP would appear to have the effect-in-common
of increasing expression of APP’s transmembrane C99 fragment
(that results from cleavage only at APP’s β-site) and Area-
Gomez et al. (2018) have suggested that this may be critical
for the increased MAM formation that is the basis of the
MAM Hypothesis of Alzheimer’s disease (Schon and Area-
Gomez, 2012). Interestingly, forced expression of C99 has
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metabolic effects since it appears to suppress ATP synthesis
by oxidative phosphorylation in mitochondria while inhibition
of C99 formation using an inhibitor of β-secretase increases
oxidative phosphorylation (Pera et al., 2017).

CONCLUDING REMARKS

The concept described above for unifying EOfAD mutation
function should, of course, only be regarded as an outline
requiring a great deal of enhancement and testing. For example,
the brain consists of many different cell types with specialized
roles and greatly differing energy metabolisms and how APP and
the PSENs act within these cells types may differ considerably.
EOfAD mutations of the PSENs may affect metabolism and
oxygen supply by a variety of independent routes such as
direct effects on cells of the brain vasculature (Nakajima et al.,
2006; Toussay et al., 2017) or via communication between
neurons and brain microvasculature using unknown means
(Gama Sosa et al., 2010). However, a conceptual focus on iron
homeostasis coordinates many important aspects of Alzheimer’s
disease including changes in metabolism/mitochondria, vascular
function/blood flow/hypoxia, autophagy and inflammation and
is not dependent on a central role for γ-secretase activity. We
suggest that a concentration of effort in this area will give us
valuable insights into the pathogenesis of Alzheimer’s disease.
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