
fnins-12-00593 August 28, 2018 Time: 10:33 # 1

ORIGINAL RESEARCH
published: 29 August 2018

doi: 10.3389/fnins.2018.00593

Edited by:
Gert Cauwenberghs,

University of California, San Diego,
United States

Reviewed by:
Hai Li,

Duke University, United States
Xin Wang,

Intel, United States
Charles Augustine,
Intel, United States

Victor H. Chan,
Qualcomm Research, United States

*Correspondence:
Runchun Wang

mark.wang@westernsydney.edu.au

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 08 March 2018
Accepted: 07 August 2018
Published: 29 August 2018

Citation:
Wang R and van Schaik A (2018)

Breaking Liebig’s Law: An Advanced
Multipurpose Neuromorphic Engine.

Front. Neurosci. 12:593.
doi: 10.3389/fnins.2018.00593

Breaking Liebig’s Law: An Advanced
Multipurpose Neuromorphic Engine
Runchun Wang* and André van Schaik

The MARCS Institute, Western Sydney University, Sydney, NSW, Australia

We present a massively-parallel scalable multi-purpose neuromorphic engine. All
existing neuromorphic hardware systems suffer from Liebig’s law (that the performance
of the system is limited by the component in shortest supply) as they have fixed
numbers of dedicated neurons and synapses for specific types of plasticity. For any
application, it is always the availability of one of these components that limits the size
of the model, leaving the others unused. To overcome this problem, our engine adopts
a unique novel architecture: an array of identical components, each of which can be
configured as a leaky-integrate-and-fire (LIF) neuron, a learning-synapse, or an axon with
trainable delay. Spike timing dependent plasticity (STDP) and spike timing dependent
delay plasticity (STDDP) are the two supported learning rules. All the parameters are
stored in the SRAMs such that runtime reconfiguration is supported. As a proof of
concept, we have implemented a prototype system with 16 neural engines, each of
which consists of 32768 (32k) components, yielding half a million components, on an
entry level FPGA (Altera Cyclone V). We verified the prototype system with measurement
results. To demonstrate that our neuromorphic engine is a high performance and
scalable digital design, we implemented it using TSMC 28nm HPC technology. Place
and route results using Cadence Innovus with a clock frequency of 2.5 GHz show that
this engine achieves an excellent area efficiency of 1.68 µm2 per component: 256k (218)
components in a silicon area of 650 µm × 680 µm (∼0.44 mm2, the utilization of the
silicon area is 98.7%). The power consumption of this engine is 37 mW, yielding a power
efficiency of 0.92 pJ per synaptic operation (SOP).

Keywords: neuromorphic engineering, spiking neural networks, neural engine, FPGA, spike timing dependant
plasticity, spike timing dependant delay plasticity

INTRODUCTION

Neurobiological processing systems can easily outperform the most up-to-date computers at
robustly accomplishing real-world tasks such as sensory-motor tasks. It still remains largely
unknown how biological brains can achieve this with slow, stochastic, and heterogeneous
computing elements (Wang, 2013). In the late 1980’s, Caver Mead introduced neuromorphic
engineering – a multidisciplinary approach to develop a new generation of computing
technologies, building sensory and processing systems using very large scale integration (VLSI)
circuits inspired by principles of the biological nervous system.

Frontiers in Neuroscience | www.frontiersin.org 1 August 2018 | Volume 12 | Article 593

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00593
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2018.00593
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00593&domain=pdf&date_stamp=2018-08-29
https://www.frontiersin.org/articles/10.3389/fnins.2018.00593/full
http://loop.frontiersin.org/people/71414/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-12-00593 August 28, 2018 Time: 10:33 # 2

Wang and van Schaik An Advanced Multipurpose Neuromorphic Engine

Since the first silicon neuron proposed by Mahowald and
Douglas (1991), significant progress has been made and various
designs based on analog, digital and mixed-signal VLSI have been
developed (Wang, 2013). Examples include the Neurogrid project
which emulates one million neurons connected by six billion
synapses (Boahen, 2006), the BrainScaleS project, a wafer-scale
neural network, which contains 384 analog network chips for a
total of 40M synapses and 200K neurons (Schemmel et al., 2008,
2010), the SpiNNaker project (Furber et al., 2014), which uses
ARM processors to run software neural models and a 48-node
SpiNNaker board is capable of simulating 250,000 neurons and 80
million synapses in real time, the IBM TrueNorth chip (Merolla
et al., 2014) that is capable of running one million leaky-integrate-
and-fire (LIF) neurons in real time. The HiAER-IFAT system has
five FPGAs and four custom analog neuromorphic integrated
circuits, yielding 262k neurons and 262M synapses. The full-size
HiAER-IFAT network has four boards, each of which has one
IFAT module, serving 1M neurons and 1G synapses.

It is generally accepted that learning in the brain arises from
synaptic modifications. Hence, plastic synapses, which can adapt
their gain according to one or more adaptation rules, play a vital
role in neural systems. The STDP algorithm (Gerstner et al., 1996;
Magee, 1997; Markram et al., 1997; Bi and Poo, 1998), is one of the
adaptation rules observed in biology. It modulates the weight of
a synapse based on the relative timing between the pre-synaptic
spike and the post-synaptic spike. Due to its importance, many
hardware implementations of this STDP learning rule have been
proposed (Chicca et al., 2003; Bofill-i-petit and Murray, 2004;
Indiveri et al., 2006; Häfliger, 2007; Koickal et al., 2007; Mitra
et al., 2009; Giulioni et al., 2012).

Besides weight adaptation, some observations suggest that
the propagation delays of neural spikes, as they are transmitted
from one neuron to another, may be adaptive (Stanford, 1987).
Axonal delays seem to play an important role in the formation of
neuronal groups and memory (Izhikevich, 2006). In our previous
work (Wang et al., 2011b, 2012), a delay adaptation algorithm,
STDDP, inspired by STDP was developed to fine-tune delays that
had been programmed into the network. We have successfully
implemented the STDDP learning rule on hardware (Wang et al.,
2011a,b, 2012, 2013a).

However, all these neuromorphic hardware systems are
subject to Liebig’s law, because they have a fixed number
of neurons and a fixed number of synapses of each specific
type of plasticity that was implemented. In most cases,
these dedicated components are all hardwired, e.g., one
neuron’s learning synapses can’t be used by other neurons.
In almost all cases, for any implemented architecture, there
is one type of component that will be used up first,
leaving the others unused. To address this, we have designed
a system where each component can be reconfigured to
perform different roles. We have previously presented a
hardware implementation of a synaptic plasticity adaptor that
is capable of performing either STDP or STDDP (Wang
R. et al., 2014; Wang et al., 2015). However, that system
does not support online reconfiguration: recompiling of the
design is required to switch functions. More importantly,
this adaptor can only perform learning rules and it can’t be

used to implement neurons. Here, we report its follow up
work: a massively-parallel scalable multi-purpose neuromorphic
engine.

MATERIALS AND METHODS

Strategies
Traditionally, the neuromorphic field views its computing
devices as hardware designs that are inspired by the biological
brain. The latter differs drastically from general purpose, von
Neumann computing architectures. The fundamental features of
biological neural networks, such as (1) massively parallel and
distributed components, (2) integrated memory and compute, (3)
spiking, (4) local learning rules, and (5) sparse and asynchronous
communications between components, etc., are usually accepted
as a whole-sale package, taken altogether or none. But these
properties are actually very distinct. Partial adoption of them is
thus likely to yield optimal solutions for solving certain problems.

We chose to abstract away peculiarities of neuronal and
synaptic mechanics and regard components as generally
configurable state machines that communicate in an event-based
manner, while maintaining a non-von Neumann distributed
design. Based on this strategy, we propose a single component
capable of performing different functions (see Figure 1) as a
compelling case for an educated partial selection of features to put
in hardware. This concept uses the fact that neurons, synapses,
and axons all require local memory, such as SRAM, around
which a multiple-purpose component can be built. The SRAM
is the most important resource that will be shared by the LIF
neurons, STDP adaptors and STDDP adaptors. Figure 1 exploits
the benefits proposed in this paper related to reconfiguration:

When one component is configured as a neuron, it receives
input from other neurons via its synapses onto its cell body
(the soma). The soma performs a leaky integration of the post-
synaptic currents (PSCs, generated by its synapses) to calculate
its membrane potential and generates an output spike when
the membrane potential passes a threshold, after which the
membrane potential is reset and enters a refractory period.

When one component is configured as an STDP adaptor,
it performs the STDP learning rule by receiving pre- and
post-synaptic spikes from a pre- and post-synaptic neuron,
respectively. Its output, a weighted pre-synaptic spike is sent to
the synapse of the post-synaptic neuron for generating a PSC.
When one component is configured as an STDDP adaptor, it
receives the same inputs, but its output is a pre-synaptic spike
that has been delayed according to the stored delay value for this
neuron-to-neuron connection. Note, multiple different types of
adaptors can be combined and connected to a single neuron.

The communications between the components are controlled
by a Master module, which, on receiving a spike, will remap
the address of the pre-synaptic neuron to the address of the
post-synaptic neuron. This strategy provides great flexibility, as
a system can be configured to perform multiple tasks without
needing to change its own hardware, simply by changing the
parameters and the connections between the components in
memory. More importantly, this strategy allows the neural

Frontiers in Neuroscience | www.frontiersin.org 2 August 2018 | Volume 12 | Article 593

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-12-00593 August 28, 2018 Time: 10:33 # 3

Wang and van Schaik An Advanced Multipurpose Neuromorphic Engine

FIGURE 1 | The example usage of the components. In this example, one and only one type of components are configured as LIF neurons, STDP synapses, and
STDDP axons. They are used to build the different part of the neural network.

network to be highly optimized such that all the components can
be effectively used.

Implementing a synapse array that is separate from the
neurons is not a new idea. This structure was first proposed in the
IFAT project (Vogelstein et al., 2007). It provides great flexibility
and reconfigurability, as a hardware platform can be configured
for simulating different types of neural networks without needing
to change its own structure, simply by connecting the synapses
to the appropriate neurons. Due to these advantages, in spite
of the overhead that stems from the communication from the
plastic synapses to each of the neurons, this design strategy has
been widely used in state-of-the-art mixed-signal neuromorphic
systems (Qiao et al., 2015; Moradi et al., 2018) and the recent fully
digital ones (Merolla et al., 2014; Davies et al., 2018; Frenkel et al.,
2018). This is made possible because these systems all employ
high-speed digital circuits that can easily handle this overhead.

Modeling
Conductance-Based Neuron
Rather than using a mathematical computational model, the
physical neuron is efficiently implemented using a stochastic
conductance-based model. It has a soma and a single PSC
generator that can generate both excitatory PSCs (EPSCs)
and inhibitory PSCs (IPSCs). Its function is expressed by the
following equation:

PSC (t + 1) = PSC (t)×
τpsc

τpsc + 1
+ r (t) (1)

where t+1 represents the index of the current time step, PSC(t)
represent the value of the PSC (from memory), which is a 4-
bit number normalized in the range [−1,1]. τPSC represents the
time constant, e.g., 10 ms, controlling the speed with which the
PSC will decay to 0 exponentially. The PSC generator will use
τEPSC and τIPSC for EPSC and IPSC respectively. r[t] is a random
number drawn from a uniform distribution in the range (0,1) and

is different at different time steps. Note, the previous equation
is only for implementing the exponential decay of the PSC. On
arrival of an input spike, the PSC will be updated using the
following equation:

PSC = PSC +W (2)

where W represents the synaptic weight of the pre-synaptic spike.
W is also a 4-bit number normalized in the range [−1,1].

The soma is also a stochastic conductance-based model similar
to the PSC generator. Its function is expressed similarly by the
following equation:

Vmem (t + 1) = Vmem (t)×
τsoma

τsoma + 1

+ r (t)+ gpsc × PSC(t + 1)

(3)

where Vmem(t) represents the previous value of the membrane
voltage (from the memory). The soma has two states: an active
state and a refractory state. The soma only integrates PSC(t+1)
when it is in its active state. When its membrane voltage is below
a configurable resting value, the soma is in its refractory state
and the PSC will be discarded. τsoma represents the time constant
controlling the speed with which Vmem will decay to the resting
value exponentially. The soma will use τmem and τrfc for τsoma
in its active and refractory period, respectively. r[t] is another
random number drawn from a uniform distribution in the range
(0,1). gpsc is a configurable parameter and will be addressed in
detail in Section “Time-Driven Module”. The soma will generate
a post-synaptic spike when Vmem overflows. Vmem will be reset,
when there is an overflow/underflow caused by EPSC or IPSC,
respectively.

STDP Learning Rule
In the STDP algorithm (see Figure 2A), the amount and direction
of modification of the weight are determined by the time between

Frontiers in Neuroscience | www.frontiersin.org 3 August 2018 | Volume 12 | Article 593

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-12-00593 August 28, 2018 Time: 10:33 # 4

Wang and van Schaik An Advanced Multipurpose Neuromorphic Engine

FIGURE 2 | Illustration of learning rules. (A) the STDP modification function;
(B) the STDDP learning rules.

the arrival of the pre- and post-synaptic spike. To obtain this
time difference, we need to know when the pre- and post-synaptic
spike arrive. This is implemented by introducing a time window
generator, which will be set to its maximum value by either spike
and then decay to zero exponentially. The time window is “active”
until it reaches zero and the time at which the second spike
arrives is encoded by the value of the time window generator. The
direction of the update will depend on whether the second spike
is from a pre-synaptic or a post-synaptic neuron. We assume that
no adaption will be carried out if the pre- and post- synaptic
spikes arrive simultaneously. Note, the time window needs to
decay to zero before it can be started again. Therefore, multiple
weight updates will happen if multiple spikes arrive within an
active time window.

We have implemented two simplified modification rules. In
the first one, the amount of synaptic modification is summarized
by the following standard exponential STDP equations:

1w =
{
A+ exp(1t/τ+), if Tactive = 1 and 1t < 0
−A− exp(1t/τ−), if Tactive = 1 and 1t > 0

(4)

where, 1w is the modification of the synaptic weight, 1t is
the arrival time difference between the pre- and post-synaptic
spike. Tactive is a Boolean value that indicates the time window
generator is active (see the dashed line in Figure 2A). A+ and
A− determine the maximum amounts of synaptic modification
for each spike pair. τ+ and τ− are the time constants and control
the rate of decay for the potentiation and depression portions of

the curve, respectively. The parameters τ+, τ−, A+ and A− are all
configurable.

A second version changes the weight by a fixed value as long
as the second spike arrives during the active time window and is
summarized by the following equations:

1w =
{
+step, if Tactive = 1 and 1t < 0
−step, if Tactive = 1 and 1t > 0

(5)

where step is also a configurable value. This modification rule has
been proven to be functional in our previous work (Wang et al.,
2015).

STDDP Learning Rule
The STDDP learning rule is shown in Figure 2B. After a pre-
synaptic neuron fires (the green spike in Figure 2B) there
is an axonal delay before the delayed pre-synaptic spike (the
blue spike in Figure 2B) is sent to the post-synaptic neuron.
If the post-synaptic spike (the red spike in Figure 2B) is not
simultaneous with the delayed pre-synaptic spike, we adapt the
axonal delay by increasing or decreasing it by a small amount.
This procedure is repeated until the delayed pre-synaptic spike
occurs simultaneously with the post-synaptic spike.

To obtain the time difference between the pre- and post-
synaptic spikes, we will use a ramp generator to generate the
axonal delay. The ramp generator will be started by a pre-
synaptic spike (the green spike in Figure 2B). Once started, the
ramp (the yellow line in Figure 2B) will be increased on each
time step and it is “active” until it reaches the maximum value.
Further pre-synaptic spikes arriving during the active period
will be discarded. The modification of the axonal delay will
only be performed following the arrival of a post-synaptic spike:
when the post-synaptic spike arrives, if the ramp is active and
its value is greater/less than the axonal delay, then there is a
decrease/increase of the axonal delay. While if the ramp is not
“active,” there will be no modification.

We have implemented two modification rules. The first one is
called linear proportional modification rule, the modification of
the axonal delay 1d is summarized by the following equations:

1d =
{
A+1t, if Tactive = 1 and 1t < 0
−A−1t, if Tactive = 1 and 1t > 0

(6)

where 1t is the arrival time difference between the pre- and post-
synaptic spike. Tactive is a Boolean value that indicates the time
window generator is active (see the dashed line in Figure 2B).
A+ and A− determine the maximum amounts of axonal delay
modification for each spike pair. No delay modification will be
performed if the delayed pre-synaptic spike and post-synaptic
arrive simultaneously. The second rule is to change the value
of the axonal delay by a fixed value and is summarized by the
following equations:

1d =
{
+step, if Tactive = 1 and 1t < 0
−step, if Tactive = 1 and 1t > 0

(7)

where step is also a configurable value. We have tested these
modification rules in previous work (Wang et al., 2013b).

Frontiers in Neuroscience | www.frontiersin.org 4 August 2018 | Volume 12 | Article 593

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-12-00593 August 28, 2018 Time: 10:33 # 5

Wang and van Schaik An Advanced Multipurpose Neuromorphic Engine

Hardware Implementation
Topology
To perform complicated real-world problems, e.g., pattern
recognition on images, spiking neural networks will require a
very large number of neurons and synapses, particularly plastic
synapses. Hence, the footprint of our generic component needs
to be as small as possible. To achieve this requirement, the design
choice, e.g., analog/digital and synchronous/asynchronous, varies
for different CMOS technology nodes.

With state-of-the-art CMOS technologies, we can easily
time-multiplex a single physical component to simulate many
virtual (or time-multiplexed, TM) components, with each one
updated every millisecond. Since powers of two are preferable
to optimize memory use for storage of the neural network
variables, the neural engine is configured to time-multiplex
2,048 (2k) virtual components. The sizes of neural states of all
the three components are the same: eight bits (Table 1 shows
the arrangement). They are stored in SRAM, for which we
use dual-port devices, since the TM approach needs to write
and read them simultaneously. The footprint of the physical
component is negligible compared to the area of the SRAMs,
which are far more area efficient than logic gates in state-of-the-
art CMOS technologies (Wu et al., 2009), e.g., 28 nm and the ones
afterwards. We will demonstrate this in more details in Section
“Hardware Evaluation.”

Figure 3 shows a naïve implementation of the neural engine.
It consists of a controller, an SRAM, and a physical component,
which implements the LIF neuron, the STDP adaptor, and the
STDDP adaptor. They are all implemented on an FPGA, which
runs at 200 MHz. The controller is the central part of the engine as
it informs the other parts as to which TM component is currently
being processed. The controller receives pre- and post-synaptic
spikes from the Master and assigns them to the corresponding
(TM) components according to their addresses.

Advanced Time-Multiplexing Approach
Time multiplexing introduces the requirement of decoupling
writing new events from reading out current events, since
incoming events for a TM neuron will most likely not arrive at
the exact time step this neuron is being processed. In previous
implementations (e.g., Cassidy et al., 2011), a buffer is employed

TABLE 1 | Arrangement of the neural states.

Bit[7:4] Bit[3:0]

LIF neuron Membrane voltage
(Vmem)

PSC

STDP adaptor The exponential time
window. Bit[7] indicates
the polarity of the time
window (0 and 1:
triggered by pre- and
post-synaptic spike).
Bit[6:4] are the value of
the exponential time
window.

Bit[3]: single active signal of
the pre-synaptic spike
Bit[2:0]: synaptic weight
(positive only)

STDDP adaptor Ramp value Axonal delay

FIGURE 3 | A naïve implementation of the neural engine. The physical
component computes the data for one virtual component module in one clock
cycle. The controller provides the physical component with its input data,
which is read from the SRAM, and writes the computed output data to the
SRAM.

to queue incoming events which are then sent to the TM neurons
at the appropriate time step. This type of solution is not very
friendly for hardware implementation since it uses significant
memory: all the events that arrived within the last time step, e.g.,
the last 1 ms, have to be stored. When this buffer is full, the system
will have to stop receiving new spikes or it will lose spikes.

To overcome this bottleneck, we adopted an advanced time-
multiplexing approach, which splits the time slots into two
groups: time-driven slots and event-driven slots, because the
tasks that need to be performed by the components can be
classified into event-driven tasks and time-driven tasks (see
Table 2).

The controller will send incoming events to the destination
components, e.g., neurons and adaptors, in the event-driven
slots such that the requirement for holding huge amounts of
incoming events is eliminated. In the time-driven slot (for each
component), we will perform the time-driven tasks. Figure 4
shows a simplified timing diagram of this advanced time-
multiplexing approach. For simplicity, let’s assume that each
component takes only one clock cycle to process one event-
driven task or one time-driven task. In this example, the time-
driven slot takes place every 100 clock cycles. Between any two
of time-driven slots, there are then 99 event-driven slots that
can be used by any component for event-driven tasks. As this
neural engine is configured to have 2k components, for each
component, the time between two time-driven tasks will be
(2k × 100)/200 MHz ≈ 1 ms, which is needed for real time
simulation. On the other hand, the incoming spikes will be
processed immediately in the event-driven slots.

For applications of neural networks that need to process
higher firing rates, this method would still work by trading
off event-driven slots for multiplexing ratio and network size.
For instance, we can increase the number of event-driven slots
(between two time-driven slots) from 99 to 199 by reducing the

Frontiers in Neuroscience | www.frontiersin.org 5 August 2018 | Volume 12 | Article 593

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-12-00593 August 28, 2018 Time: 10:33 # 6

Wang and van Schaik An Advanced Multipurpose Neuromorphic Engine

TABLE 2 | Functions of the physical component.

Time-driven tasks Event-driven tasks

LIF Neuron (1)Apply the leak to the PSC and the membrane voltage.
(2)Integrate the PSC onto the membrane voltage.
(3)Generate a post-synaptic spike when the membrane
voltage reaches its maximum value.
(4)Reset the membrane voltage after the spike generation.

(1) Update the PSC with the incoming pre-synaptic spikes.

STDP adaptor (1)Apply the leak to the time window for the exponential
decay.
2. Generate a weighted pre-synaptic spike with the
synaptic weight when there is a pre-synaptic spike (the
single indication bit is active).

(1) Start the time window when there is an incoming spike.
(2) If it is a pre-synaptic spike, set a single active bit for
indication.
(3) Update the synaptic weight according to the STDP rule
when an alternative spike arrives within an active time
window.

STDDP adaptor (1) Increase the ramp value by 1 when the ramp is active.
(2) Generate a delayed pre-synaptic spike when the ramp
value exceeds the axonal delay.

(1) Start the ramp when there is a pre-synaptic spike.
(2) Update the delay value according to the STDDP rule
when a post-synaptic spike arrives within an active ramp.

FIGURE 4 | Timing diagram of the advanced time-multiplexing approach.

size of the neural engine from 2k components to 1k components.
We will address our design choice of 2k components in Section
“Prototype System.”

Incoming events cannot arrive at the neural engine during the
time-driven slots. This constraint can be easily guaranteed by the
Master, which will hold the spikes for that time-driven slot, since
the neural engine is deliberately designed to be a slave device
and both Master and the neural engine are synchronous digital
designs.

Since the need of a large buffer has been eliminated, this
method significantly reduces memory usage, enabling more
components to be implemented. Moreover, it reduces the
latencies in communication that would result from using a
buffer. In a buffered implementation, incoming spikes wait in the
buffer until their destination TM neuron’s turn arrives. Such a
latency can be of the order of hundreds of microseconds. The
communication overhead between the Master and the neural
engine will barely affect the performance of the system.

Physical Component
To comply with the advanced time-multiplexing approach, the
physical component is divided into two sub-modules: the event-
driven module and the time-driven module. These two modules
are both physically implemented and do not communicate
with each other directly. The event-driven module receives
the incoming events (from the controller) and uses them to
update the neural states. The time-driven module generates
events (post-synaptic spikes, delayed pre-synaptic spikes and
weighted pre-synaptic spikes) from the neural states. The
controller of the engine will schedule the progress of the
time-multiplexing approach. For both modules, the DSPs are

deliberately designed to be shared by the LIF neuron and the
STDP adaptor.

Time-driven module
The time-driven module performs the time-driven functions of
all three components (see Table 1). Since at any given time, it
only needs to execute one and only one component’s functions,
it is not necessary to implement all the functions separately.
Instead, they are efficiently implemented in a single module.
Figure 5 shows the structure of the time-driven module, the
core of which are two multipliers for implementing exponential
decays. The input neural states will be processed by any of the
three components, i.e., independently of the configuration of
the time-driven module. Multiplexers are employed to select the
correct outputs from the time-driven module to the controller
block.

The time-driven module has a 5-stage pipeline without halt:
the first cycle selects the parameters and input neural states; the
second and third cycle perform the multiplication and addition,
respectively; the fourth cycle performs the spike generation and
the last cycle outputs neural states. Each TM component will
access each computing unit such as the adder and the multipliers
for only one clock cycle. On one clock cycle, the adder and the
multipliers are all being used, but by different TM components.
Therefore, the overhead of the pipeline is negligible: 10 clock
cycles, the first 5 cycles for setting up the pipeline and the last 5
cycles for waiting for the last TM component to finish processing.

When configured to be working in the LIF neuron mode,
the module performs the time-driven functions for the PSC
generator and the soma. The time-driven function [equation (1)]
of the PSC generator is implemented with a multiplier and

Frontiers in Neuroscience | www.frontiersin.org 6 August 2018 | Volume 12 | Article 593

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-12-00593 August 28, 2018 Time: 10:33 # 7

Wang and van Schaik An Advanced Multipurpose Neuromorphic Engine

FIGURE 5 | The structure of the time-driven module.

an adder (the red dashed rectangle in Figure 5). The random
number r in equation (1) is generated by a linear feedback shift
register (LFSR). The output of the PSC generated will be sent out
(to the controller) and to the soma.

The time-driven function of the soma is implemented with
a multiplier, an adder (the ones in the blue rectangle) and
a spike generator. A naïve implementation of the function
gpsc × PSC(t+1) in equation (3) is to use a multiplier. Since
in a digital design significant implementation advantages can be
gained if powers of two arithmetic can be used for multiplication
and division, we modified gpsc to be a fixed parameter (3 bits for
eight values: 1/32, 1/16, 1/16, 1/8, 1/2, 1, 2, and 4). This function
is efficiently implemented in the spike generator using a selector
and a shift circuit. The spike generator performs the function of
generating the post-synaptic spike (LIF_post, 1 bit) and resetting
the membrane voltage to zero. The outputs of the spike generator
will be sent to the controller.

When configured to be working in the STDP adaptor
mode, the module implements the exponential decay of the
time window and generates the weighted pre-synaptic spike
(STDP_pre, 4 bits). For the sake of saving hardware resources,
we deliberately designed the circuit such that the implementation
of the exponential decay shares the same multiplier and adder (in
the blue rectangle) used by the soma. The time constants will be
selected based on the working mode of the module. Its product
[exp_tw(t+1)] will be sent to the controller as the four MSBs bits
of the output neural state via the multiplexer. The STDP_pre is
generated by moving the lowest significant four bits of the input
neural state to the output. This is done using shift registers to
comply with the pipeline delays. The four LSBs of the output
neural state are processed in the same way as the STDP_pre with
its single active bit (bit[3], in Table 2) being cleared.

When configured to be working in the STDDP adaptor mode,
this module implements the ramp generator and increases the
ramp value (the four MSBs of the input neural state) by one
each time step, until the ramp value reaches the maximum value
(0×F). The module will generate the delayed pre-synaptic spike
(STDDP_pre, 1 bit) when the ramp value exceeds the axonal delay

(the four LSBs of the input neural state), which will be sent out via
the shift registers to comply with the pipeline.

Event-driven module
The event-driven module has also been implemented to perform
all event-driven tasks (see Table 1) of all three components in
a single block. Figure 6 shows the structure of the event-driven
module, which has a 6-stage pipeline without halt: the first cycle
selects the parameters and input neural states; the second and
third cycle perform the multiplication and addition, respectively;
the fourth and fifth cycle performs the modification of the
neural states and the last cycle outputs neural states. For each
incoming event, its address will be used by an address generator
for fetching the neural state from the SRAM (via the controller).
Similarly to the time-driven module, the input neural state will be
processed by all three components, irrespective of the module’s
configuration. As before, multiplexers are employed to select the
correct outputs to the controller.

As a pipelined design, each incoming event will access each
computing unit such as the adder and the multipliers for only
one clock cycle. On one clock cycle, the adder and the multipliers
are all being used but by different events. In other words, this
event-driven module is virtually processing one event per clock
cycle. For instance, if the controller moves in 1,000 consequent
events, the overall processing time is 1000 + 6 + 6 = 1012 clock
cycles: the first six cycles for setting up the pipeline and the last six
cycles for waiting the last event to be processed. To comply with
this pipeline, the controller will write the parameters, e.g., the
amount of the upcoming events and the working mode, into the
parameter registers first. After that, the controller will move in the
required amount of events while pipeline pause is allowed during
this movement. The address counter will generate the read and
write address for accessing the SRAM according the parameters.

When configured to be working in the LIF neuron mode, the
incoming pre-synaptic events will be used to update the PSC. The
current PSC (C_PSC, from the SRAM) will be incremented by
the synaptic weight of this event. Both the PSC and the synaptic
weight are signed numbers, to avoid subtraction operations. The

Frontiers in Neuroscience | www.frontiersin.org 7 August 2018 | Volume 12 | Article 593

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-12-00593 August 28, 2018 Time: 10:33 # 8

Wang and van Schaik An Advanced Multipurpose Neuromorphic Engine

FIGURE 6 | The structure of the event-driven module.

output (N_PSC) will be sent to the controller, and then written
into the SRAM. If this event is from an STDP adaptor, the
event contains the synaptic weight (see Table 2). Otherwise this
synaptic weight is a configurable parameter: a fixed or random
weight. This parameter needs to be configured by the controller
before moving the events. The membrane voltage will be simply
sent out via shift registers, again for complying with the pipeline.

When configured to be working in the STDP adaptor mode,
the incoming event and the current value of the time window
(C_exp_tw) will be sent to a comparator. If this time window
is not active, its next value (N_exp_tw) will be set to the
maximum value (0 × 7). For the time window started by pre-
and post-synaptic spikes, the polarity value is 0 × 0 and 0 × 1,
respectively. Otherwise, the value of this time window will not
change (N_exp_tw = C_exp_tw).

In the meanwhile, the synaptic weight will be updated
according to the rules in equations 4 and 5 presented in Section
“STDP Learning Rule.” They are efficiently implemented with
a multiplier and two adders (in the red rectangle in Figure 6).
Subtraction operations are avoided by using signed numbers
such that no comparing circuit is needed. A multiplexer is
introduced for choosing different update rules. The gain and the
step correspond to A and step in equations 4 and 5, respectively.
These parameters need to be configured by the controller before
moving the events.

When configured to be working in the STDDP adaptor
mode, the incoming event and the current value of the ramp
(C_ramp) will be sent to the comparator. If the ramp is not
active (C_ramp = 0 × F) and the incoming event is a pre-
synaptic event, its next value (N_ramp) will be set to the initial
value (0 × 0). Otherwise, the value of the ramp will not change
(N_ramp = C_ramp).

In the meanwhile, the axonal delay will be updated according
to the equations 6 and 7 presented in Section “STDP Learning
Rule,” if the incoming event is a post-synaptic event. The same
multiplier and adders in the red rectangle (Figure 6) are used
for this. Multiplexers are introduced to choose different working
modes. The gain and the step correspond to A and step in
equations 6 and 7, respectively. Again, these parameters need to
be configured by the controller before moving the events.

Besides these functions, this event-driven module is capable
of programming the value of the synaptic weight and the axonal
delay with user defined values. This is essential for algorithm
development.

Multi-Component Engine
Two methods are used to scale up the neural engine with
significant reduction of hardware cost. A naïve implementation
of the neural engine (see Figure 3) has one controller and one
physical component. The first method is to implement one neural
engine with one controller and multiple physical components
that run in parallel, since these physical components operate in
the same way with the same interface. This reduces not only the
hardware costs but also the amount of the events that need to
be moved by the Master, as components nearby are very likely to
receive the same events. Otherwise, we will have to replicate the
same events for each component.

The second method achieves a significant saving of hardware
resources by sharing one time-driven module across these parallel
physical components, since the number of event-driven slots
is much higher than the number of time-driven slots. In our
system, the ratio between the event-driven slots and the time-
driven slots is 99:1, hence theoretically one time-driven module
can be used by 99 physical components, each of which has its
own event-driven module. However, it is quite difficult to achieve
this ratio in a practical design, since it will introduce significant
routing issues: the controller has to communicate with all of these
99 physical components. These routing issues will also make it
almost impossible to meet the critical timing requirements. As
a trade-off, the neural engine is designed to have 16 physical
components (yielding 16× 2k = 32k components) that share one
time-driven module.

In this method (see Figure 7), the neural states (16 × 8 = 128
bits) for the time-driven module are latched in the first time-
driven slot. Then this time-driven module will process these
neural states in the following 16 clock cycles (ignoring the
overhead of the pipeline). The updated neural states and events
that have been generated will be latched and written into the
SRAM by the controller during the next time-driven slot. Since
the time-driven module and event-driven module are deliberately

Frontiers in Neuroscience | www.frontiersin.org 8 August 2018 | Volume 12 | Article 593

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-12-00593 August 28, 2018 Time: 10:33 # 9

Wang and van Schaik An Advanced Multipurpose Neuromorphic Engine

FIGURE 7 | Timing diagram of the sharing time-driven module.

designed to be independent of each other, the event-driven
modules can continue to receive and process events during these
16 clock cycles.

Controller
To ensure the Master has full control of the processing progress,
the controller operates in an instruction-driven manner. It
receives the start instruction from the Master and then runs
for a number of time slots, which need to be configured by the
Master in advance. After this run, it will wait for the next start
instruction. Besides the number of the time slots, the Master
also needs to send the parameters for the time-driven module
before one run starts. This scheme not only ensures the Master’s
full control of the processing progress, but also provides great
flexibility as the neural engine can be easily reconfigured with
different parameters for different applications.

Figure 8 shows the structure of the controller, which consists
of a decoder, a TM scheduler, and a bus multiplexer. The decoder
is for decoding the instructions from the master and it will pass
events from the Master to the event-driven modules. Its outputs
are the parameters required for scheduling the simulation by the
TM scheduler, which are implemented with two counters: one for
the event-driven slots and one for the time-driven slots.

The TM scheduler will control the bus multiplexer, which
multiplexes the neural states from/to the time-driven and

FIGURE 8 | The structure of the controller.

event-driven modules. Since the SRAM is a dual-port device,
the multiplexing operation can be easily handled. The events
generated will be sent to the Master by the TM scheduler, since
the address of the synchronous AER protocol is indeed the value
of the counter for the time-driven slots.

RESULTS

Prototype System
As a proof of concept, we implemented a prototype system
on a Cyclone V FPGA, which is hosted on a Terasic SoC
kit. We can incorporate more than one neural engine into the
system in order to increase capacity. Each neural engine is
connected in parallel in the system (see Figure 9). The number
of TM components implemented by one physical component will
increase linearly with the amount of available on-chip SRAM, as
long as the multiplexing rate keeps the time resolution acceptable,
i.e., generally better than 1 ms, while more engines will use more
logic gates (ALMs). The timing requirement will become quite
critical when the utilization becomes high, e.g., 90% of the logic
gates and SRAMs on an FPGA, due to the difficulties in routing.

FIGURE 9 | Structure of the prototype system. To achieve the maximum
utilization of the hardware resources, 16 neural engines are placed parallel in
the system.

Frontiers in Neuroscience | www.frontiersin.org 9 August 2018 | Volume 12 | Article 593

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-12-00593 August 28, 2018 Time: 10:33 # 10

Wang and van Schaik An Advanced Multipurpose Neuromorphic Engine

We chose to use 2k TM components per engine, since it is a
good balance between the number of the physical components
and the multiplexing rate. It achieves a good time resolution
and a high utilization of the available hardware recourses on
FPGA. We integrated 16 neural engines in the system, yielding
16 × 32k = 512k (TM) components in total. The prototype
system is developed to check correct operation of the functions
of the neural engine, we used a debug module that is capable of
generating stimuli and collecting test results, which will be stored
in the DDR3 for buffering purposes. The prototype uses a high-
speed USB interface to communicate with the host PC. Table 3
shows the utilization of hardware resources on the FPGA. Note
that this utilization of the prototype system includes the Altera
IPs such as the ones for accessing external memories.

The overall power consumption of this prototype system
will not be determined by the type of the applications, or
whether the components are configured as LIF neurons, learning
synapses, or axons. Instead, power consumption mainly depends
on the activity rate of the SRAM. The first reason for this
is that the time-multiplexing approach will access the SRAM,
even when there are no incoming events. Secondly, while the
activity of the event-driven module is affected by the rates of
the incoming events, this is not dependent on whether these
events are for LIF neuron or adaptors. The higher the rate of
the incoming events is, the higher the activity rate of the SRAM
will be. We used PowerPlay, the power analysis tool provided
by Altera to estimate the power dissipation of the FPGA, since
a direct measurement of the FPGA’s power consumption is not
possible on this development kit. PowerPlay estimated the power
dissipation (see Table 4) from the netlist of the design, using
the tool’s default settings and a 50% activity rate of the SRAM.
The total power dissipation of the whole system is ∼1.95 W.
The power dissipation per engine is 37.75 mW. Since there are
512k (TM) components, the power dissipation per component is
1.95 W/512k≈ 3.7 µW.

Since this engine runs at 200 MHz and time-multiplexing rate
is 2k (with a time slot of 100 clock cycles), the engine is capable of
performing 200 M × (99/100) × 16 ≈ 3.2 G synaptic operations
(SOPs) per second. The prototype system with 16 engines is
therefore capable of performing 16 × 3.2G = 51.2 G SOPs per
second. This FPGA prototype system achieves a power efficiency
of∼38 pJ per SOP.

TABLE 3 | Device utilization Altera cyclone 5CSXFC6D6F31C6.

Adaptive Logic
Modules (ALMs)

RAMs DSPs

Neural engine 1250 256k bit 18

Event-driven
module

946.4 N/A 16

Time-driven
module

76.5 N/A 2

Controller 227.1 N/A N/A

Prototype
system

29212/41910 4.6 M bit/5.6 M bit 112/112∗

∗One DSP slice can be used to implement three 9-bit fixed-point multipliers.

The results presented here will focus on the capability of the
neural engine, since our goal was to develop a flexible hardware
implementation capable of performing the functions of a LIF
neuron, a learning synapse, and an axon. Therefore, we did not
test algorithms specifically developed for real-world applications,
such as for pattern recognition. Instead, we verified the capability
of the neural engine configured as a LIF neuron, a learning
synapse, and an axon with common benchmark problems. We
used a time step of 1 ms throughout these tests.

Performance of LIF Neuron
We verified the function of the LIF neuron by running an
experiment in which all the components of the 16 neural engines
were configured to work in the LIF neuron mode. For simplicity,
the parameters of the neurons are all set to the same values (see
Table 5). Owing to the stochastic approach, the neurons in one
engine are heterogeneous, even when using identical parameters
and are therefore capable of emulating the variance in biological
neurons. There was no connection between these LIF neurons
and a single external excitatory spike train with a Poisson rate
of ∼20 Hz was connected to all the LIF neurons to mimic
background activity. This setup ensured that all the neurons
received the exact same input stimulus. The synaptic weight of
this Poisson spike train was set to 0.375, which was barely enough
to drive the neurons to fire (using the parameters in Table 5).

We ran the experiment for 10 s. Since it is impossible to show
a raster plot of half a million LIF neurons, we chose to show
the simulation results in two parts. The first one (Figure 10)
shows the dynamics of the membrane voltage and the EPSC of
one randomly chosen neuron for 50 ms. It demonstrates that the
physical component is capable performing the function of the
LIF neurons. The second part (Figure 11) is the firing rates of
the 256 physical components at each time step (1 ms). The firing
rate was calculated by counting the spikes generated by all the

TABLE 4 | FPGA’s power dissipation estimated by PowerPlay.

Total power dissipation 1.95 W

I/O power dissipation 45.6 mW

Core static power dissipation 434.5 mW

Core dynamic power dissipation 1.48 W

One Neural engine dynamic power dissipation 37.75 mW

DDR interface dynamic power dissipation 67.16 mW

USB Interface dynamic power dissipation 20.61 mW

Debug module dynamic power dissipation 133.1 mW

Routing dynamic power dissipation∗ 695.3 mW

∗This item includes all the dynamic power dissipation caused by the routing of the
signals (wires) between modules.

TABLE 5 | Parameters of the LIF neuron.

τEPSC 6 ms

τlPSC 6 ms

τmem 5.5 ms

τrfc 3 ms

gpsc 1

Frontiers in Neuroscience | www.frontiersin.org 10 August 2018 | Volume 12 | Article 593

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-12-00593 August 28, 2018 Time: 10:33 # 11

Wang and van Schaik An Advanced Multipurpose Neuromorphic Engine

TA
B

LE
6

|C
om

pa
ris

on
of

w
ith

th
e

st
at

e
of

th
e

ar
to

fs
pi

ki
ng

ne
ur

om
or

ph
ic

ci
rc

ui
ts

,a
da

pt
ed

an
d

co
m

pl
et

ed
fro

m
(F

re
nk

el
et

al
.,

20
18

).

H
IC

A
N

N
N

eu
ro

G
ri

d
R

O
LL

S
D

Y
N

A
P

s
IF

A
T

M
ay

r
et

al
.,

20
16

S
eo

et
al

.,
20

11
Tr

ue
N

o
rt

h
Lo

ih
i

O
d

in
T

hi
s

w
o

rk

Im
pl

em
en

ta
tio

n
M

ix
ed

-
si

gn
al

M
ix

ed
-

si
gn

al
M

ix
ed

-
si

gn
al

M
ix

ed
-

si
gn

al
M

ix
ed

-
si

gn
al

M
ix

ed
-

si
gn

al
D

ig
ita

l
D

ig
ita

l
D

ig
ita

l
D

ig
ita

l
D

ig
ita

l

Te
ch

no
lo

gy
18

0
nm

18
0

nm
18

0
nm

28
nm

90
nm

28
nm

45
nm

28
nm

14
nm

28
nm

28
nm

A
re

a
of

a
ne

ur
os

yn
ap

tic
co

re
[m

m
2
]

26
.3

16
8

51
.4

7.
5

0.
31

0.
36

0.
8/

1.
15

0.
09

5
0.

4
0.

08
6

0.
44

N
eu

ro
ns

pe
r

co
re

51
2

64
k

25
6

25
6

2k
64

25
6

25
6

m
ax

.1
02

4
25

6
25

6k
†

S
yn

ap
tic

w
ei

gh
t

st
or

ag
e

4-
bi

tS
R

A
M

O
ff-

ch
ip

C
ap

ac
ito

r
12

-b
it

C
A

M
O

ff-
ch

ip
4-

bi
tS

R
A

M
1-

bi
t/

4-
bi

t
S

R
A

M
1-

bi
tS

R
A

M
1-

to
9-

bi
t

S
R

A
M

(3
+

l)-
bi

t
S

R
A

M
3-

bi
tS

R
A

M

E
m

be
dd

ed
on

lin
e

le
ar

ni
ng

S
TD

P
N

o
S

D
S

P
N

o
N

o
S

D
S

P
P

ro
ba

bi
lis

tic
S

TD
P

N
o

P
ro

gr
am

m
ab

le
S

D
S

P
S

TD
P

S
TD

D
P

S
yn

ap
se

pe
r

co
re

11
2k

–
12

8k
16

k
–

8k
64

k
64

k
1M

to
11

4k
(1

-t
o

9-
bi

t)
64

k
25

6k
†

N
eu

ro
n

m
od

el
A

da
pt

iv
e

ex
po

ne
nt

ia
l

IF

A
da

pt
iv

e
qu

ad
ra

tic
IF

A
da

pt
iv

e
LI

F
A

da
pt

iv
e

LI
F

2-
co

m
pa

rt
m

en
t

LI
F

A
da

pt
iv

e
ex

po
ne

nt
ia

l
IF

C
on

fig
ur

ab
le

LI
F

C
on

fig
ur

ab
le

LI
F

A
da

pt
iv

e
LI

F
P

he
no

m
en

ol
og

ic
al

2-
co

m
pa

rt
m

en
t

LI
F

Ti
m

e
co

ns
ta

nt
A

cc
el

er
at

ed
B

io
lo

gi
ca

l
B

io
lo

gi
ca

l
B

io
lo

gi
ca

l
B

io
lo

gi
ca

l
B

io
to

ac
ce

l
B

io
lo

gi
ca

l
B

io
lo

gi
ca

l
N

/A
B

io
to

ac
ce

l
B

io
to

ac
ce

l

N
eu

ro
n

co
re

de
ns

ity
[n

eu
r/

m
m

2
]∗

19
.5

39
0

5
34

6.
5k

17
8

82
7/

57
5

2.
6k

M
ax

.6
40

3.
0k

58
2k

†

S
yn

ap
se

co
re

de
ns

ity
[s

yn
/m

m
2
]∗

4.
3k

–
2.

5k
2.

1k
–

22
.2

k
20

7k
/1

44
k

67
3k

64
0k

to
71

k
74

1k
58

2k
†

S
up

pl
y

vo
lta

ge
1.

8
V

3.
0

V
1.

8
V

1.
3

V-
1.

8
V

1.
2

V
0.

75
V,

1.
0

V
0.

53
V–

1.
0

V
0.

7
V–

1.
05

V
0.

5
V–

1.
25

V
0.

55
V–

1.
0

V
0.

9
V

E
ne

rg
y

pe
r

S
O

P
N

/A
94

1
pJ

77
fJ

13
4

fJ
–

41
7

fJ
22

pJ
>

85
0

pJ
◦

N
/A

26
p

at
0.

77
5

V
>

23
.6

pJ
at

0.
75

‡
9.

8
pJ

at
0.

55
V

0.
92

pJ

†
A

ss
um

in
g

al
lt

he
co

m
po

ne
nt

s
ha

ve
be

en
co

nfi
gu

re
d

fo
r

ne
ur

on
s

or
sy

na
ps

es
.

∗
N

eu
ro

n/
sy

na
ps

e
co

re
de

ns
ity

of
di

gi
ta

ld
es

ig
ns

is
no

rm
al

iz
ed

to
a

28
nm

te
ch

no
lo

gy
no

de
.

N
or

m
al

iz
at

io
n

is
no

t
ap

pl
ie

d
to

m
ix

ed
-s

ig
na

ld
es

ig
ns

as
th

e
an

al
og

pa
rt

s
re

qu
ire

re
de

si
gn

to
co

m
pe

ns
at

e
fo

r
pe

rfo
rm

an
ce

de
gr

ad
at

io
n

du
rin

g
te

ch
no

lo
gy

sc
al

in
g.

◦
R

ep
re

se
nt

s
a

lo
w

er
bo

un
d,

es
tim

at
ed

by
co

ns
id

er
in

g
th

e
sy

na
pt

ic
w

ei
gh

ts
at

ha
lf

th
ei

r
dy

na
m

ic
at

m
ax

im
um

op
er

at
in

g
fre

qu
en

cy
.

‡
R

ep
re

se
nt

s
a

lo
w

er
bo

un
d

as
it

in
cl

ud
es

on
ly

th
e

co
nt

rib
ut

io
n

of
th

e
sy

na
pt

ic
op

er
at

io
n,

w
ith

ou
tt

ak
in

g
in

to
ac

co
un

tt
he

co
st

of
ne

ur
on

up
da

te
an

d
le

ar
ni

ng
en

gi
ne

up
da

te
.

Frontiers in Neuroscience | www.frontiersin.org 11 August 2018 | Volume 12 | Article 593

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-12-00593 August 28, 2018 Time: 10:33 # 12

Wang and van Schaik An Advanced Multipurpose Neuromorphic Engine

FIGURE 10 | Dynamics of the LIF neuron. The membrane voltage and EPSC (of each 1 ms) were normalized in the range [0,1]. The vertical arrows are post-synaptic
spikes, which will be generated when the membrane voltage exceeds 1.0.

FIGURE 11 | Performance of LIF neurons. (A) The mean firing rates of all the 256 physical components. (B) The mean firing rates of the 16 physical components of
one neural engine (Neural_engine[0] in Figure 9) from 2 to 2.1 s.

2k TM LIF neurons implemented with one physical component.
The result (Figure 11B) also shows that the physical components
are heterogeneous even when using the same parameters and are
therefore capable of emulating the variance in biological neurons.
The 16 neural engines in this prototype system were identical,
therefore they produce identical results as Figure 11 shows.
When needed, we can program the seed for random number
generation in each neural engine to be different, such that they
would be heterogeneous too. We conducted this experiment for
10 runs with different seeds (for the generation of the external
excitatory spike trains) and the mean firing rate of the 512k LIF
neurons (of 10 runs) was∼8.3 Hz

Performance of STDP
We verified the function of the STDP adaptor by performing a
balanced excitation experiment, based on the experiment run by
(Song et al., 2000). Song et al. (2000) have shown that competitive

Hebbian learning (Hebb, 1949) can be performed through STDP.
The competition between the synapses induced by STDP will
establish a bimodal distribution of the synaptic weights: either
toward zero (weak) or the maximum (strong) values.

In this experiment, all the components of the 16 neural engines
were configured to work in the STDP adaptor mode. Each
adaptor was driven by an independent Poisson pre-and post-
synaptic spike train. The firing rates of the pre-/post-synaptic
spike trains of all the adaptors are the same. We have tested the
system with two sets of firing rates. In the first one, the pre- and
post-synaptic train was 10 and 10 Hz, respectively. In the second
one, they were 10 Hz and 20 Hz, respectively. The adaptors start
with a uniform positive weight distribution. We have conducted
the experiment with both modification rules [equations (4) and
(5)]. For both of them, we use τ+ = τ− = 0.20 ms throughout. For
the standard exponential modification rule, we use A+ = A− = 1
throughout. For the fixed step modification rule, we use step = 1

Frontiers in Neuroscience | www.frontiersin.org 12 August 2018 | Volume 12 | Article 593

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-12-00593 August 28, 2018 Time: 10:33 # 13

Wang and van Schaik An Advanced Multipurpose Neuromorphic Engine

throughout. For each configuration, we have conducted it for 10
runs with different seeds.

After 1 s of simulation, the distribution of synaptic weights
converges to a steady-state condition with bimodal distribution
of strong and weak weights (see Figure 12, the mean weight
distribution from 10 runs). Both modification rules confirmed
the theoretical behavior: for low input rates, more synaptic

FIGURE 12 | Balanced excitation experiment. (A) Mean weight distribution
after 1 s of STDP with the standard exponential equations for a pre- and
post-synaptic train with a rate of 10 and 10 Hz. The bimodal distribution of
strong and weak weights is apparent; (B) same as (A), but with a rate of 10
and 20 Hz. Now more weights are weak than strong; (C,D) same as (A,B),
but with a fixed adaptation step (set to 1 here).

adaptors approach the upper limit, and for high input rates, more
are pushed toward zero (Song et al., 2000).

Performance of STDDP
We verified the function of the STDDP adaptor by performing a
polychronisation experiment, in which the axonal delays between
the neurons are fine tuned such that these neurons can fire
asynchronously but after traveling along axons, their spikes will
arrive at a post-synaptic neuron simultaneously, causing it to
fire in turn (Izhikevich, 2006). Polychronous Neural networks,
which are based on this principle and are capable of storing
and recalling quite complicated spatio-temporal patterns. In our
previous work (Wang R.M. et al., 2014), we have concluded that
providing a strong time-locked relationship is the most important
requirement of a hardware implementation of a polychronous
network. This is indeed the motivation for us to develop the
STDDP learning rule.

In this experiment, all the 512k components were configured
to work in the STDDP adaptor mode. This experiment will fine
tune all the axon delays from these 512k STDDP adaptors such
that they will be evenly distributed from 0 ms to 15 ms. The
axonal delays were initialised to be 0 ms and 15 ms (in the ratio
of 50% to 50%). We used a paired-pulse protocol: a single pair
of pre- and post-synaptic spikes is sent to each of the adaptors
periodically (every 16 ms). During each period, each adaptor will
receive one and only one pre-synaptic spike, the arrival time of
which is set to be time step 1. Additionally, during each period,
each adaptor will receive one and only one post-synaptic spike,
the arrival time is between time steps 1 and 16. These spike pairs
remain the same in each period. In each period, for each adaptor,
a delay adaptation is performed if the axonal delay has not been
tuned to the desired delay.

We have conducted the experiment with both modification
rules. For the linear proportional modification rule, we use
A+ = A− = 1 throughout. Hence, theoretically, after one period
(16 ms), all axonal delays will be fine-tuned to the desired values,
which are evenly distributed from 0 to 15 ms. For the fixed step
modification rule, we use step = 1 throughout. Hence, it will take
16 periods (256 ms) for all the axonal delays to be fine-tuned.

Measurements on the FPGA confirmed the theoretical
analysis. Figure 13 shows the delay distribution in the middle
of the experiment and the final delay distribution for both
modification rules. In Figure 13C, after 128 updates of the
STDDP, most axonal delays have been tuned to 7 ms or 8 ms, since
the axonal delays were initialised to be 0 and 15 ms (in the ratio of
50% to 50%). As all the axonal delays have been fine-tuned to the
desired values, we can conclude that the system has performed
the polychronisation experiment successfully.

Hardware Evaluation
The measurements from the FPGA prototype system
demonstrate the functionality of the neural engine. To provide
a quantitative hardware evaluation, particularly of the area
efficiency and power efficiency, we implemented one neural
engine (not the whole prototype system) using TSMC 28 nm
(HPC) technology using the Cadence digital design flow. The
power consumption was estimated using switching activity with

Frontiers in Neuroscience | www.frontiersin.org 13 August 2018 | Volume 12 | Article 593

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-12-00593 August 28, 2018 Time: 10:33 # 14

Wang and van Schaik An Advanced Multipurpose Neuromorphic Engine

FIGURE 13 | Polychronisation experiment. (A,B) Delay distribution after 8 and
16 ms of STDDP with the linear proportional modification rule. (C,D) Delay
distribution after 128 and 256 ms of STDDP with the fixed modification rule
(the adaptation step is set to 1 here).

Cadence Innovus. From this manufacturing process, we used the
ARM physical library and with the smallest available standard
cells with ultra-low threshold voltages (ULVT). For the SRAMs,
we used the ARM high-density single-port SRAMs, the largest
one of which has a size of 1 M bit (220 bits, 8k × 128 bit). By
putting two of them together, we implemented the dual-port
SRAM in the neural engine, which has 16 physical components
and uses a time-multiplexing rate of 2k × 8 = 16k, thus consists
of 16× 16k = 256k (218) TM components using 2 M bits SRAMs.
These choices were to achieve high area and power efficiency.

FIGURE 14 | Neural engine place and route. To achieve the maximum
utilization of the hardware resources, the engine was implemented with two
high density single-port SRAMs (1 M bit each, in the blue rectangles). The
physical component and the controller were placed between the SRAMs such
that the routing can be easily performed. The utilization of the silicon area is
98.7 and 70.5% with and without SRAMs, respectively.

Figure 14 shows the results of the place and route. The post
place-and-route core size is 650 µm × 680 µm = 0.44 mm2

(core utilization = 98.7%), with an estimated power consumption
of 37 mW at 0.9 V supply voltage and a clock frequency of
2.5 GHz. Each component occupies 1.68 µm2, of which 1.62 µm2

is the 8-bit SRAMs. Only 0.06 µm2 (∼3.5%) out of 1.68 µm2

is used for the reconfigurable modules, which are capable of
performing three different functions. It is undoubtedly true that
reconfigurable modules are flexible but usually involve more
hardware design costs due to the design complexity. But by
leveraging the time-multiplexing approach and state-of-the-art
CMOS technologies, this overhead (hardware cost) has been
reduced to a negligible level. In other words, implementing
each individual function separately is not likely to significantly
improve the area efficiency of this neural engine. If the
time-multiplexing were not extensively used, the use of the
reconfigurable modules need to be further investigated. This area
efficiency demonstrates the necessary and advantages of the use
the time-multiplexing approach.

The power efficiency of the neural engine is
37 mW/256k ≈ 141 nW per component. Since this engine
is capable of running at 2.5 GHz and the time-multiplexing
rate is 16k, each component will have a time slot of up to
1 ms/(400 ps × 16k) = 156 clock cycles. The engine is capable
of performing up to 2.5 G × (155/156) × 16 ≈ 40 G SOPs per
second, yielding a power efficiency of∼0.92 pJ per SOP. The area
and power efficiency demonstrate that our neuromorphic engine
is a high-performance and scalable design.

Frontiers in Neuroscience | www.frontiersin.org 14 August 2018 | Volume 12 | Article 593

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-12-00593 August 28, 2018 Time: 10:33 # 15

Wang and van Schaik An Advanced Multipurpose Neuromorphic Engine

DISCUSSION AND FUTURE WORK

Our work fills in a vacant niche along the spectrum of
neuromorphic platform solutions between integrated specialized
hardware for diverse spiking neural network components and
software emulation on general purpose hardware, e.g., CPUs and
GPUs. This is a previously unexplored point of trade-off that
inspires theoretic insights into algorithmic designs of spiking
neural networks and warrants hardware investigations.

To the author,s acknowledgment, our neural engine is the first
and only hardware neuromorphic implementation that is capable
of working as a LIF neuron, a learning synapse, and an axon.
In the SpiNNaker (Furber et al., 2014) project, ARM processors
run software neural models and are programmable. In theory, it
should be capable of trading off the number of the neurons and
the synapses. However, it is a software implementation, which
performs numerical simulations, and hence is not comparable to
our hardware implementation that emulates the LIF neurons and
plastic synapses on silicon directly.

To compare our work with state-of-the-art neuromorphic
implementations, a performance and specification summary
of them is provided in Table 6 [adapted and completed
from Frenkel et al. (2018)]. On the left are the mixed-signal
designs (Schemmel et al., 2010; Benjamin et al., 2014; Park
et al., 2014; Qiao et al., 2015; Mayr et al., 2016; Moradi
et al., 2018), digital designs (Seo et al., 2011; Merolla et al.,
2014; Davies et al., 2018; Frenkel et al., 2018) together
with this work on are on the right. Toward large-scale
spiking neuromorphic platforms, the key figures of merit are
density, flexibility, synaptic plasticity, and energy consumed per
SOP.

Our future work will focus on scaling up the network that we
have presented here. As a fully digital implementation, the neural
engine is a scalable design. The number of physical components,
i.e., the ones that can be activated simultaneously, will increase
linearly with the number of available logic gates, which are usually
the bottleneck for high performance FPGA designs. But in our
system, the design of the physical component costs only a few
logic gates and plenty of resources are left for additional physical
components or other systems modules.

High-end FPGAs, such as Xilinx’s Virtex UltraScale+
(XCVU09P of a Xilinx VCU118 kit) have ∼400 M bits on-chip
SRAMs. For a system running at 400 MHz, we can achieve 4k
TM components with one physical engine (the time slot keeps

the same, 100 clock cycles) for a sub-millisecond time resolution.
Each engine has 16 physical components and thus 16× 4k = 64k
TM components using 512k bits SRAMs. We can implement
400 M/512k = 800 neural engines, yielding 50 M TM components.
Based on the above calculations and analysis, we can conclude
that it is practical to scale the proposed system up to a system with
50 M TM components on a commercial off-the-shelf high-end
FPGA.

Another future improvement will be to accommodate more
complicated learning rules. Since this paper is only for proof of
concept, we made an arbitrary design choice: for both the STDP
and STDDP learning rule, the time window (ramp) needs to
become “inactive” before it can be started again. This means the
first spike dictates when the learning window begins and ends.
The same spike train might have disparate learning behaviors
with a potentially small modification in the length of the learning
window. This could affect the robustness and efficiency of the
learning system, since a small perturbation in a minor parameter
might result in different outcomes. Multiple methodologies have
been developed in addressing such learning “conflicts,” one of
which is a resource-based STDP (Hunzinger et al., 2012). These
learning rules are hardware friendly, as they introduced few
additional state variables. Due to its unique architecture, the
proposed neural engine can be easily adjusted to such learning
rules.

AUTHOR CONTRIBUTIONS

RW and AvS conceived the idea and wrote the paper. RW
developed the hardware implementation, and designed and
conducted the experiments.

FUNDING

This work was supported by the Australian Research Council
Grant DP140103001.

ACKNOWLEDGMENTS

The support by the Altera University program is gratefully
acknowledged. We thank reviewers’ insightful comments.

REFERENCES
Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R.,

Bussat, J. M., et al. (2014). Neurogrid: a mixed-analog-digital multichip system
for large-scale neural simulations. Proc. IEEE 102, 699–716. doi: 10.1109/
JPROC.2014.2313565

Bi, G. Q., and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic
cell type. J. Neurosci. 18, 10464–10472. doi: 10.1523/JNEUROSCI.18-24-10464.
1998

Boahen, K. (2006). “Neurogrid: emulating a million neurons in the cortex,” in
Proceedings of the International Conference of the IEEE Engineering in Medicine
and Biology Society (New York, NY: IEEE), doi: 10.1109/IEMBS.2006.260925

Bofill-i-petit, A., and Murray, A. F. (2004). Synchrony detection and amplification
by silicon neurons with STDP synapses. IEEE Trans. Neural Netw. 15,
1296–1304. doi: 10.1109/TNN.2004.832842

Cassidy, A., Andreou, A. G., and Georgiou, J. (2011). “Design of a one million
neuron single FPGA neuromorphic system for real-time multimodal scene
analysis,” in Proceedings of the 45th Annual Conference on Information
Sciences and Systems (Baltimore, MD: IEEE), doi: 10.1109/CISS.2011.
5766099

Chicca, E., Badoni, D., Dante, V., D’Andreagiovanni, M., Salina, G.,
Carota, L., et al. (2003). A VLSI recurrent network of integrate-and-
fire neurons connected by plastic synapses with long-term memory.
IEEE Trans. Neural Netw. 14, 1297–1307. doi: 10.1109/TNN.2003.
816367

Frontiers in Neuroscience | www.frontiersin.org 15 August 2018 | Volume 12 | Article 593

https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1109/IEMBS.2006.260925
https://doi.org/10.1109/TNN.2004.832842
https://doi.org/10.1109/CISS.2011.5766099
https://doi.org/10.1109/CISS.2011.5766099
https://doi.org/10.1109/TNN.2003.816367
https://doi.org/10.1109/TNN.2003.816367
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-12-00593 August 28, 2018 Time: 10:33 # 16

Wang and van Schaik An Advanced Multipurpose Neuromorphic Engine

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro
38, 82–99. doi: 10.1109/MM.2018.112130359

Frenkel, C., Legat, J.-D., and Bol, D. (2018). A 0.086-mm$ˆ2$ 9.8-pJ/SOP 64k-
Synapse 256-Neuron Online-Learning Digital Spiking Neuromorphic Processor
in 28nm CMOS. Available at: https://arxiv.org/pdf/1804.07858.pdf

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker
project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gerstner, W., Kempter, R., Van Hemmen, J. L., and Wagner, H. (1996). A neuronal
learning rule for sub-millisecond temporal coding. Nature 383, 76–81.
doi: 10.1038/383076a0

Giulioni, M., Camilleri, P., Dante, M. M., Braun, J., and Del Giudice, P. (2012).
Robust working memory in an asynchronously spiking neural network realized
with neuromorphic VLSI. Front. Neurosci. 5:149. doi: 10.3389/fnins.2012.00149

Häfliger, P. (2007). Adaptive WTA with an analog VLSI neuromorphic learning
chip. IEEE Trans. Neural Netw. 18, 551–572. doi: 10.1109/TNN.2006.884676

Hebb, D. (1949). The Organization of Behavior. New York, NY: Wiley & Sons.
Hunzinger, J. F., Chan, V. H., and Froemke, R. C. (2012). Learning complex

temporal patterns with resource-dependent spike timing-dependent plasticity.
J. Neurophysiol. 108, 551–566. doi: 10.1152/jn.01150.2011

Indiveri, G., Chicca, E., and Douglas, R. (2006). A VLSI array of low-power spiking
neurons and bistable synapses with spike-timing dependent plasticity. IEEE
Trans. Neural Netw. 17, 211–221. doi: 10.1109/TNN.2005.860850

Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural
Comput. 18, 245–282. doi: 10.1162/089976606775093882

Koickal, T. J., Hamilton, A., Tan, S. L., Covington, J. A., Gardner, J. W., and Pearce,
T. C. (2007). Analog VLSI circuit implementation of an adaptive neuromorphic
olfaction chip. IEEE Trans. Circuits Syst. I Regul. Pap. 54, 60–73. doi: 10.1109/
TCSI.2006.888677

Magee, J. C. (1997). A synaptically controlled, associative signal for hebbian
plasticity in hippocampal neurons. Science 275, 209–213. doi: 10.1126/science.
275.5297.209

Mahowald, M., and Douglas, R. (1991). A silicon neuron. Nature 354, 515–518.
doi: 10.1038/354515a0

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275,
213–215. doi: 10.1126/science.275.5297.213

Mayr, C., Partzsch, J., Noack, M., Hanzsche, S., Scholze, S., Hoppner, S., et al.
(2016). A biological-realtime neuromorphic system in 28 nm CMOS using
low-leakage switched capacitor circuits. IEEE Trans. Biomed. Circuits Syst. 10,
243–254. doi: 10.1109/TBCAS.2014.2379294

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,
Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with
a scalable communication network and interface. Science 345, 668–673. doi:
10.1126/science.1254642

Mitra, S., Fusi, S., and Indiveri, G. (2009). Real-time classification of complex
patterns using spike-based learning in neuromorphic VLSI. IEEE Trans.
Biomed. Circuits Syst. 3, 32–42. doi: 10.1109/TBCAS.2008.2005781

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scalable
multi-core architecture with heterogeneous memory structures for Dynamic
Neuromorphic Asynchronous Processors (DYNAPs). IEEE Trans. Biomed.
Circuits Syst. 12, 1–17. doi: 10.1109/TBCAS.2017.2759700

Park, J., Ha, S., Yu, T., Neftci, E., and Cauwenberghs, G. (2014). “A 65k-neuron
73-Mevents/s 22-pJ/event asynchronous micro-pipelined integrate-and-fire
array transceiver,” in Proceedings of the IEEE Biomedical Circuits and Systems
Conference BioCAS 2014 (Lausanne: Institute of Electrical and Electronics
Engineers Inc), 675–678. doi: 10.1109/BioCAS.2014.6981816

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D.,
et al. (2015). A reconfigurable on-line learning spiking neuromorphic
processor comprising 256 neurons and 128K synapses. Front. Neurosci. 9:141.
doi: 10.3389/fnins.2015.00141

Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., and Millner, S. (2010).
“A wafer-scale neuromorphic hardware system for large-scale neural modeling,”
in Proceedings of 2010 IEEE International Symposium on Circuits and Systems
(Paris: IEEE), 1947–1950. doi: 10.1109/ISCAS.2010.5536970

Schemmel, J., Fieres, J., and Meier, K. (2008). “Wafer-scale integration of
analog neural networks,” in Proceedings of the 2008 IEEE International

Joint Conference Neural Networks (Hong Kong: IEEE World Congress
Computational Intelligence), 431–438. doi: 10.1109/IJCNN.2008.4633828

Seo, J., Brezzo, B., Liu, Y., Parker, B. D., Esser, S. K., Montoye, R. K., et al. (2011).
“A 45nm CMOS neuromorphic chip with a scalable architecture for learning in
networks of spiking neurons,” in Proceedings of the 2011 IEEE Custom Integrated
Circuits Conference (San Jose, CA: IEEE), 1–4. doi: 10.1109/CICC.2011.6055293

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.
doi: 10.1038/78829

Stanford, L. R. (1987). Conduction velocity variations minimize conduction
time differences among retinal ganglion cell axons. Science 238, 358–360.
doi: 10.1126/science.3659918

Vogelstein, R. J., Mallik, U., Vogelstein, J. T., and Cauwenberghs, G. (2007).
Dynamically reconfigurable silicon array of spiking neurons with conductance-
based synapses. IEEE Trans. Neural Netw. 18, 253–265. doi: 10.1109/TNN.2006.
883007

Wang, R. (2013). Neuromorphic Implementations of Polychronous Spiking Neural
Networks. Available at: http://researchdirect.westernsydney.edu.au/islandora/
object/uws%3A18829/datastream/PDF/view

Wang, R., Cohen, G., Hamilton, T. J., Tapson, J., and van Schaik, A. (2013a). “An
improved aVLSI axon with programmable delay using spike timing dependent
delay plasticity,” in Proceedings of the 2013 IEEE International Symposium of
Circuits and Systems (Beijing: ISCAS), 2–5.

Wang, R., Cohen, G., Stiefel, K. M., Hamilton, T. J., Tapson, J., and van Schaik, A.
(2013b). An FPGA implementation of a polychronous spiking neural network
with delay adaptation. Front. Neurosci. 7:14. doi: 10.3389/fnins.2013.00014

Wang, R., Hamilton, T. J., Tapson, J., and van Schaik, A. (2014). “A compact
reconfigurable mixed-signal implementation of synaptic plasticity in spiking
neurons,” in Proceedings of the 2014 IEEE International Symposium on Circuits
and Systems (Melbourne: ISCAS), 862–865. doi: 10.1109/ISCAS.2014.6865272

Wang, R. M., Hamilton, T. J., Tapson, J. C., and van Schaik, A. (2014). A mixed-
signal implementation of a polychronous spiking neural network with delay
adaptation. Front. Neurosci. 8:51. doi: 10.3389/fnins.2014.00051

Wang, R., Jin, C., McEwan, A., and van Schaik, A. (2011a). “A programmable
axonal propagation delay circuit for time-delay spiking neural networks,”
in Proceedings of the 2011 IEEE International Symposium on Circuits
and Systems (Rio de Janeiro: ISCAS), 869–872. doi: 10.1109/ISCAS.2011.
5937704

Wang, R., Tapson, J., Hamilton, T. J., and van Schaik, A. (2011b). “An
analogue VLSI implementation of polychronous spiking neural networks,” in
Proceedings of the 2011 Seventh International Conference on Intelligent Sensors,
Sensor Networks and Information Processing (Adelaide, SA: IEEE), 97–102.
doi: 10.1109/ISSNIP.2011.6146572

Wang, R., Tapson, J., Hamilton, T. J., and van Schaik, A. (2012). “An aVLSI
programmable axonal delay circuit with spike timing dependent delay
adaptation,” in Proceedings of the 2012 IEEE International Symposium on
Circuits and Systems (Seoul: IEEE), 2413–2416. doi: 10.1109/ISCAS.2012.
6271785

Wang, R. M., Hamilton, T. J., Tapson, J. C., and van Schaik, A. (2015).
A neuromorphic implementation of multiple spike-timing synaptic plasticity
rules for large-scale neural networks. Front. Neurosci. 9:180. doi: 10.3389/fnins.
2015.00180

Wu, S.-Y., Liaw, J. J., Lin, C. Y., Chiang, M. C., Yang, C. K., Cheng, J. Y., et al. (2009).
“A highly manufacturable 28nm CMOS low power platform technology with
fully functional 64Mb SRAM using dual/tripe gate oxide process,” in Proceedings
of the 2009 Symposium on VLSI Technology (Honolulu, HI: IEEE), 88–89.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Wang and van Schaik. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 August 2018 | Volume 12 | Article 593

https://doi.org/10.1109/MM.2018.112130359
https://arxiv.org/pdf/1804.07858.pdf
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1038/383076a0
https://doi.org/10.3389/fnins.2012.00149
https://doi.org/10.1109/TNN.2006.884676
https://doi.org/10.1152/jn.01150.2011
https://doi.org/10.1109/TNN.2005.860850
https://doi.org/10.1162/089976606775093882
https://doi.org/10.1109/TCSI.2006.888677
https://doi.org/10.1109/TCSI.2006.888677
https://doi.org/10.1126/science.275.5297.209
https://doi.org/10.1126/science.275.5297.209
https://doi.org/10.1038/354515a0
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1109/TBCAS.2014.2379294
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/TBCAS.2008.2005781
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/BioCAS.2014.6981816
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1109/IJCNN.2008.4633828
https://doi.org/10.1109/CICC.2011.6055293
https://doi.org/10.1038/78829
https://doi.org/10.1126/science.3659918
https://doi.org/10.1109/TNN.2006.883007
https://doi.org/10.1109/TNN.2006.883007
http://researchdirect.westernsydney.edu.au/islandora/object/uws%3A18829/datastream/PDF/view
http://researchdirect.westernsydney.edu.au/islandora/object/uws%3A18829/datastream/PDF/view
https://doi.org/10.3389/fnins.2013.00014
https://doi.org/10.1109/ISCAS.2014.6865272
https://doi.org/10.3389/fnins.2014.00051
https://doi.org/10.1109/ISCAS.2011.5937704
https://doi.org/10.1109/ISCAS.2011.5937704
https://doi.org/10.1109/ISSNIP.2011.6146572
https://doi.org/10.1109/ISCAS.2012.6271785
https://doi.org/10.1109/ISCAS.2012.6271785
https://doi.org/10.3389/fnins.2015.00180
https://doi.org/10.3389/fnins.2015.00180
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Breaking Liebig's Law: An Advanced Multipurpose Neuromorphic Engine
	Introduction
	Materials and Methods
	Strategies
	Modeling
	Conductance-Based Neuron
	STDP Learning Rule
	STDDP Learning Rule

	Hardware Implementation
	Topology
	Advanced Time-Multiplexing Approach
	Physical Component
	Time-driven module
	Event-driven module

	Multi-Component Engine
	Controller

	Results
	Prototype System
	Performance of LIF Neuron
	Performance of STDP
	Performance of STDDP
	Hardware Evaluation

	Discussion and Future Work
	Author Contributions
	Funding
	Acknowledgments
	References

