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In the nearly 10 years since PTEN was identified as a prominent intrinsic inhibitor
of CNS axon regeneration, the PTEN negatively regulated PI3K-AKT-mTOR pathway
has been intensively explored in diverse models of axon injury and diseases and
its mechanism for axon regeneration is becoming clearer. It is therefore timely to
summarize current knowledge and discuss future directions of translational regenerative
research for neural injury and neurodegenerative diseases. Using mouse optic nerve
crush as an in vivo retinal ganglion cell axon injury model, we have conducted an
extensive molecular dissection of the PI3K-AKT pathway to illuminate the cross-
regulating mechanisms in axon regeneration. AKT is the nodal point that coordinates
both positive and negative signals to regulate adult CNS axon regeneration through two
parallel pathways, activating mTORC1 and inhibiting GSK3ββ. Activation of mTORC1
or its effector S6K1 alone can only slightly promote axon regeneration, whereas
blocking mTORC1 significantly prevent axon regeneration, suggesting the necessary
role of mTORC1 in axon regeneration. However, mTORC1/S6K1-mediated feedback
inhibition prevents potent AKT activation, which suggests a key permissive signal
from an unidentified AKT-independent pathway is required for stimulating the neuron-
intrinsic growth machinery. Future studies into this complex neuron-intrinsic balancing
mechanism involving necessary and permissive signals for axon regeneration is likely to
lead eventually to safe and effective regenerative strategies for CNS repair.
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INTRODUCTION

Axon injury is a frequent consequence of trauma and a common early feature of CNS degenerative
diseases causing life-long neurological deficits. Injuries of CNS axons often result in loss of vital
functions because CNS axons fail to regenerate in adult mammals (Schwab and Bartholdi, 1996;
Goldberg et al., 2002b; Fitch and Silver, 2008). Both the diminished intrinsic regenerative capacity
of mature neurons (Park et al., 2010) and the inhibitory environment of the adult CNS (Yiu and He,
2006) contribute to the growth failure. Neutralizing extracellular inhibitory molecules genetically
or pharmacologically yields only limited regeneration and functional recovery (Lee et al., 2010),
highlighting the critical importance of neuron-intrinsic factors (Benowitz et al., 2017). To explore
the intrinsic regenerative signaling molecules, mouse retinal ganglion cell (RGC) and optic nerve
(ON) provide a valuable in vivo neural injury system that is relatively simple but robustly replicates
CNS traumatic injury and permits straightforward interpretation (Figure 1).
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FIGURE 1 | RGC/ON crush provides a straightforward in vivo CNS axon injury/regeneration model with clear readout, easy access and amenable to genetic
manipulation. Mouse eye can be injected with AAV for genetic manipulation of RGCs and fluorescence-labeled CTB for regenerating axon tracing. Whole-mount
retina is for RGC detection and ON longitudinal cryostat section is for visualizing regenerating axons.

Retinal ganglion cells are the only projection neurons in retina
to relay visual information from retina to brain. The ON is
formed by the projection axons sent exclusively from RGCs;
it has the simplicity of an unidirectional axon pathway, which
ensures that any nerve fibers passing through the complete
crush site are regenerated and do not represent spared axons
that underwent collateral sprouting. Adeno-associated viruses
(AAV) can be injected directly into the vitreous chamber of
the eye to express transgenes specifically and efficiently in
adult RGCs. This spatially and temporally controlled genetic
manipulation allows us to overcome developmental issues
associated with germ line manipulation and to test interventions
that can potentially be translated to therapies (Hu, 2015).
Exploiting the anatomical and technical advantages of the
RGC/ON crush model, multiple signal transduction pathways
and transcriptional factors have been linked with CNS axon
regeneration (Benowitz et al., 2017; Mahar and Cavalli, 2018).
Here we focused on the PTEN/mTOR pathway that we and
others have conducted an extensive molecular dissection of the
cross-regulating mechanisms in axon regeneration that involve
the downstream effectors of PTEN and PI3K to understand the
intrinsic mechanisms of CNS axon regeneration (Park et al., 2008;
Yang et al., 2014; Guo et al., 2016; Miao et al., 2016; Al-Ali et al.,
2017).

PTEN DELETION PROMOTES
SIGNIFICANT CNS AXON
REGENERATION

The initial efforts to understand the intrinsic mechanisms
of regenerative failure have led us to postulate that CNS
neurons tightly regulate the evolutionarily conserved molecular
pathways that control cell growth (Weinberg, 2007) to prevent

overgrowth when development is complete. We subsequently
used the mouse ON crush model to screen multiple tumor
suppressor genes and discovered that deletion of phosphatase
and tensin homolog (PTEN), but not Rb (retinoblastoma),
P53, Smad4, or LKB1 (liver kinase B1), promotes significant
ON regeneration and RGC survival (Park et al., 2008).
PTEN, a lipid phosphatase, is a major negative regulator of
the phosphatidylinositol 3-kinase (PI3K)-mammalian target of
rapamycin complex 1 (mTORC1) pathway (Figure 2). Similar
axon regeneration phenotypes after PTEN deletion have been
reported for mouse cortical motor neurons (Liu et al., 2010;
Jin et al., 2015), drosophila sensory neurons (Song Y. et al.,
2012) and Caenorhabditis elegans motor neurons (Byrne et al.,
2014), presumably through activating PI3K-mTORC1-controlled
cell growth. Direct activation of mTORC1 also promotes axon
regeneration in dopaminergic neurons (Kim S.R. et al., 2011)
and RGCs (Duan et al., 2015; Bei et al., 2016; Lim et al.,
2016) and peripheral nerves (Abe et al., 2010), providing
further support for the critical role of PI3K-mTORC1 in
axon regeneration. However, deregulated PTEN/mTOR activities
have been implicated in various disorders including metabolic
diseases, tumor formation and even senescence (Zoncu et al.,
2011). Presumably, uncontrolled or non-specific activation of
mTOR and protein synthesis may result in severe negative
consequences, such as tumor formation or cognitive impairment.
However, not all tumor suppressor genes involved in axon
regeneration in our initial screen (Park et al., 2008), indicating
the unique role of PTEN/mTOR in determining the neuronal
intrinsic regenerative ability. It is scientifically intriguing and
clinically important to carry out a molecular dissection of the
PTEN/mTOR pathway to acquire unambiguous understanding
of the roles of their downstream signaling molecules in axon
regeneration, in hope of differentiating to their tumorigenesis
roles.
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FIGURE 2 | Schematic illustration of the PTEN regulated PI3K-AKT-mTOR
signaling pathways in CNS axon regeneration. AKT is positively regulated by
the PI3K/PDK1 pathway through phosphorylation of T308, and negatively
regulated by the PI3K/mTORC2 pathway through phosphorylation of S473,
through at least partially regulation of GSK3β phosphorylation and inhibition.
Both AKT downstream effectors, activation of mTORC1 and
phosphorylation/inhibition of GSK3β, synergistically promote axon
regeneration; inhibition of GSK3β alone is also sufficient for axon regeneration,
at least partially through eIF2Bε. The activation of mTORC1 and its substrates
4E-BP and S6K is necessary but not sufficient for potent axon regeneration.
The question mark represents unknown effectors downstream of PTEN that
are AKT-independent and sufficient to initiate CNS axon regeneration, and
which potentially interact with the translational targets of mTORC1 to promote
potent axon regeneration. Green color-coated molecules are pro-axon
regeneration and dark color-coated molecules are anti-axon regeneration.

THE NECESSARY ROLE OF mTORC1 IN
CNS AXON REGENERATION

PI3K is a lipid kinase which can be activated by growth
factors, such as insulin and insulin-like growth factor-1 (IGF1),
through receptor tyrosine kinase (RTK) (Figure 2). PI3K
phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2) to
produce phosphatidylinositol (3,4,5)-triphosphate (PIP3) in the
lipid membrane. PIP3 in turn recruits AKT to the membrane to
be phosphorylated at T308 and activated by phosphoinositide-
dependent kinase-1 (PDK1) (Manning and Cantley, 2007). One
of the multiple AKT downstream effectors is the complex
formed by tuberous sclerosis 1 and 2 (TSC1/TSC2) heterodimer,
the negative regulator of mTORC1. AKT activation removes
the inhibition of TSC and activates mTORC1. PTEN converts
PIP3 to PIP2 and thus inhibits the activation of AKT and
its downstream effectors. PTEN deletion therefore results in
constitutive activation of the PI3K-AKT-mTORC1 pathway,
suggesting an important role of mTORC1 in the intrinsic

regenerative ability of injured adult CNS neurons. Consistently,
rapamycin, an inhibitor of mTORC1, blocked PTEN knockout
(KO)-induced ON regeneration (Park et al., 2008), indicating
mTORC1 activation is required for axon regeneration.

The functional complex mTORC1 regulates cell growth,
proliferation, metabolism, motility and survival (Ma and Blenis,
2009; Laplante and Sabatini, 2012) and its downstream effectors
are potential targets for promoting axon regeneration and
functional recovery after CNS injury. Unfortunately, the clinical
usefulness of mTORC1 activation is limited by the threat of
deleterious side effects such as malignancy and cognitive deficits
due to uncontrolled protein synthesis and cell proliferation
(Laplante and Sabatini, 2012; Song M.S. et al., 2012). We studied
the two best-characterized downstream signaling molecules of
mTORC1, ribosomal protein S6 kinase (S6K) and eukaryotic
translation initiation factor 4E (eIF4E)-binding protein (4E-
BP) (Hay and Sonenberg, 2004) in ON regeneration (Yang
et al., 2014). Phosphorylation of 4E-BP by mTORC1 releases
its binding and inhibition from eIF4E, thus to initiate cap-
dependent translation. Through different mechanisms, S6K also
promotes protein and lipid synthesis (Hannan et al., 2003; Duvel
et al., 2010). Although they are both involved in protein synthesis,
previous studies suggested that S6K regulates cell size but not
cell division (Ohanna et al., 2005), whereas 4E-BP controls cell
proliferation but not cell size (Dowling et al., 2010). In RGC
neurons, we found that over-expression of the constitutively
active mutant of S6K1 significantly increases RGC cell size after
ON crush but only promote axon regeneration to a small degree
(Yang et al., 2014). Together with the similar effect of TSC
deletion, which activates mTORC1 to a greater extent than PTEN
deletion but results in very little axon regeneration (Park et al.,
2008), we conclude that mTORC1 activation itself is necessary
for axon regeneration but has only minimal effect on initiating
axon regeneration. Another evidence to support the necessary
role of mTORC1 in axon regeneration comes from 4E-BP1-4A
mutant, which cannot be inhibited by mTORC1 since it cannot
be phosphorylated, as it largely blocks PTEN KO-induced axon
regeneration (Yang et al., 2014). However, double deletion of 4E-
BP1 and 4E-BP2 in RGCs does not promote axon regeneration,
indicating the necessary but insufficient role of 4E-BP inhibition
by mTORC1 in axon regeneration. The possibility that other
substrates of mTORC1 in addition to S6K1 and 4E-BP may
contribute to axon regeneration cannot be rule out, however,
we do favor the idea that the mTORC1 pathway essentially
plays a necessary role in axon regeneration which requires a
key permissive signal from unidentified effectors downstream of
PTEN to trigger the neuron-intrinsic growth machinery.

AKT1 AND AKT3 ARE THE
PREDOMINANT ISOFORMS OF AKT IN
RGCS AND DISPLAY DIFFERENT
EFFECTS ON ON REGENERATION

AKT is downstream of PTEN/PI3K but upstream of mTORC1.
AKT1 and AKT2 are widely expressed in almost any tissues,
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however, AKT3 is the predominant isoform in brain (Easton
et al., 2005) and retina (Miao et al., 2016). Consistently, AKT1
deletion reduces whole body size and AKT2 deletion results
in diabetes-like syndrome (Cho et al., 2001a,b). Deletion only
of AKT3 reduces brain size (Easton et al., 2005), indicating a
specific role of AKT3 in CNS growth control. We determined
quantitatively the expression levels of the three AKT isoforms
in RGCs and their distinct roles in axon regeneration, which
provides strong evidence of the unique properties of AKT3 in
retina: AKT1 and AKT3 are the major isoforms of AKTs in RGCs
and activation of AKT3 promotes significantly greater RGC
survival and ON regeneration than AKT1, presumably through
its unique ability to activate mTORC1 (higher pS6) in retina
(Miao et al., 2016). This is consistent with the results in brain, as
AKT3 but not AKT1 deletion, decreases pS6 significantly (Easton
et al., 2005). AKT3 may also selectively activate neuronal-specific
signaling molecules that are currently unidentified.

AKT COORDINATES POSITIVE SIGNALS
FROM PI3K-PDK1 AND NEGATIVE
SIGNALS FROM MTORC2 IN
REGULATING MTORC1 ACTIVATION
AND GSK3β PHOSPHORYLATION FOR
AXON REGENERATION

In addition to T308 phosphorylation by PI3K-PDK1, AKT
is also phosphorylated at S473 by mTORC2 (Hresko and
Mueckler, 2005; Sarbassov et al., 2005; Guertin et al., 2006).
mTORC2 is activated by PI3K in an uncharacterized way but
depends on ribosome (Zinzalla et al., 2011) and its activation
promotes cell survival and actin cytoskeleton dynamics (Jacinto
et al., 2004). Like mTORC1, mTORC2 also plays a role in
lipogenesis (Lamming and Sabatini, 2013; Yao et al., 2013). It
is not clear how mTORC1 and mTORC2 interact to determine
multiple downstream cellular events. AKT-pS473 enhances
AKT-T308 phosphorylation (Scheid et al., 2002; Yang et al.,
2002) and blocking S473 phosphorylation decreases AKT-T308
phosphorylation (Hresko and Mueckler, 2005; Sarbassov et al.,
2005; Guertin et al., 2009; Yuan et al., 2012; Carson et al., 2013).

We confirmed the phosphorylation of AKT-T308 and the
kinase activity of AKT are essential for axon regeneration by
overexpression kinase dead mutant or T308A mutant of AKT in
RGCs; whereas AKT-S473A mutant results in even more axon
regeneration than wild type AKT, indicating the negative role
of AKT-S473 phosphorylation in axon regeneration (Miao et al.,
2016). This surprising finding implies that pT308 and pS473 of
AKT may have different substrates or regulate the same substrates
differentially, to allow their opposite roles in axon regeneration.
Interestingly, pAKT-S473 regulates β-cell proliferation whereas
pAKT-T308 controls β-cell (Hashimoto et al., 2006; Gu et al.,
2011), possibly through different downstream effectors (Jacinto
et al., 2004, 2006; Guertin et al., 2006; Yang et al., 2006; Gu
et al., 2011). Phosphorylation of glycogen synthase kinase 3β-S9
(GSK3β-S9) by AKT inhibits GSK3β activity, which is critical for
neuronal polarization, axon branching and axon growth (Kim

Y.T. et al., 2011). The significantly increased pGSK3β-S9 after
blocking mTORC2 or overexpression of AKT3-S472A mutant
suggests that GSK3β is one of the AKT effectors that are
differentially regulated by pAKT-T308 and pAKT-S473 (Miao
et al., 2016). The results of our studies using GSK3β-S9A mutant
and GSK3β KO mice further proved the inhibitory role of GSK3β

in axon regeneration (Miao et al., 2016), thus to definitively
resolve the contradictory results in the literature regarding the
role of GSK3β in CNS axon regeneration (Dill et al., 2008;
Abe et al., 2010; Christie et al., 2010; Saijilafu Hur et al., 2013;
Gobrecht et al., 2014). More interestingly, Guo et al identified
eIF2Bε as an important downstream effector of GSK3β for axon
regeneration (Guo et al., 2016), indicating the critical role of
translation regulatory machinery and protein synthesis in axon
regeneration.

mTORC2 and pAKT-S473 are necessary for PTEN deletion-
induced tissue overgrowth in prostate cancer of mice (Guertin
et al., 2009) and eyes of drosophila (Hietakangas and Cohen,
2007). Thus blocking mTORC2 and pAKT-S473 in PTEN KO
mice may allow us to minimize their deleterious tumorigenic
effect but boost PTEN/AKT’s regeneration-promoting effect.
mTORC1 inhibition (deletion of RPTOR or mTOR, over-
expression of dominant negative mutant S6K1-DN or 4E-BP1-
4A) decreased AKT3-induced ON regeneration (Miao et al.,
2016), consistent with our conclusion that mTORC1 is necessary
for AKT-induced axon regeneration. In summary, mTORC1
activation and GSK3β inhibition act in parallel and synergistically
downstream of AKT to promote CNS axon regeneration as we
and others have shown (Guo et al., 2016; Miao et al., 2016).

FEEDBACK INHIBITION OF PI3K-AKT
MEDIATED BY mTORC1-S6K1 AND
AKT-INDEPENDENT PATHWAYS

Proper translational control is crucial for normal cell growth.
The increased protein synthesis induced by PI3K-mTORC1
activation needs to be balanced by an antagonistic mechanism.
It has previously been shown that a negative feedback loop
involved with S6K1 and insulin receptor substrate 1 (IRS-
1) reduces activities of PI3K and its downstream effectors
(Laplante and Sabatini, 2012). Indeed we detected decreased
AKT phosphorylation and axon regeneration in PTEN KO
mice after overexpression of S6K1 (Yang et al., 2014). Possibly
through a similar mechanism, S6K inhibits axon regeneration in
C. elegans (Hubert et al., 2014) and inhibition of S6K1 promotes
corticospinal tract regeneration in mice (Al-Ali et al., 2017). It
would not be surprising if additional balancing mechanisms can
fine-tune the growth control loop of PI3K-AKT-mTORC1-PI3K.
This feedback inhibition keeps AKT activation at minimum
even after PTEN deletion (Laplante and Sabatini, 2012; Yang
et al., 2014), suggesting AKT-independent signals downstream
of PTEN for axon regeneration. PTEN deletion-induced PIP3-
dependent signaling includes many AKT-independent pathways
(Lien et al., 2017). In addition, PTEN can dephosphorylate focal
adhesion kinase (FAK) and Shc, and deletion of PTEN activates
FAK, RAS, and ERK (Godena and Ning, 2017). Furthermore,
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PTEN is also present in the nucleus to play a non-catalytic role in
chromosomal instability and DNA repair (Shen et al., 2007; Song
et al., 2011). Elucidation of these PTEN-dependent but AKT-
independent pathways in axon regeneration will be an important
future direction for the field.

NEURONAL SURVIVAL AND AXON
REGENERATION

Neuronal survival is an obvious prerequisite for axon
regeneration. But our observation is that the increased neuron
survival is not invariably linked with proportionately greater
axon regeneration and this is consistent with others findings
(Benowitz et al., 2015). For example, ON crush injured RGC
survival can be increased significantly by inhibition of apoptosis,
deleting tumor suppressor genes or by manipulating ER stress,
but these manipulations do not induce more ON regeneration
(Goldberg et al., 2002a; Park et al., 2008; Hu et al., 2012). On the
other hand, spinal cord injury does not cause significant death
of corticospinal neurons (Nielson et al., 2010, 2011), but they
fail to regenerate axons (Schwab and Bartholdi, 1996; Goldberg
et al., 2002b; Fitch and Silver, 2008). These results indicate that
the neuronal intrinsic growth signals for axon regeneration is
different to the signals for neuron survival. But no convincing
evidence proves a direct causative relationship between these
two events cannot totally exclude the possibility that more
RGC survival contributes to more potent axon regeneration.
PTEN deletion or AKT activation and their signaling effectors
are normally related to both intrinsic growth control and cell
survival, suggesting partially overlapping functionalities of these
two events. Currently we can only allow a small percentage of
surviving RGCs to regenerate their axons and different subtypes
of RGCs have different regeneration abilities (Duan et al., 2015).
Elucidating the mechanisms caused this difference will be a hot
topic in the field to maximize RGC axon regeneration.

AXONAL mRNA TRANSLATION AND
AXON REGENERATION

The importance of localized protein synthesis in peripheral and
central axon regeneration has been demonstrated in vitro and
in vivo (Willis and Twiss, 2006; Jung et al., 2012; Baleriola
et al., 2014; Perry and Fainzilber, 2014). And certain components
of translation machinery including pS6 and 4E-BP1 have been
detected in rat regenerating spinal cord (Kalinski et al., 2015).
We also found that wildtype AKT and AKT-S473A mutant
were localized in RGC axons whereas AKT mutants that cannot
promote axon regeneration were excluded from RGC axons

(Miao et al., 2016). Is the axonal AKT related with axonal mRNA
translation? If so, does the regeneration phenotype caused by
AKT activation rely on local protein synthesis in axons? These
are very intriguing questions for future studies to investigate
the significance of axonal protein synthesis and axonal signal
transduction in axon regeneration.

CONCLUSION AND FUTURE
PERSPECTIVE

In summary, genetic manipulations specifically in RGCs
provide a molecular dissection of the PTEN, PI3K-AKT-
mTORC1/GSK3β, and PI3K-mTORC2-AKT-mTORC1/GSK3β

pathways and definitively determine the linear and parallel
signals that contribute to CNS axon regeneration (Figure 2). The
balance between mTORC1 and mTORC2’s activities after PT3K
activation converges on AKT phosphorylation of T308 and S473,
which in turn control the activation of mTORC1 and inhibition of
GSK3β that act in parallel and synergistically downstream of AKT
to promote potent CNS axon regeneration. mTORC1/S6K also
functions as feedback inhibition of PI3K signaling (Laplante and
Sabatini, 2012) to keep AKT and mTORC1 on check (Yang et al.,
2014), which suggests that another proactive signal originating
from PTEN deletion may trigger the neuron-intrinsic growth
capability (Hu, 2015). It is extremely intriguing scientifically
and critical clinically to identify these permissive signals of
axon regeneration and elucidate the mechanisms by which they
are cross regulated with the necessary mTORC1 signals. The
increased understanding of the complicated cross-regulation and
feedback-control mechanisms involved in PTNE-PI3K-AKT-
mTORC1/2 will certainly inspire more studies on these critical
growth control mechanisms, which will eventually lead to safe
and effective therapeutic strategies for CNS injury, and to isolate
them from targets that mediate deleterious effects.
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